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1 Introduction

Molecular magnets are purely organic or metalloorganic materials, which possess, even in the
absence of external magnetic field, stable magnetic momentsassociated with certain chemical
building blocks. Such moments may reside on transition metal ions, or on organic free radicals.
Quite often the building blocks, i.e. single molecule magnets (SMM), are chemically stable and
maintain their magnetic moments both in a liquid solution and in solid phase. The solidification
may result either in molecular crystals, where the SMM are spatially well separated and loosely
magnetically bonded, or in polymers, one-, two- or three-dimensionally connected magnetic
structures. In broad sense, all there chemical species are sometimes referred to as molecular
magnets. More strictly speaking, one tends to narrow this definition to SMM, or to molecular
crystals constructed of them. For chemists, metalloorganic compounds with magnetic ions,
as well as organic molecules containing free organic radicals, are not basically new materials.
Yet, last decades brought about a dramatic increase in the number of synthesized molecular
magnets, and considerable progress of their characterization by methods well established in
the materials science – M̈ossbauer spectroscopy, nuclear and electron spin resonance, optical
and X-ray spectroscopy. In 1980 Lis [1] reported the synthesis of Mn12O12(CH3COO)16(H2O)4,
known as Mn12-acetate (Mn12-ac in the following), by now probably the most studied molecular
magnet. Its structure is shown in Fig. 1.

The reason why molecular magnets got so much attention in thelast decades is that certain
interesting physical effects have been found in these systems, specific for molecular magnets
and not to conventional magnetic materials. These are effects of purely quantum nature, like
single-molecule hysteresis or quantum tunnelling of magnetization . In short, this is about the
formation of the resulting spin of a molecule from the spins of participating magnetic atoms,
and how the state of the resulting spin can be influenced by external magnetic field. Effects
which provide a direct experimental manifestation of quantum mechanics are known to be dif-
ficult to detect. In molecular magnets their detection became possible because the systems of
study, crystallized SMM, were all identical. Moreover, even as the orchestrated behaviour of

Fig. 1: Two views of the Mn12-ac. Left panel: the entire molecule, right panel: the magnetic
core Mn12O12. The eight outer Mn ions have spinss = 2 ordered in parallel, the four inner
s=3/2 are antiparallel to them; the resulting ferrimagnetic structure has total spinS =10.
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spins occur only below certain temperature, it is in some cases high enough (several K) to be
accessible in the lab. There are lectures at this school specifically devoted to quantum theory of
molecular magnetism (by J. Schnack) and to quantum tunnelling of magnetization in molecular
magnets (by W. Wernsdorfer), which give more details on experimental situation and on the
peculiarities of quantum behaviour. Among the review literature for the introduction into the
field, one shouldn’t miss the monograph by Kahn [2] publishedin 1993. New chemical species
and observed effects since then were subject to many subsequent books, e.g., that edited by
Linert and Verdaguer [3], to name a relatively new one. Together with Mark Pederson and Jens
Kortus, the author prepared an internet review on the subject [4], an enlarged version of which,
updated jointly with Jens Kortus, will be published soon as abook chapter [5]. Some material
from the latter publication have been used in preparing the present lecture.
New physics of molecular magnets feeds hopes of certain prospective applications, and such
hopes pose the problem of understanding, improving, or predicting desirable characteristics of
these materials. The applications which come into discussion are, for instance, magnetic storage
(one molecule would store one bit, with much higher information storage density than accessi-
ble with microdomains of present-day storage media or magnetic nanoparticles of next future).
In order to make this feasible, one needs to make sure that theresulting spin of molecule is
formed from constituent atomic spins only in a certain way. That means, the coupling between
spins must be strong enough so that thermal fluctuations won’t disorganize them. Moreover, the
resulting spin must remain stick to a definite orientation relatively to the axes of molecule, and
not freely rotate at the effect of temperature. This implieshigh magnetic anisotropy . These two
parameters, strong interatomic magnetic coupling and highmagnetocrystalline anisotropy, are
therefore desirable for magnetic storage applications. Presently achieved numbers for known
molecular magnets (of the order of tens of K) fall far short ofdesirable values. Other ap-
plications, like switching magnetic state of a molecule by light, seem more close. All these
applications under discussion deal with the switching between different metastable states of the
electron system in the magnetic molecule in question. Therefore it is essential to provide an
adequate description of electron characteristics, and understand what they depend upon. This
is the subject of the present lecture to show how such description can be achieved, what are
the characteristics to look for, and how reliable the obtained results are. It is good to realize
that the calculation output, even if obtained by quite reliable methods, must be whenever pos-
sible checked against experimental data, for the sake of mutual verification. On the other side,
quantum theories of magnetism (the subject of the lecture byJ. Schnack), even as they heav-
ily depend onad hocparametrisation, go well beyond quantitative simulationsof electronic
structure in what regards the issues of statistical physicsand thermodynamics. Therefore the
cross-checking between different branches of theory is as equally important.

2 Relevant physical properties andab initio point of view

2.1 Spin Hamiltonians

A comforting feature of modern studies on molecular magnetsis that different groups of re-
searchers, be they chemists, experimental physicists, model or ab-initio theorists, employ es-
sentially the same language for representing their results, that is, the language of model Hamil-
tonians. Consequently, if one agrees on a basic model of underlying physics, one can discuss
specific numbers of parameters entering such models, estimated either from experiment, or
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from first-principles calculations. This helps to understand whether theory agrees with experi-
ment, and also to verify whether the accepted model was satisfactory, in the first place, or needs
revision.
An essential element of such model Hamiltonians are spin operators, that’s why we’ll speak in
the following of spin Hamiltonians. The values of spins of individual atoms which build a par-
ticular SMM are usually clear from very basic chemical considerations, such as formal valency;
if this is not the case, quite straightforward experimentaltools, like magnetization or M̈ossbauer
effect measurements, might provide additional hints. Usually the values of constituent spins are
not subject to controversy between experiment and theory; the mechanisms and parameters gov-
erning their interaction, on the contrary, often are. In fact the model spin Hamiltonians neglect
the true chemical environment and bonding and reduce all interactions to just a few model pa-
rameters. One is dependent on experimental input in order toestimate these parameters, and the
accuracy of quantitative predictions depends on the parameters chosen. Even more problematic,
it is nota priori clear which interactions are important and should be included in the model and
which are negligible.
Let me now become more specific. The parameterization of a magnetic interaction normally
includes, as the presumably leading term, the Heisenberg Hamiltonian

H = −2
∑

i>j

JijSiSj , (1)

with the summation indicating that each pair of spinsSi, Sj is counted only once.1 As only the
relative orientation of both spins matters, this interaction is isotropic.
The dependence on absolute spin orientation, i.e. with respect to the crystal lattice, can be
brought in via a modification of the Heisenberg model taking into account anisotropy:

H = −2
∑

i>j

Jij

[

Sz
i S

z
j + γ(Sx

i Sx
j + Sy

i Sy
j )

]

. (2)

This form of interaction recovers the conventional Heisenberg model in case ofγ=1, reduces
to the Ising model forγ=0, or to the 2-dimensional interaction forγÀ1. Surprisingly, even
in case of the seemingly simple Ising model so far analytic solutions are known only for one-
dimensional and two-dimensional lattices [6].
Further on, the single-spin anisotropy can be included, andthe Zeeman term added, yielding

H = −2
∑

i>j

Jij(SiSj) + D
∑

i

(eiSi)
2 + gµB

∑

i

BSi , (3)

with the Land́eg-factor being normally close to 2, andµB being the Bohr magneton. The single-
spin anisotropy term may lack some of the true physics. It is scaled with its corresponding
constantD and depends on the orientation of each spinSi relative to a reasonably chosen fixed
direction in spaceei; the Zeeman term scales with the external magnetic fieldB, for the chosen
value of theg factor.
Such model spin Hamiltonian can be further sophisticated byintroducing additional parameters,
i.e., distinguishing between random (varying from site to site) and constant (global) magnetic
anisotropy, yielding the appearance of distinctD parameters in Eq. (3). Moreover, higher-
order terms in isotropic interaction (biquadratic exchange, etc.), as well as from antisymmetric

1Note that the definition of sign and prefactor may vary between publications.
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Dzyaloshinsky-Moriya spin exchange [7, 8]

HDM =
∑

i>j

Dij· [Si×Sj] , (4)

can be introduced. This might be necessary to grasp essential physics, but makes the extraction
of parameters, usually from a limited set of experimental data, more ambiguous, leading to a
problem of over-parameterization.
It should be noted that the definition of the Heisenberg Hamiltonian in different publications
differs sometimes in the sign and in the presence of prefactor 2, that must be taken into account
when comparing different sets of extracted parameters. Thenotation as above corresponds to
J >0 for the ferromagnetic (FM) coupling.
In the following, the relation of model spin Hamiltonians tofirst-principles calculations is
briefly discussed. The introduction of microscopic concepts, like orbitals, permits to link the
exchange constants with the real chemical structure and bonding. Depending on the character
of the states involved in the exchange mechanism, one can distinguish between them and quan-
tify the above mentioned concepts like direct exchange, superexchange (indirect exchange) in
insulators, itinerant exchange (RKKY interaction) in metals, double exchange in some oxides
or anisotropic (Dzyaloshinsky–Moriya) exchange. More details were given by Anderson [9]
and Blundell [10].
The advantage ofab initio approaches in the extraction of interaction parameters is that cer-
tain mechanisms of interaction can be switched on and off in afully controllable way. Thus,
all anisotropy terms may only have effect if the spin-orbit interaction is explicitly present in
the calculation. The non-collinear orientation of individual spins can sometimes be arbitrarily
chosen, or at least different settings of “up” and “down” configurations of spins with respect to
a global quantization axis are available in a calculation scheme, so that angles between spins
become in one way or another directly accessible.

2.2 Magnetic interactions

Given the above examples of spin Hamiltonians, one can assume that the magnetic interaction
parametersJij and anisotropy parametersD are the properties of primary interest. Indeed,
they are crucial for the behaviour of SMM in question in prospective practical applications, as
mentioned above. HighJ values (if expressed inkT , and compared to envisaged operation
temperature) make sure that the spins within the molecule remain coupled and not disorder.
High D values make sure that the resulting magnetic moment of a molecule maintains its spatial
orientation and cannot be easily rotated due to thermal fluctuations. The quest for highJ and
D is an important driving force in a search for new better SMM.
Discussing first the magnetic interactions generalized into J , it is important to understand that
they arenot of purely magnetic order, as for instance magnetic dipole interaction would be.
Purely magnetic interactions, dipole or quadrupole, are weak and may play a role, say, for es-
tablishing a magnetic order throughout a crystal between individual magnetic molecules, which
are often separated by long organic fragments. On the contrary, much stronger intramolecu-
lar interactions occur via chemical bonds, and they are electrostatic in their nature. The mutual
arrangement of spins happens due to an interplay between Coulomb interaction and Pauli exclu-
sion principle, in what is referred to asexchange interaction. The attraction by atomic nuclei and
repulsion by other electrons governs the arrangement of electronic states in molecular orbitals,
whereby the Pauli principle demands that only two electronswith opposite spin may share the
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same orbital. The simple case of two electrons helps to understand why this interaction is called
exchange. Given two non-interacting electrons atr1 andr2 with their respective wave functions
ϕ1(r1) andϕ2(r2), we can build up a trial two-electron wave function from the products of the
latter. As the electrons are indistinguishable, the probability density should remain unaffected
if we exchange them; this leaves the only possibilities of either fully symmetrized (S) or fully
antisymmetrized (AS) combinations ofϕ1 andϕ2:

ψS(r1, r2) =
1√
2

[ϕ1(r1)ϕ2(r2) + ϕ1(r2)ϕ2(r1)] ;

ψAS(r1, r2) =
1√
2

[ϕ1(r1)ϕ2(r2) − ϕ1(r2)ϕ2(r1)] .

So far we considered only the spatial component of the wave function, but the electrons are
also characterized by a spin. In fact the complete wave function for electronsψ(r1, σ1; r2, σ2),
including spatial and spin components, must be antisymmetric, hence we have two possibili-
ties: an antisymmetric spin singlet state S (S = 0) together with a spatial symmetric state, or
symmetric spin triplet T (S = 1) with an antisymmetric spatial part:

ψ(r1, σ1; r2, σ2) =

{

χS(σ1, σ2) ψS(r1, r2) ,

χT(σ1, σ2) ψAS(r1, r2) .
(5)

The energy difference between the singletES and the tripletET states allows to define the
exchange constantJ between the spins,

J =
ES − ET

2
. (6)

A positive value ofJ (ES > ET) favours the triplet state withS =1; J < 0 – the singlet one.
Where does the difference between energies of singlet and triplet states come from? Obviously
it is determined only by spatial shape ofψS andψAS. Some general ideas about the sign ofJ , with
the use of kinetic energy and Coulomb repulsion arguments, have been given by Anderson [9].
Let us assume that there are two electrons on the same atom. The spatially antisymmetric wave
function minimizes the Coulomb repulsion, because the two electrons are spatially separated.
Hence the spin triplet state is lower in energy,J is positive, and the resulting ferromagnetic-
like interaction between the spins is consistent with Hund’s first rule. Another enlightening
example is represented by two electrons on neighboring atoms, so that they can form bonds.
The corresponding molecular orbitals can be spatially symmetric (bonding) or antisymmetric
(antibonding) as outlined above. The antibonding orbital has larger kinetic energy (larger cur-
vature, on the average), which implies that it is energetically more expensive. This favours the
spin-antisymmetric singlet state with the spatially symmetric bonding molecular orbital, hence
the exchange constant is negative resulting in an antiferromagnetic-like interaction.
While this concept is straightforward for two electrons, theextension to many electrons be-
comes complicated. Still it provides a useful starting point for further qualitative discussion of
exchange in many-electron systems.
As a further refinement when discussing exchange interactions through chemical bonds, one has
to distinguish between direct exchange (due to an immediateoverlap of atomic states of mag-
netic atoms) or indirect one, occurring via an intermediateatom or group of atoms (diamagnetic
groups), which form anexchange pathof coupled chemical bonds. Whereas the direct exchange
is crucial for transition metals (TM) and alloys, the physics of molecular magnets, as also in
TM oxides, is governed by indirect exchange.
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A concept ofdouble exchange, introduced by Zener [11] in order to explain FM ordering in
conducting complex oxides, and further elaborated by Anderson and Hasegawa [12], might
turn out helpful for some SMM, and a profound discussion on “superexchange”, a term coined
by Anderson [13] forinsulating(and usually antiferromagnetic) TM oxides – for some other
SMM. The starting point of Anderson’s analysis is the introduction of localized magnetic or-
bitals, related to a certain TM ion but including also some electron states of a diamagnetic
ligand. Different magnetic orbitals may therefore share a common ligand and either experi-
ence an overlap there, or be orthogonal. The simple argumentof Anderson is “that antiparallel
electrons can gain energy by spreading into non-orthogonaloverlapping orbitals, where parallel
electrons cannot”. This is generalized in form of the Goodenough-Kanamori(-Anderson) rules
[14–16], stating that if two electrons are in orbitals that directly overlap, their exchange (i.e.,
the 180◦-exchange) is strong and of AFM type, whereas for the (interacting) orbitals which are
orthogonal, the (90◦-)exchange is weak and of the FM type. The real world might however
deviate from these rules.

2.3 Relation to first-principles calculations

Each of the above cited models for exchange provide an internal parametrisation of the result-
ing J in terms of, say, Coulomb integral, overlap of different orbitals and transfer probabilities.
However, it is not a good idea to rely on such parameters as estimated fromab initio calcula-
tions, because of ambiguities in their definition – which wave functions to use, how to account
for screening effects, etc.
More promising strategy is a “low-level” parameterizationof the interaction energy directly
in terms of few basic observables. A good example is the Heisenberg model which casts the
interaction of (presumably well defined) spins into a simpleanalytical form, incorporating all
underlying physics in a single isotropic interaction parameter. An advantage of introducing
such parameters (of interaction between nominal spins) is that they are better accessible in ex-
periment. For example, the calculated Heisenberg exchangeparameter would have the same
meaning as that extracted from observed Curie-Weiss behavior of measured magnetic suscepti-
bility. The disadvantage is that the underlying physics, whether the obtained interaction comes
about due to superexchange, double exchange or whatever, remains somehow hidden. This dis-
advantage is actually not so serious, because once the calculation is done, a careful analysis of
its results – energies, wave functions etc. – might recover agood deal more useful information
than merely interaction parameters. The issues of hybridization, localization, charge transfer
are typical ingredients of a quantum chemical analysis, andnormally they do give insight into
the origin of a particular magnetic ordering. If we understand them, we may hope to find possi-
bilities to “design” or at least to influence the magnetic properties.
By first-principles calculations we mean those which attemptto solve the most general quantum-
mechanical equations, i.e. either Schrödinger or Dirac equation, for a system of either fixed,
or movable point-charge nuclei, accommodating many electrons. For cases more complex than
a hydrogen-like (one-electron) ion, analytical solution is not possible. The necessary approxi-
mations can be divided into conceptual and technical ones. The former are about reducing the
underlying physical problem to a feasible one; such was the Hartree–Fock (HF) approximation,
casting the many-electron wave functionΨ(r1, . . . , rN) as a single Slater determinant, and in-
troducing the mean-field concept. Systematic improvementsof the HF scheme, which make
use of multi-determinantal wave functions, constitute thedomain ofquantum chemistry(QC).
Another example is density functional theory (DFT), a reliable working horse in practical elec-
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tronic structure calculations since 1960s – see Dreizler and Gross [17], Eschrig [18] for reviews.
Its central idea is the removal of many-electron wave function from the picture whatsoever,
putting at its place the one-electron density

ρ(r) =

∫

Ψ∗(r, r2, · · · , rN) Ψ∗(r, r2, · · · , rN) dr2 · · · drN

as subject to variation in the search for the total energy of the ground state. It turned out
useful, as was proposed by Kohn and Sham [19], to express the searched for densityρ(r) via
fictitious functionsψi(r), which are postulated to be wavefunctions of non-interacting quasipar-
ticles without apparent physical meaning, but possessing the same density as the true physical
system:

ρ(r) =
N

∑

α=1

|ψα(r)|2 . (7)

The variational principle applied to wavefunctionsψi(r) leads to a set of Kohn-Sham equations:
[

− ~
2

2m
∇2 + U(r) +

∫

ρ(r′) dr′

|r − r′| +
δEXC[ρ]

δρ(r)

]

ψα(r) = εα ψα(r) . (8)

DFT claims to be an exact theoryin principle, at least in what regards the treatment of ground-
state properties. However in practical terms, in order to specify the exchange-correlation term
δEXC[ρ]/δρ(r) in the above Kohn–Sham equations, one has to choose one or another parametri-
sation. This gives rise to different “flavours” of DFT, like local density approximation (LDA),
generalized gradient approximation (GGA), etc. The lecture by R. Zeller on band magnetism
offers a more extended covering of DFT.
Approximations of technical kind are about how to accomplish the necessary “number crunch-
ing” in a more efficient way, without big loss of accuracy. This covers the choice of adequate
computation scheme with its choice of basis, representation of potential and charge density,
performing necessary integrations, etc. Among a large variety of calculation schemes being
developed since decades, not all are well suited for simulations on molecular magnets. Several
examples will be discussed below in Section 3.
Turning now to the problem of evaluating the parameters of spin Hamiltonians from first princi-
ples, we note that in executing the calculation one has the freedom to impose certain constraints
(fix the magnitude or orientation of magnetization, modify the potential felt by certain elec-
tronic states, switch on or off the relativistic effects) and inspect the effect of these constraints
on the total energy. Moreover, one-electron eigenvalues and corresponding (Kohn-Sham, or
Hartree-Fock) eigenfunctions are also available from a self-consistent calculation. There are
certain subtleties related to the extraction of exchange parameters from QC and DFT calcula-
tions which one should be aware of.
In QC one deals with a multi-configurational scheme which allows to mix different spin con-
figurations and to classify energy eigenvalues according todifferent total spin values. For two
interacting spinsS1, S2 summing up toS′ = S1 + S2 one gets

2S1S2 = S′2 − S2

1 − S2

2 ,

with eigenvalues[S ′(S ′ + 1) − S1(S1 + 1) − S2(S2 + 1)]. For a textbook exampleS1 = 1

2
,

S2 = 1

2
this yields a singlet(S ′ = 0) and a triplet(S ′ = 1) states. The corresponding eigenval-

ues of the Heisenberg Hamiltonian must be then3/2J and−1/2J , correspondingly.



Electron Theory of Molecular Magnets F4.9

Indeed, the basis functions in anab initio calculation are normally pure spin states. In the basis
of spin functions|mS1

mS2
〉, for the caseS1 = 1

2
, S2 = 1

2
the Heisenberg Hamiltonian takes the

form:
mS1

mS2

∣

∣

1

2

1

2

〉 ∣

∣−1

2

1

2

〉 ∣

∣

1

2
− 1

2

〉 ∣

∣−1

2
− 1

2

〉

∣

∣

1

2

1

2

〉

−J/2
∣

∣−1

2

1

2

〉

J/2 −J
∣

∣

1

2
− 1

2

〉

−J J/2
∣

∣−1

2
− 1

2

〉

−J/2

(9)

The diagonalisation of (9) is achieved by a basis transformation which mixes differentmS

values:
1√
2

( ∣

∣

1

2
− 1

2

〉

−
∣

∣ −1

2

1

2

〉 )

(singlet) S = 0 E = 3

2
J ;

∣

∣

1

2

1

2

〉

1√
2

( ∣

∣

1

2
− 1

2

〉

+
∣

∣ −1

2

1

2

〉 )

∣

∣ −1

2
− 1

2

〉











(triplet) S = 1 E = −1

2
J .

(10)

In a QC (multi-determinantal) calculation the eigenvaluesof singlet and triplet states,ES and
ET, are immediately accessible. This allows the (formal yet unambiguous) mapping of a first-
principles result onto the Heisenberg model:

ES− ET = 2J , (11)

identically with the above discussed model case of two electrons (6). The caseS1,2 = 1

2
corre-

sponds to, e.g., two interacting Cu2+ ions. Other ions from the3d row yield richer systems of
eigenvalues – for instance,S1,2 = 1 (two Ni2+ ions) produces a quintet levelEQ beyond singlet
and triplet, with the energy separation

ES− EQ = 6J . (12)

Whether both equations (11) and Eq. (12) can be satisfied by thesameJ is a measure of validity
of the Heisenberg model.
In DFT, the search for the “true” wave function is avoided andsubstituted by the variational
search for the charge density and total energy. As the eigenvalues of multi-determinantal states
are not available, one must either rely on the Kohn-Sham eigenvectors or on total energies in
specially prepared symmetry-breaking metastable states,subject to different constraints with
respect to the spin states of a system. In practice, one can try ferromagnetic (FM) or antiferro-
magnetic (AFM) configurations of two spins, or impose the fixed spin moment (FSM) scheme,
first introduced by Schwarz and Mohn [20]. The total energy indifferent spin configurations
doesnot relate to the eigenvectors but to diagonal elements of, e.g., the HamiltonianH of (9):

EFM =

〈

1

2

1

2

∣

∣

∣

∣

H
∣

∣

∣

∣

1

2

1

2

〉

= −1

2
J ,

EAFM =

〈

−1

2

1

2

∣

∣

∣

∣

H
∣

∣

∣

∣

−1

2

1

2

〉

=
1

2
J , (13)

hence
EAFM − EFM = J (14)
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for the above case ofS1,2 = 1

2
. This is a valid representation forJ provided the Heisenberg

model itself remains valid throughout the path from FM to AFMstate. The latter formula can
be approximated using the concept of magnetic transition state [21]. Generally, according to
Slater, the shift in the DFT total energy∆E due to a whatever change∆ni in the occupation of
certain orbitals is

∆E =
∑

i

∆niε
∗
i + O(∆n3) , (15)

whereε∗i are Kohn-Sham eigenvalues obtained self-consistently with occupation numbers mid-
way between initial and final states. For the flip from FM to AFMconfiguration,

EFM − EAFM '
∑

i

(

nA
i↑ − nA

i↓
) (

ε∗i↓ − ε∗i↑ ,
)

(16)

where(nA
i↑−nA

i↓) is the magnetic moment (which gets inverted) in the orbitali. The latter bracket
is the spin splitting (in energy) of the same orbital, calculated in the configuration with zero spin
on atomA (transition state), i.e. induced fully via the interactionwith the second spin. While
being approximative, the magnetic transition state schememight have a certain advantage of
numerical stability over explicit comparison of large total energy values. Moreover, the result is
available from a single calculation and offers a microscopical insight of how different orbitals
are affected by magnetic interaction – information which remains hidden in the total energy
numbers. Being of use a number of times in the past (primarily for magnetic oxides), the
method has recently been applied to the analysis of exchangeparameters in Mn12-ac [22].
The validity of either “finite difference” scheme (14), or “differential” procedure (16) presumes
that the mapping onto the Heisenberg model makes sense in thefirst place. However, with just
two interacting spins we have no immediate criterion whether this is true. The applicability of
the Heisenberg model would mean that the functional part of the interaction comes from the
scalar product of two spin operators, with the parameterJij being independent onSi andSj.
The mapping on the Heisenberg model may be less ambiguous if done as a limiting case of
small deviations from a certain stationary state. The meaning of such deviations in the DFT
might be some admixture to pure spin states (in the sense of local spin density functional), i.e.,
non-diagonal (in the spin space) form of density matrices. It allows a transparent quasi-classical
interpretation in terms of non-collinear magnetic densityvarying from point to point in space
– see Sandratskii [23] for a review. If a pair of local magnetic moments can be reasonably
identified in the calculation, and their small variations from the global magnetization axis are
allowed, the counterparts in the Heisenberg model will be deviations of local exchange fields at
two corresponding sites. Matching the leading terms in the angular dependence of interaction
energy in the DFT and in the Heisenberg model yields the desired mapping:

Jij =
∑

{m}
∆i

mm′ χ
ij
mm′m′′m′′′ ∆

j
m′′m′′′ (17)

where∆i is the spin-splitting of the on-site potential, possibly non-diagonal in the expansion
over spherical harmonics around a given center, andχij is non-local susceptibility, specified in
Appendix 1 in terms of eigenvalues and eigenfunctions. The line of arguing resulting in Eq. (17)
goes back to at least Oguchi et al. [24] who extracted interaction parameters in simple3d oxides
from DFT calculations. Liechtensteinet al. [25–27] worked out closed expression forJij in a
form consistent with spin-fluctuation theories, in terms ofthe elements of the Green’s function
(see Appendix 1).
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2.4 Spin-orbit coupling and magnetic anisotropy energy

It was earlier mentioned that high anisotropy values are essential to ensure that the resulting
magnetic moment of a SMM maintains its spatial orientation and cannot be easily rotated due
to thermal fluctuations. Together with high magnetic excitation parameters, it is therefore an
important “figure of merit” for various applications of molecular magnets. In general, the mag-
netocrystalline anisotropy reflects the energy differencefor different possible orientations of
spins with respect to crystallographic axes. Such discrimination may only occur via the spin-
orbit coupling and hence is a manifestation of relativisticeffects in the electronic structure.
Well known for bulk magnetic materials, magnetic anisotropy determines the preferential type
of magnetization of a sample and fixes, in the most general case, its easy, medium and hard
magnetic axes. A special case is uniaxial anisotropy when the energy depends only on the angle
to one certain axis, irrespectively to the direction of other two. The preferential orientation of
magnetization along this selected axis is referred to as “easy axis” type of anisotropy; the op-
posite case, when the magnetization accommodates itself normally to the selected direction, is
called “easy plane”. In any case the magnitude of the energy variation while scanning different
directions of magnetization is quite small, of the order of 10−3–10−6 eV per atom.
In cubic systems the second order contributions to the anisotropy energy vanish by symmetry,
so that like in bulk Fe, Co or Ni there will be only 4th order contributions which are very
small. Most molecular nanomagnets are low-symmetric, therefore the second order anisotropy
is present in them, achieving in some cases the values of several K.
Recently, Pederson and Khanna [28, 29] have developed a method for accounting for second-
order anisotropy energies (see Appendix 2). In the absence of a magnetic field, the second-order
perturbative change to the total energy of a system with arbitrary symmetry becomes

∆2 =
1

4

∑

i

M12

ii + M21

ii +
∑

ij

(M11

ij + M22

ij − M12

ij − M21

ij )
〈Si〉〈Sj〉
(∆N)2

. (18)

Herei, j run over sites, 1 or 2 label spin directions,Mσσ′

ij accumulate the matrix elements of
the potential between occupied and unoccupied states,∆N is an excess number of majority-
spin electrons – see Appendix 2 for details. Section 4 below overviews the applications of this
formula for some systems of actual interest.

3 Calculation difficulties and suitable calculation schemes

Beyond the conceptual approximations adopted for solving the many-electron problem, as dis-
cussed in Sec. 2.3, e.g., HF approximation, QC multi-determinantal approach, or Kohn-Sham
equations, one has to choose how to solve the corresponding equations numerically. This in-
volves additional approximations, which are of purely technical character, but demand a fair
amount of physical insight and programming sophisticationin order to combine accuracy with
feasibility of the calculations. In virtually all cases onehas to decide first on an appropriate set
of basis functionsχp(r) used to expand the sought for one-electron orbitalsψα(r), which enter
the Kohn-Sham equations (8):

ψα(r) =

Q
∑

p=1

Cαpχp(r) . (19)

This expansion is always finite, but the dimension of the basisQ must be reasonably larger than
the number of occupied electronic statesN , for providing sufficient flexibility in the variational



F4.12 A. V. Postnikov

search for the solution of either Kohn-Sham, or HF equations. The two most common choices
of χp(r) are plane waves and atom-centered localized functions. Theformer are defined as

χG(r) =
1√
Ω

eiGr , (20)

i.e. labeled by vectorsG of the reciprocal lattice, which corresponds to a periodic unit cell of
volumeΩ. Such a periodic cell (simulation box) must always be introduced for calculations
with planewave basis sets, even if the simulated system is inreality not periodic (e.g., a sin-
gle molecule). The number of planewave basis functions needed for sufficient accuracy grows
rapidly with the size of the simulation box, independently on the actual number of atoms con-
tained in the box. The planewave basis (see, e.g., Ref. [30] for more details) has the advantage
of becoming ultimately complete under the variation of a single cutoff parameter,Gmax, since it
includes all planewaves with|G| ≤ Gmax. The planewave cutoff energy can be kept reasonably
low by using, instead of true (deep near the nuclei) Coulomb potentials, screened pseudopo-
tentials and correspondingly smoothed pseudofunctions for electrons in valence shells, thus
excluding the core states from the calculation.
The atom-centered functions, on the contrary, are better suited for describing strong spatial
fluctuations of the one-electron functions within atoms andhence allow much smaller (and even
almost minimal,Q & N ) basis sizes. However they face problems, or at least ambiguities, in
a consistent generation of efficient basis sets, and in performing spatial integrations. The atom-
centered functions can be further divided into numerical and analytical ones, energy dependent
or not, fixed or adjustable in the course of iterating the Kohn-Sham equations to self-consistency.
A common workable choice among fixed analytical basis functions are Gaussian-type orbitals
– see, e.g., [31] for a review.
Recently, there was a notable increase in the number of calculations which solve the underlying
equations on a real-space grid [32, 33], with finite differences or finite elements technique
[34, 35]. Yet this is equivalent to the use of piecewise linear or polynomial functions, localized
at grid points, as a basis. Attempts to combine the advantages of planewave and localized-basis
techniques resulted in a number of high-precision calculation schemes, like the full-potential
linearized augmented plane wave (FLAPW) [30, 36] or the projected augmented-wave [37,
38] methods. In essentially all calculation schemes, the introduction of the basis expansion
(19) reduces the system of coupled integro-differential equations Kohn-Sham equations (8) to a
generalized eigenvalue problem:

∑

p

Cαp

[
∫

χ∗
q(x)Hχp(x)dx − εα

∫

χ∗
q(x) χp(x) dx

]

= 0 , (21)

whereH is the operator acting at the functionϕα(r) or ψα(r) on the left side of Eq. (8). In most
cases (basis functions either energy-independent, or onlylinearly dependent on energy) the
remaining technical problem reduces to the evaluation of matrix elements of the HamiltonianH
and of the overlap, and the diagonalisation. After solving the matrix equations one can calculate
the electron density (7) and the total energy, which are the basic characteristics of the ground
state. A number of other properties (spin density, forces onatoms, vibrational frequencies) may
be calculated as well.
The physical questions which are of interest in the study of molecular magnets are not intrin-
sically different from those encountered in the study of magnetism and electronic structure of,
say, bulk solids, surfaces, of clusters from first principles in the DFT. One is interested in a
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description of the ground-state electronic structure and,as far as possible, of the lowest excita-
tions, in terms of Kohn-Sham eigenvalues and the corresponding charge and spin density. The
simulation of molecular magnets presents, however, certain technical difficulties which are not
necessarily typical for all DFT applications, and impose limitations both on the choice of the
computational code for an efficient use and on the number of systems addressed so far in a
first-principle simulations. These difficulties are:
• large number of atoms, up to several hundreds of atoms per repeated structural unit;
• low or no symmetry, which makes it difficult to split the generalized eigenvalue problem
(Eq. 21) into symmetry-resolved smaller blocks;
• large size of a simulation box, that means large number of plane waves is needed, if they are
used as basis functions;
• an important role of “heavy” atoms with deep core states and sometimes with important semi-
core – this may create difficulties for the use of pseudopotential-based methods;
• the lack of energy dispersion (due to very week coupling between molecular units) and quite
commonly a dense spectrum of nearly degenerate discrete states in the vicinity of HOMO-
LUMO gap, which makes the self-consistency slowly convergent or even unstable.
Retrospectively, it seems understandable that a large number of calculations done so far em-
ployed one or another scheme using flexible tight-binding bases. Pseudopotential planewave
calculations are not much represented so far. An accurate all-electron FLAPW method, a rec-
ognized tool of choice when dealing with different “conventional” solids, faces its specific prob-
lems in treating atoms of very different size in the same calculation, as it is needed for molecular
magnets. So far such schemes were used only for benchmark calculations on simplified sys-
tems.
Coming down to “hands-on” calculation tools, we’ll see that several calculation methods have
been so far applied with considerable impact in the studies of molecular magnets. Boukhvalov
et al. used theThe Tight-Binding Linear Muffin-Tin Orbital method (TB-LMTO, see [39–
41]) for their calculations of electronic structure and magnetic interaction parameters in Mn12-ac
[42] and V15 [43]. The interatomic exchange parametersJ were estimated along Eqs. (17) and
(34). The TB-LMTO method employs flexible basis of numerical functions, which are adjusted
in the course of approaching the convergence; the method is fast, robust and normally provides
reasonable description of the electronic structure even incomplex materials. Weak features
of the method are the spherical-symmetric averaging of the potential insideatomic spheres
circumscribing each atom, an approximation not good enoughto allow a reliable calculation of
forces and relaxation of structure. Moreover the treatmentof open systems demands to pack
large interstitial space withempty spheres, a cumbersome, ambiguous and seldom satisfactory
procedure. These deficiencies are known to degrade delicateresults of calculation, such as
accurate placement of some bands, or fine details of their dispersion in solids.
Boukhvalov et al. emphasize the importance of intraatomic correlation for correct description
of magnetic interactions and excitation spectra of Mn12-ac and V15. Technically the desirable
correction is provided by the LDA+U [44] ansatz, implemented in the Yekaterinburg version
of the TB-LMTO code and nowadays part of many other calculation codes. In the LDA+U
scheme, the interaction energy within a certainad hocchosen group of states, which are ex-
pected to be particularly localized and hence “correlated”(typically, transition metald states)
is accounted for like in the Anderson model, with appropriately chosen average Coulomb inter-
action parameterU and occupations of affected one-electron statesni. For these selected states
only, the model treatment of interaction among such “correlated” electrons substitutes the con-
ventional mean field-like DFT treatment – say, within the local densitzy approximation, LDA.
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Such a correction in a simplified case, without accounting for a degeneracy within the affected
subsystem ofN electrons yields

ELDA+U = ELDA − 1

2
UN(N − 1) +

1

2
U

∑

i6=j

ninj . (22)

There are certain arguments for the choice of the parameterU in the above mentioned papers,
one recommendsU ≈ 4 eV for V15 andU ≈ 8 eV for Mn12-ac. As the magnitude ofU is in
fact a free adjustable parameter of a calculation, it often makes sense to vary it, checking its
effect on the results. For Mn12-ac one finds that on varyingU from 4 to 6 to 8 eV, the exchange
interaction parameters between the four inner Mn atoms of the Mn12-ac core vary from 37 to
33 to 30 K (other Mn–Mn interaction constants, of the same order of magnitude, change in
a similar manner). Moreover, the local magnetic moments on all Mn atoms become slightly
enhanced, and the band gap increases from 1.35 to 1.78 to 2.01eV. In a minute we’ll compare
these results with what provide other calculation methods for the same system.
Another method, or rather a whole large family thereof, use basis sets constructed from atom-
centeredGaussian-type orbitals. These orbitals are not so flexible and efficient as numerical
basis functions, but they have wonderful mathematical properties enabling easy analytical ma-
nipulations, including analytical evaluation of many related spatial integrals. The methods in
question can be referred to as “full-potential” ones, in thesense that no muffin-tin or atomic
spheres geometry is imposed, and the spatial form of the potential is fairly general. In par-
ticular the version implemented in the Naval Research Laboratory Molecular Orbital Library
(NRLMOL) code [45–47] has been frequently used in calculations on molecular magnets. The
NRLMOL program package developed by Pederson, Jackson and Porezag is an all-electron
Gaussian-type orbital implementation of DFT [45, 46, 48–51]. By including the spin-orbit cou-
pling it is possible to calculate the magnetic anisotropy energy, as outlined above in Sec. 2.4.
The agreement between experiment and the result from the first-principles calculation is in
many cases surprisingly good (see Sec. 4.4 below).
The Discrete variational method (DVM) [52, 53], one of the earliest DFT schemes to find
applications in chemistry, seems to be potentially very well suited for the studies of molecular
magnets. The method is an all-electron one, it uses basis of numerical atomic orbitals, and an
efficient scheme of 3-dimensional spatial integration, using a pseudorandom numerical grid.
DVM was used quite early for first-principles calculations of the electronic structure of a large
molecular magnet such as the 10-member “ferric wheel” [54].
It so happened that all three methods discussed above have been applied to the calculation
of electronic structure and the evaluation of magnetic interaction parameters of Mn12-ac, a
molecule shown in Fig. 1. An overview of results, resolved over three structurally inequivalent
groups of Mn atoms – Mn(1) in the inner cube, Mn(2) and Mn(3) inthe peripheral region, and
the couplings between members of these groups – is given in Table 1. Differences should be
noted in the meaning of data obtained by different calculation methods. Local magnetic mo-
ments are attributed to the spin density integrated over an atom-centered sphere of certain radius
(TB-LMTO, NRLMOL) or to the Mulliken popultion analysis (DVM). Exchange parametersJ
have been extracted in the TB-LMTO calculation [42] by using the formula (17), whereas in the
NRLMOL calculation [55] – by fitting the total energies from several trial spin configurations
onto the Heisenberg model. Finally, Zeng et al. in their DVM calculation [22], one of the first
ab initio studies of the Mn12-ac, estimated Heisenberg exchange parameters in the magnetic
transition state scheme [21], an extension of Slater’s original transition stateansatz, through a
procedure outlined above in Sec. 2.3. Flipping the spin at one atom and detecting the shift of
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Table 1: Electronic structure parameters (magnetic moments and Heisenberg exchange param-
eters) of Mn12-ac from ab initio calculations by three different methods.

Method Magnetic moments (µB ) Exchange parameters (K)
Mn(1) Mn(2) Mn(3) J12 J13 J23

DVMa 3.056 −3.889 −4.039 −136 −72 −102
NRLMOLb 2.57 −3.63 −3.58 −57 −41 −8
LMTOc, U=4 eV 2.72 −3.44 −3.65 −53 −47 −19
LMTOc, U=8 eV 2.92 −3.52 −3.84 −47 −26 −7

aRef. [22]; LDA.
bRef. [29]; GGA; moments within a sphere of 2.5 Bohr.J values by Park et al. [55].
cRef. [42]; LDA+U ; moments within spheres of 2.7/2.8 Bohr (inner/outer Mn atoms).

the3d-energy level on another one due to induced magnetic polarization helped to arrive at a
system of equations in which different interatomic exchange parameters were coupled. For the
sake of simplicity and the clearness of analysis, only collective (non-symmetry-breaking) spin
flips on all atoms belonging to each set of Mn atoms were allowed in the analysis of Zeng et al..
This means that four spins within each group always remainedrigidly ferromagnetically cou-
pled. This resulted in a system of three equations, whence the values ofJ12, J23 andJ13 could
have been determined. The DFT results were explicitly fittedto the Heisenberg Hamiltonian of
the form of Eq. (1). However, the parametersJ11 etc., representing the coupling within each
group, did not appear in the fit, because the spin excitationsnecessary to probe them, which
would break the symmetry of the molecule, were not allowed. Their inclusion in an otherwise
executed calculation could result in a renormalization of exchange parameters.
The values ofJ12, J23 and J13 are given in Table 1; they are all negative, i.e. indicate an
AFM coupling (as could be expected due to a more-than-90◦ superexchange pathway through
bridging oxygens), and hence frustration in accommodatingthe three spin subsets.
My instrument of choice, at least in what regards the calculations of molecular magnets, is the
Siestamethod and computational code [56–59]. This code again usescompact atom-centered
basis functions, but – differently from NRLMOL – numerical ones with strict spatial confine-
ment (see Refs. [60] and [61] for details). Due to a number of smart technical solutions, SIESTA

is a great method for treating large low-coordination low-symmetry structures, as molecular
magnets exactly are. Differently from the two previously discussed methods, SIESTA is not an
all-electron one but employs norm-conserving pseudopotentials. Therefore, as is also true for
many other pseudopotential methods, certain care is required in choosing and testing pseudopo-
tentials prior to calculation.
The application of SIESTA to molecular magnets is relatively new. In the following several
recent results, obtained with this method, are outlined.

4 Recent calculation results

In the following, some recent results on relatively “new” molecular magnets, i.e. systems which
have only become available during the last few years, are outlined. Most of the calculations have
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been done with the SIESTA code. The motivation for the study of these systems is manifold.
“Ferric wheels” gained interest, not in the last place, because of their beautiful shape and a rich
physics they offer in manifesting their quantum properties(see the lecture by J. Schnack). Ni4

is a seemingly simple magnetic molecule for which a fit of experimental data of magnetization
vs. magnetic field to the Heisenberg model fails quite dramatically, and possible reasons for
deviation have been studied, with the help of first-principles calculations. Finally, a two-nuclei
model system is considered with the aim to study the effect ofintraatomic correlation (within the
LDA+U approach) on the electronic structure and interatomic magnetic interaction parameters,
using a numerically more accurate method (namely, FLAPW) than the TB-LMTO of earlier
Mn12-ac calculations by [42]).

4.1 “Ferric wheels”

Hexanuclear “ferric wheels”MFe6[N(CH2CH2O)3]6Cl (M = Li, Na, see Fig. 2), the systems to
be discussed below, were synthesized at the Institut für Organische Chemie in Erlangen [62] and
labeled as substances4 and3 in the latter publication. There exist a large family of ferric wheels
with a different even number (N = 6, 8, 10, 12, 18) of iron atoms. Besides the ferric ones, there
have been reports on wheels with other transition metal ionssuch as an eight membered Cr(III)
wheel [63], Cu(II) [64, 65], Co(II) [66], Mn(II) [67] and a 24 membered Ni(II) wheel [68]. The
latter structure contains the largest number of transitionmetal ions in a wheel-like structure so
far. The synthesis of odd-numbered magnetic wheels appearsto be a nontrivial task.
Fe atoms in these compounds are connected by oxo-bridges, that are reminiscent of the 90◦

coupling of magnetic atoms in transition-metal oxides. Thenearest coordination of the Fe atom

Fig. 2: Structure and spin density distribution in “ferric wheel” molecules. Left panel: top
view of the Li-centered molecule. The Li ion is in the middle of the ring; the distant Cl ion
is not shown; the rest of (electrically neutral) solvent is neglected. Right panel: iso-surfaces
correspond to±0.01e/Å

3
, according to NRLMOL calculation [69]. While most of the magnetic

moment is localized at the Fe atoms, there is still some spin polarization on O and N.
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is octahedral; two pairs of O ions form bridges to the neighboring Fe atoms on both sides; the
fifth oxygen (referred to below as “apical”) and the nitrogenion are connected by the C2H4

group. The octahedra are slightly distorted, to accommodate the stiffness of oxo-bridges with
the curvature of the molecular backbone. While the Fe–O–Fe angles differ slightly in the Li-
centered and Na-centered wheels (101.1◦ and 103.3◦, respectively), the structure of the two
molecules is almost identical.
According to magnetization and torque measurements by Waldmann et al. [70], these systems
are characterized byS=5/2 on the Fe site, thus implying a highly ionized Fe(III) state. More-
over, a fit to the spin Hamiltonian of the Heisenberg model (1)yields theJ values of−18
to −20 K for the Li-wheel (depending on sample and method) and−22.5 to−25 K for the
Na-wheel, thus implying an AFM ground state [70]. X-ray photoelectron and X-ray emission
spectroscopy studies [71] allowed for probing of the electronic structure in the valence band
and on the Fe site, albeit without resolution in spin. Whereasthe magnetic measurements data
are by now well established, the spatially resolved distribution of magnetization was not yet
accessed prior to calculations by J. Kortus and myself [69].Specifically, we compared the
results of electronic structure calculations by two different methods within the DFT, SIESTA

and NRLMOL. In both cases, the generalized gradient approximation after Perdew, Burke,
and Ernzerhof [72] was used. The most important difference between two methods, in what
regards the present study, is that SIESTA uses norm-conserving pseudopotentials whereas NRL-
MOL is an all-electron method. The results are however very similar, even as the calculations
were in fact performed for two different systems (Li-centerwheel by SIESTA vs. Na-centered
wheel by NRLMOL, with tiny structural differences). The NRLMOL treatment was restricted
to the ground-state AFM configuration (alternating orientations of Fe magnetic moments over
the ring); the SIESTA calculation addressed in addition different magnetic configurations, that
allowed for the extraction of DFT-based exchange parameters.
Fig. 3 displays the partial densities of states (DOS) on Fe and its several neighbors in the AFM
configuration, as calculated by both methods. The discrete levels of the energy spectra are
weighted (with the charge density integrated over atom-centered spheres in NRLMOL, or ac-
cording to Mulliken population analysis in SIESTA), and slightly broadened for better visibility.
The local moments corresponding to integrating such partial DOS over occupied states are given
in Table 2. Both calculations give a consistent description of state densities at Fe and O sites,
even though this property is rather loosely defined, and its calculation differently implemented
in SIESTA and NRLMOL.
Notably, both methods find the local magnetic moments on Fe sites very close to 4µB andnot to
5 µB as it is generally assumed, based on the above mentioned magnetization data. The maximal
magnetizationS=5/2 of the Fe atom corresponds to a Fe(III)-ion with in 3d5

↑d
0
↓ configuration.

Our first-principles calculations suggest a somewhat different picture: the minority-spin DOS
has a non-zero occupation due to the hybridization (chemical bonding) of Fe3d with O2p states.
However, the magnetic polarization in the organic ligand which provides the octahedral coordi-
nation for the iron atoms, due to Fe is substantial, the most pronounced effect being on the apical
oxygen atom (which is not participating in the bonding to thenext Fe neighbor). Taken together
with the (smaller) polarization of the bridging oxygen atoms and magnetization at the nitrogen
site, the distributed magnetic momentper Fe atom yields 5µB, recovering the agreement with
the magnetization results.
A clear visualization of the above discussed delocalized (or, rather, distributed) magnetic mo-
ment associated with the Fe atom comes from the map of spin density, obtained from the NRL-
MOL calculation (Fig. 2, right panel). One should take into account that the volume enclosed
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Fig. 3: Atom- and spin-resolved partial densities of states as calculated for Li-centered
molecule bySIESTA (left panel) and for Na-centered molecule by NRLMOL (right panel). The
DOS at the Fe site is scaled down by a factor of 2 relative to other constituents. The numbering
of atoms which are neighbors to the Fe atom is shown in the inset.

by the iso-surfaces is not directly correlated to the total moment at the site. One sees moreover
an absence of magnetization on carbon and hydrogen sites. The fact that the magnetization
is noticeable and changes its sign when passing through bridge oxygen atoms emphasizes the
failure of methods depending the spherical averaging of atom-centered potentials.
An important consequence is that the charge state of iron is not Fe(III) but more close to Fe(II).
Moreover, the distributed magnetic moment behaves like a rigid one, in a sense that it can be
inverted, following a spin flip on a Fe site. This is illustrated by the analysis of other mag-

Table 2: Local magnetic momentsM at Fe and its neighbors. NRLMOL results correspond to
spin density integrated over sphere of radiusR centered at corresponding atom;SIESTA values
are due to Mulliken population analysis.

Atom R(a.u.) M (µB), NRLMOL M (µB), SIESTA

Fe 2.19 3.85 3.91
O (apical) 1.25 0.20 0.30
O (bridge) 1.25 ±0.01 ±0.02
N 1.32 0.07 0.09
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netic configurations, done with SIESTA [71]. The local DOS does not change considerably
when switching from AFM to FM configuration – only the HOMO/LUMO gap becomes less
pronounced, and a slight ferro-magnetic shift between the two spin bands appears.
For the sake of improving both the stability of convergence with SIESTA and for pinning down
a particular spin configuration (FM, or with one or more Fe magnetic moments inverted), the
fixed spin moment(FSM, [20]) scheme was applied in the calculation. Imposingan (integer)
spin moment per molecule fixes the number of electrons in two spin channels and removes a
possibility of spin flips, which are a major source of numerical instability, as there are many
nearly degenerate states in the vicinity of the Fermi level in the molecule (and no symmetry
constraints on these states in SIESTA). The FSM procedure would normally split the common
chemical potential in two separate ones, for majority- and minority-spin channels, that corre-
sponds to an effective external magnetic field and hence to additional (Zeeman) term in the total
energy, in analogy with Eq. (3). Since molecular magnets possess a HOMO-LUMO gap, the
latter correction must only be considered if such gaps in twospin channels do not overlap.
Fig. 4 shows the total energy values and energy gaps for FSM values of 30µB (FM case), 20 and
10 µB (one and two local moments inverted, correspondingly); 0 (alternate-spin AFM case). A
linear change of the total energy while inverting one and then two local moments from the FM
configuration is what would be expected from the Heisenberg model with “rigid” magnetic mo-
ments (in the sense that theirS values do not depend on the total spin of the system), assuming
moreover that only nearest-neighbors interactions between spins are important. An additional
justification of the validity of the Heisenberg model comes from an observation that the mag-
nitudes of local magnetic moments on the Fe atoms always remain close (within several per
cent) to 4µB, and the partial DOS on Fe sites remains largely unaffected by the actual magnetic
ordering. Similarly unaffected is a pattern of local magnetic moments at O and N neighbors of
a particular Fe atom, always getting inverted as the latter experiences a spin flip. Keeping this
in mind, and assuming Heisenberg-model spin Hamiltonian asin Section 2 with theS value
of 5/2 (i.e., for the total spin which gets inverted), we arrive at the estimate for−J of around
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Fig. 4: Total energy per Fe atom (left panel) and energy gap in two spinchannels (right panel;
shaded area – majority-spin, thick lines – minority-spin) from fixed spin moment calculations.
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80 K (over both 30→20 and 20→10 µB flips). This is qualitatively correct (i.e. indicates a
preference toward AFM coupling) and even of the correct order of magnitude. However, two
observations can be made here. First, the “true” AFM configuration (with half of magnetic mo-
ments inverted on the ring) does not follow the linear trend (see Fig. 4) and lies actually higher
in energy than the configuration with two spins inverted. Theorigin of this is not yet clear to
us at the moment. There are several possibilities, the zero-FSM configuration is, technically,the
most difficult to converge, so some numerical instability can still play a role. On the other hand,
a true (mixed) quantum-mechanical ground state of a system with six coupledS=5/2 spins may
win over both our DFT solutions which correspond to selectedvaluesSz=0 orSz=5 of the total
spin. Moreover, the necessity to include magnetic interactions beyond first neighbors, not yet
considered at the moment, might further complicate the situation. The second observation con-
cerns the magnitude of exchange parameterJ and the fact that it is probably overestimated by
a factor of∼4 in our calculation. The origin of this lies most probably inon-site correlations,
which, if treated accurately beyond the standard schemes ofthe DFT, would primarily affect
localized Fe3d states, shifting the bulk of occupied states downwards in energy, the bulk of
unoccupied states upwards, expanding the energy gap, and – whatever scheme to use for esti-
mating exchange parameters – substantially reducing theirmagnitude. This effect, with respect
to Mn12-ac, has been discussed in the previous Section and made obvious from Table 1.
Summarizing our analysis of the electronic structure of Li-and Na-centered “ferric wheels”,
one can conclude that thelocal magnetic moments on Fe sites seem to be 4µB rather than 5µB

as is often assumed. This implies a valence state closer to Fe(II) than to Fe(III), with a substan-
tial covalent part in the Fe–O bonding. The local spin ofS=5/2 per iron site consistent with
magnetization measurements is however recovered if one takes the magnetization of neighbor-
ing atoms into account. The largest moment is on the apical oxygen atom, followed by smaller
moments on nitrogen and the bridging oxygen atoms. This picture is well confirmed by a spatial
distribution of spin density.
With respect to its magnetic interactions, this system can be mapped reasonably well onto the
Heisenberg model; hence we deal withrigid magnetic moments which are neverthelessdelocal-
ized– an interesting counter-example to the common belief that the Heisenberg model primarily
applies to localized spins.

4.2 Ni4

“Ni 4” is a shorthand notation for a molecular crystal [Mo12O30(µ2–OH)10H2{Ni(H2O)3}4] ·
14 H2O, synthesized and characterized by Müller et al. [73]. This material crystallizes in a
structure containing two formula units (shown in Fig. 5), related by the 180◦ rotation around
an edge of the Ni4 tetrahedron. The Ni–Ni distance is 6.6–6.7Å, and magnetic interactions are
mediated by a longer path than in the systems discussed above.
Magnetic properties are due to NiII ions in the 3d8 configuration (s=1); the ground state is anti-
ferromagnetic. An intriguing aspect of this compound is that the measured zero-field magnetic
susceptibility can be very well mapped onto the Heisenberg model, whereas the measurements
of magnetization cannot. The inclusion of different anisotropy terms in the Heisenberg model in
order to improve the description of experiment had only limited success [74]. First-principles
calculations have been performed using the SIESTA method in order to access the electronic
structure and estimate the magnitudes of magnetic interaction parameters.
Similarly to the case of the “ferric-wheel” system discussed above, the FSM scheme was used
for pinning down different spin configurations and comparing their total energies. The local
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Mo12 cage + Ni4 tetrahdron
Mo–Ni are bonded
via oxygen bridges

full molecular unit

Fig. 5: Buildup of the “Ni4” molecular unit.

DOS is practically indistinguishable for the cases of zero total moment (the AFM structure,
which has indeed, in agreement with experiment, the lowest total energy) and configurations
with local magnetic moments inverted at one or two Ni atoms (yielding, in the last case, the FM
configuration). The local moment per atom in these cases agrees with thes=1 estimation derived
from magnetization measurements. As it was discussed abovefor other magnetic molecules, the
magnetic moment is not fully localized on the Ni ion; small but non-negligible magnetization is
induced on neighboring oxygen atoms, and even on more distant Mo atoms (Fig. 6, left panel).
As the Ni–Ni interaction path is much longer than in other earlier discussed magnetic molecules

Fig. 6: Left panel: local DOS of atoms at the Ni–Ni magnetic path. Rightpanel: a scheme of
energy levels in different spin configurations of “Ni4” according to the Heisenberg model and
from first-principles calculations.
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Fig. 7: Total energy (left panel) and HOMO-LUMO gap (right panel) from FSM calculations
of “Ni 4”. See text for details.

(see inset in Fig. 6), the energy differences between configurations with FSM values of 0, 4 and
8 µB are small. These solutions are separated by other magnetic configurations which can be
converged (2 and 6µB) and correspond to a non-magnetic configuration of one Ni atom, with
unchanged and differently coupleds=1 at three others (as schematically shown in Fig. 7, left
panel). The energies of these intermediate configurations are substantially higher, and HOMO-
LUMO gaps in two spin channels move apart, indicating the necessity of an external magnetic
field (hence additional Zeeman energy) for stabilizing these artificial configurations. On the
contrary, the three lowest-energy configurations have HOMO-LUMO gaps common for both
spin directions (Fig. 7, right panel), therefore the mapping to the Heisenberg model can be done
directly, without considering the Zeeman term.
An attempt of such mapping is schematically shown in the right panel of Fig. 6; obviously the
sequence of energies of the configurations with one or two spins inverted (starting from the
FM solution) is only in qualitative agreement with the Heisenberg model, but the numerical
energy differences do not allow for the evaluation of a unique value ofJ , in contrast to the
case of “ferric wheel” discussed above. At best, one can makea rough estimate of the order
of magnitude of−J , that yields 30 – 90 K. This failure suggests that the magnetic interactions
in “Ni 4” are strongly anisotropic, and in any case more sophisticated model Hamiltonian is
necessary for its adequate description that the simplest Heisenberg model of Eq. (1).

4.3 A model Fe-binuclear system

Binuclear metal-organic systems form a large, and very simple, group among molecular mag-
nets. Even if their magnetic characteristics like orderingtemperature and bulk magnetization
are not necessarily outstanding, they help to grasp important physics of3d–3d magnetic inter-
action mediated by an organic ligand and thus offer a convenient model system. Moreover, an
interesting effect of spin-crossover has been observed in some such systems, for instance in
[Fe(bt)(NCS)2]2-bpym (bt= 2,2’-bithiazoline, bpym= 2,2’-bipyrimidine):a switch from LS-LS
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Fig. 8: Two views of the [Fe(bt)(NCS)2] 2-bpym molecule (left panel) and a simplified periodic
Fe-binuclear system used in the FLEUR calculation (right panel).

to LS-HS to HS-HS configuration (LS: low spin; HS: high spin) at the increase of temperature,
where the intermediate LS-HS state gets stabilized near 170K due to an interplay between inter-
molecular and intramolecular magnetic interactions [75–77]. One demonstrated the possibility
of optical switching between different magnetic states andbrought into discussion the prospects
of their use as active elements in memory devices.

In the present context, such binuclear system will serve as amodel molecular magnet, for which
we’ll assume a simplified structure, but calculate its electronic structure using a method of rec-
ognized accuracy, – namely FLEUR code [78], an implementation of the FLAPW method, –
with the specific aim to look more precisely at the effect of including intraatomic correlation
effects (“HubbardU ”). Starting from the real structure of [Fe(bt)(NCS)2]2-bpym (see Fig. 8,
left panel), we “streamline” it somehow to fit it into a compact unit cell for an accurate cal-
culation by a band structure method with periodic boundary conditions (Fig. 8, right panel).
This transformation preserved the bipyrimidine part between two Fe centers, but “shortcut” the
distant parts of ligands to make a connected structure. One can see that, in contrast to “ferric
wheels”, the Fe atom is now octahedrally coordinated by nitrogen ions. The resulting partial
DOS for self-consistent FM and AFM configurations are shown in Fig. 9. These results have
been published in Ref. [79].

Certain similarities can be found with the Fe local DOS in “ferric wheels” – clear splitting
into t2g-like andeg-like states in nearly octahedral ligand field, full occupation of majority-spin
Fe3d states and one electron per Fe atom trapped in the Fe3d–N2p hybridized band of minority
spin. The values of magnetic moments (total per Fe atom in theFM case, along with the local
moment, integrated over the muffin-tin sphere) are listed inTable 3. The interatomic exchange
parameters have been estimated from total energy differences between FM and AFM cases.

Since the magnetic moment is largely localized at the Fe site, the inclusion of intraatomic corre-
lations beyond the “conventional” DFT might be important. The exchange parametersJ depend
on the spatial overlap of thed-orbitals on different Fe-sites. It is well known that thed-orbitals
within DFT are not localized enough compared to experiment,consequently theJ values will
be overestimated. There are two main reasons for this shortcoming. First, possible on-site
correlations as known from atomic physics are underestimated in case of “conventional” DFT.
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Fig. 9: Densities of states in FM and AFM cases for the model Fe-binuclear system, calculated
by FLEUR in the LDA+U approach. Fe local DOS are shown as shaded areas.

Second, DFT is not free from spurious self-interactions dueto the replacement of the point-like
electrons by corresponding densities. Bringing in the atomic physics in the form of LDA+U ,
i.e., adding a local orbital dependent atomic Coulomb interaction parameterU to DFT [44],
would affect the results in the following way: the energies of occupiedd-orbitals get lower,
whereas the unoccupied ones drift to higher energies. As theenergies of spin-flip excitations
contribute to the denominator of the nonlocal susceptibility in Eq. (34), this has an effect of
reducing the interatomic exchange interactionJ . One can recollect that such trend has been
already mentioned in relation with the TB-LMTO calculation results of Mn12-ac (Table 1).
The LDA+U scheme leaves it to the user to single out certain orbitals aslocalized and to choose
an appropriate value for the “HubbardU ” parameter. For Fe-binuclear system a presumably
reasonable valueU=4 eV (based on the experience of other calculations for Fe-based systems)

Table 3: Magnetic moments and interaction parameters as estimated for a model Fe-binuclear
system (Fig. 8) from calculations by FLEUR with and without HubbardU .

M (Fe) M /Fe ∆E J (S=5/2)
U= 0 FM 3.62 4.10

AFM 3.61 – 102.5 meV −190 K
U= 4 eV FM 3.93 4.94

AFM 3.92 – 76.8 meV −143 K
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has been chosen; in principle, the main motivation here was to study qualitative trends, as we
deal with a model system anyway. One observes from Table 3 that the inclusion of intraatomic
correlation enhances somehow the local magnetic moment at the Fe site, and to a much smaller
extent – the total magnetic moment (in the FM configuration).But the effect on theJ parameter
much more pronounced; the interatomic magnetic interaction becomes noticeably reduced due
to the inclusion of correlation.

4.4 Magnetic anisotropy in single molecule magnets

As a modification of Eq. (3), which introduced the anisotropyin the simplest form, Kortuset al.
in a number of publications distinguished between axial andtransverse anisotropy, with their
corresponding parametersD andE, which enter the magnetic spin Hamiltonian (in the second
order) as follows:

H = DS2

z + E(S2

x − S2

y), (23)

The results, both those obtained from calculations with theNRLMOL code and estimated from
experiments, are summarized in Table 4 after the data provided by J. Kortus.

Table 4: Comparison of the calculated by NRLMOL and experimental magnetic anisotropy
parameterD for the single molecule magnets. See theory references for computational details.

Molecule S D(K)
Theory Experiment

Mn12O12(O2CH)16(H2O)4 10 −0.56a −0.56b

[Fe8O2(OH)12(C6H15N3)6Br6]2+ 10 −0.53c −0.30d

[Mn10O4(2,2’-biphenoxide)4Br12]4− 13 −0.06e −0.05f

Co4(CH2C5H4N)4(CH3OH)4Cl4 6 −0.64g −0.7 –−0.9h

Fe4(OCH2)6(C4H9ON)6 5 −0.56i −0.57j

Cr[N(Si(CH3)3)2]3 3/2 −2.49i −2.66k

Mn9O34C32N3H35 17/2 −0.33 −0.32l

Ni4O16C16H40 4 −0.385 −0.40l

Mn4O3Cl4(O2CCH2CH3)3(NC5H5)3 9/2 −0.58m −0.72n

a[28], b[80, 81], c[82], d[83], e[84], f [85], g[86], h[87], i[88], jS. Schromm, O. Waldmann, and P. Müller,
k[89], lG. Rajaraman and R. E. P. Winpenny, m[90], n[91].

In all the cases presented here the calculated spin orderingis in agreement with experiment. The
calculatedD parameters for Mn12, Mn10, Mn9, the ferric star Fe4 and Cr-amide molecular mag-
nets are in excellent agreement with experimental values. The only remarkable discrepancy is
found for Fe8, a system which seems to pose complications for the DFT treatment. Apparently
the DFT may be unable to predict the ground state density accurately enough due to impor-
tant electronic correlations beyond the mean-field treatment or missing Madelung stabilization
(absent in the isolated system).
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The SMM listed in Table 4 are in general characterized by a high spin ground-state. However, a
high spin state does not necessarily correlate with a high anisotropy barrier. The prefactorD is
also very important. In order to increase the barrier one hasto understand and controlD, which
will be the main goal of future research in this area. In all cases where theE parameter is not
zero by symmetry it has been predicted with similar accuracyasD – see relevant references for
details. The results obtained make one confident in the predictive power of the formalism. It
has been already mentioned that a microscopic understanding (based on the electronic structure
of SMM) of the magnetic anisotropy parameters is crucial forthe rational design of single
molecule magnets.

5 Conclusion

Molecular magnetism is a rapidly development topic, and so are first-principles calculations in
this domain. Other methods of practical calculation gain recognition beside those chosen for the
present outline, and new calculations for different systems appear almost every day. Hopefully
this lecture helped to grasp the essential problematics andapproaches now in use. In coming
years we’ll witness the expansion of sophisticated techniques to treat electron correlations, ex-
citation processes and transport properties, well established by now in the study of less complex
systems, over the area of molecular magnetism. This might help to resolve several controversies
remaining in the present-day interpretation of some materials.
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Appendix 1. Interatomic magnetic interaction

The following line of argument is due to discussions with V. Anisimov and V. Mazurenko.
Given the interaction energy of two quasi-classical spins

E = JijSiSj , (24)

its variation due to the change of the angles of the spinsδϕi, δϕj reads:

δ2E = JijS
2δϕiδϕj . (25)

In the attempt to cast a variation of DFT total energy in a comparable form, one can profit from
the Andersen’s local force theorem, which works here because we are interested in infinitesimal
deviations from the ground state. An explicit derivation ofthe local force theorem in the desired
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form is given in an Appendix of the paper by Liechtenstein et al. [26]. In terms of the Green’s
functionG and Kohn-Sham HamiltonianH the first variation of the total energy reads

δE = − 1

π

εF
∫

dε Im Tr (δHG) (26)

(which can be shown to be zero), and the second variation

δ2E = − 1

π

εF
∫

dε Im Tr
(

δ2HG + δHG δHG
)

. (27)

The variation of the Kohn-Sham Hamiltonian can be explicitly related to rotations in spin space
as

δH =
i

2
δϕi [H, σ] , (28)

with the Hamiltonian composed of a spin-dependent part at the sitei, with ∆i = V ↑
i − V ↓

i [a
potential, in general, non-diagonal in(l,m)] and the restH0:

H =
∆i

2

(

1 0

0 −1

)

+ H0

(

1 0

0 1

)

. (29)

This yields for the variation ofH

δH =
i

2
δϕx ∆i

(

0 1

−1 0

)

+
1

2
δϕy ∆i

(

0 1

1 0

)

. (30)

Extracting from Eq. (27) the terms bilinear inδϕi, recovering site and spin indexes in the ele-
ments of the Green’s functionGij

σ and implying the summation in(l,m) yields

Jij = − 1

2π
Im

εF
∫

dε
(

∆iG
ij
↑ ∆jG

ji
↓ + ∆iG

ij
↓ ∆jG

ji
↑
)

. (31)

This is the final formula for the interaction between isolated spins in an otherwise infinite and
unperturbed environment. If one is interested in the interaction between twosublatticesof
periodically repeated atom typesi and j, the Green function follows explicitly in terms of
Kohn-Sham eigenfunctionsψilm

nkσ and eigenvaluesεnkσ

Gij
lm,l′m′(ε) =

∑

kn

ψ∗ilm
nk

ψjl′m′

nk

ε − εnk

. (32)

Using the following relation for the product of Green’s functions

1

(ε − εn)(ε − εn′)
=

1

εn − εn′

(

1

ε − εn

− 1

ε − εn′

)

, (33)

the integration in energy over occupied states yields Eq. (17), in terms of a non-local susceptibil-
ity, which in a crystal with periodic boundary conditions depends on the Kohn-Sham occupation
numbersnnkσ,

χij
mm′m′′m′′′ =

∑

knn′

nnk↑ − nn′k↓
εnk↑ − εn′k↓

ψ∗ilm
nk↑ψ

jlm′′

nk↑ ψilm′

n′k↓ψ
∗jlm′′′

n′k↓ , (34)

– a formula probably first given by Liechtenstein et al. [92] and used in a number of publi-
cations. It should be understood that this formula implies periodicity and hence describes the
interaction between two sublattices rather than two spins.Hence the obtained numbers may be
very different from those by straightforward applying of Eq. (17).
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Appendix 2. Second-order anisotropy energy

The following derivation of the second-order anisotropy energy, along the lines of Pederson
and Khanna [28, 29], has been given by Jens Kortus in Ref. [4]. We proceed from the Cartesian
representation of the spin-orbit term

U(r,p,S) = − 1

2c2
S · p ×∇Φ(r) . (35)

Using single-particle wavefunctions expressed in terms ofa basis set

ψis(r) =
∑

j,σ

Cis
jσφj(r)χσ, (36)

where theφj(r) are the spatial functions andχ are spin functions, the matrix elements can be
expressed as

Uj,σ,k,σ′ = 〈φjχσ | U(r,p,S) | φkχσ′〉 (37)

= −i〈φj | Vx | φk〉〈χσ | Sx | χσ′〉 (38)

where the operatorVx is defined as

〈φj | Vx | φk〉 =
1

2c2

(〈

dφj

dz

∣

∣

∣

∣

Φ

∣

∣

∣

∣

dφk

dy

〉

−
〈

dφj

dy

∣

∣

∣

∣

Φ

∣

∣

∣

∣

dφk

dz

〉)

. (39)

In the above,Φ(r) is the Coulomb potential. Thus this treatment uses matrix elements of the
Coulomb potential with partial derivatives of the basis functions, thereby avoiding the time
consuming task of calculating the gradient of the Coulomb potential directly.
Here we generalize some of the derivations from uniaxial symmetry to an arbitrary one. The
same definitions and lettering of the symbols is used as by Pederson and Khanna [29]. In the
absence of a magnetic field, the second-order perturbative change to the total energy of a system
with arbitrary symmetry can be expressed as

∆2 =
∑

σσ′

∑

ij

Mσσ′

ij Sσσ′

i Sσ′σ
j , (40)

which is the generalization of Eq. (19) of Ref. [29]. In the above expression,σ sums over the
spin degrees of freedom andi, j sums over all the coordinate labels,x, y, z respectively. The
matrix elementsSσσ′

i = 〈χσ|Si|χσ′〉 implicitly depend on the axis of quantization. The matrix
elementsMσσ′

ij are given by

Mσσ′

ij = −
∑

kl

〈φlσ|Vi|φkσ′〉〈φkσ′|Vj|φlσ〉
εlσ − εkσ′

, (41)

whereφlσ are occupied andφkσ′ and unoccupied states andε’s are the energy of the correspond-
ing states.
The above equation can be rewritten in a part diagonal in the spin index plus the non-diagonal
remainder according to:

∆2 =
∑

ij

∑

σ

Mσσ
ij Sσσ

i Sσσ
j +

∑

ij

∑

σ 6=σ′

Mσσ′

ij Sσσ′

i Sσ′σ
j ≡ 1 + 2 . (42)
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Using the following relation for the expectation value of a spin operator in a closed shell
molecule with excess majority spin electrons∆N

〈1|Si|1〉 = −〈2|Si|2〉 =
〈Si〉
∆N

, (43)

the first term of Eq. (42) can be expressed as

1 =
∑

ij

(M11

ij + M22

ij )
〈Si〉〈Sj〉
(∆N)2

. (44)

With the help of

〈1|Si|2〉〈2|Sj|1〉 = 〈1|SiSj|1〉 − 〈1|Si|1〉〈1|Sj|1〉

= 〈1|SiSj|1〉 −
〈Si〉〈Sj〉
(∆N)2

, (45)

and similar relation for〈2|Si|1〉〈1|Sj|2〉, and a bit of algebra the second term of Eq. (42)
becomes

2 =
∑

ij

−(M12

ij + M21

ij )
〈Si〉〈Sj〉
(∆N)2

+
1

4

∑

i

M12

ii + M21

ii . (46)

Constructed from Eq.(44) and Eq.(46), the resulting second order shift∆2 of Eq. (42) yields
Eq. (18). As can be easily verified, for uniaxial symmetry this equation is identical with Eq.
(21) of Ref. [29], where the Cartesian off-diagonalMij matrices vanish andMσσ′

xx = Mσσ′

yy .
The above derivation of Eq. (18) did not assume any particular symmetry and is therefore quite
general.
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65, 813 (2004),http://arXiv.org/abs/cond-mat/0306430.

[72] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77, 3865 (1996).



Electron Theory of Molecular Magnets F4.33

[73] A. Müller, C. Beugholt, P. K̈ogerler, H. B̈ogge, S. Bud’ko, and M. Luban, Inorg. Chem.
39, 5176 (2000).

[74] A. V. Postnikiov, M. Br̈uger, and J. Schnack, Phase Trans. 2005, to be published);
http://arXiv.org/abs/cond-mat/0404343.

[75] V. Ksenofontov, A. B. Gaspar, J. A. Real, and P. Gütlich, J. Phys. Chem.105, 12266
(2001).
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42, 4653 (2003).

[88] J. Kortus, M. R. Pederson, T. Baruah, N. Bernstein, and C. S. Hellberg, Polyhedron22,
1871 (2003).

[89] D. C. Bradley, R. G. Copperthwaite, S. A. Cotton, K. D. Sales, and J. F. Gibson, J. Chem.
Soc., Dalton Trans.1, 191 (1973).

[90] K. Park, M. R. Pederson, S. L. Richardson, N. Aliaga-Alcalde, and G. Christou,
Phys. Rev. B68, 020405 (2003).

[91] W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson,and G. Christou, Nature416,
406 (2002).

[92] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B52, R5467 (1995).


