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1 Introduction

Molecular magnets are purely organic or metalloorganicenmas, which possess, even in the
absence of external magnetic field, stable magnetic monasstsciated with certain chemical
building blocks. Such moments may reside on transition hi@ta, or on organic free radicals.
Quite often the building blocks, i.e. single molecule magi{8MM), are chemically stable and
maintain their magnetic moments both in a liquid solutiod amsolid phase. The solidification
may result either in molecular crystals, where the SMM asggiafly well separated and loosely
magnetically bonded, or in polymers, one-, two- or thremafisionally connected magnetic
structures. In broad sense, all there chemical speciesoaretsnes referred to as molecular
magnets. More strictly speaking, one tends to narrow thigitien to SMM, or to molecular
crystals constructed of them. For chemists, metalloogyaompounds with magnetic ions,
as well as organic molecules containing free organic réglieae not basically new materials.
Yet, last decades brought about a dramatic increase in tbemof synthesized molecular
magnets, and considerable progress of their characterizey methods well established in
the materials science —ddsbauer spectroscopy, nuclear and electron spin resangpiical
and X-ray spectroscopy. In 1980 Lis [1] reported the synghaaVin,; O, (CH;COO)4(H,0)4,
known as Mn,-acetate (Mip,-ac in the following), by now probably the most studied malac
magnet. Its structure is shown in Fig. 1.

The reason why molecular magnets got so much attention itatedecades is that certain
interesting physical effects have been found in these sysstspecific for molecular magnets
and not to conventional magnetic materials. These aretsftédgurely quantum nature, like
single-molecule hysteresis or quantum tunnelling of mégagon . In short, this is about the
formation of the resulting spin of a molecule from the spihparticipating magnetic atoms,
and how the state of the resulting spin can be influenced Brait magnetic field. Effects
which provide a direct experimental manifestation of quantmechanics are known to be dif-
ficult to detect. In molecular magnets their detection bexaossible because the systems of
study, crystallized SMM, were all identical. Moreover, pw&s the orchestrated behaviour of

Fig. 1: Two views of the Mn-ac. Left panel: the entire molecule, right panel: the magne
core Mn,0O,5. The eight outer Mn ions have spias= 2 ordered in parallel, the four inner
s=3/2 are antiparallel to them; the resulting ferrimagnetic stture has total spirt = 10.
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spins occur only below certain temperature, it is in somesdsgh enough (several K) to be
accessible in the lab. There are lectures at this schooifgdly devoted to quantum theory of
molecular magnetism (by J. Schnack) and to quantum tungedli magnetization in molecular
magnets (by W. Wernsdorfer), which give more details on grpntal situation and on the
peculiarities of quantum behaviour. Among the review #tare for the introduction into the
field, one shouldn’t miss the monograph by Kahn [2] publisimet®93. New chemical species
and observed effects since then were subject to many sutrseljooks, e.g., that edited by
Linert and Verdaguer [3], to name a relatively new one. Togetvith Mark Pederson and Jens
Kortus, the author prepared an internet review on the stglgan enlarged version of which,
updated jointly with Jens Kortus, will be published soon d®ak chapter [5]. Some material
from the latter publication have been used in preparing thegnt lecture.

New physics of molecular magnets feeds hopes of certairppobise applications, and such
hopes pose the problem of understanding, improving, origlied desirable characteristics of
these materials. The applications which come into disonsaie, for instance, magnetic storage
(one molecule would store one bit, with much higher inforiorastorage density than accessi-
ble with microdomains of present-day storage media or magnanoparticles of next future).
In order to make this feasible, one needs to make sure thatgudting spin of molecule is
formed from constituent atomic spins only in a certain wayaflmeans, the coupling between
spins must be strong enough so that thermal fluctuationstw@srganize them. Moreover, the
resulting spin must remain stick to a definite orientatidatreely to the axes of molecule, and
not freely rotate at the effect of temperature. This implhigh magnetic anisotropy . These two
parameters, strong interatomic magnetic coupling and imggnetocrystalline anisotropy, are
therefore desirable for magnetic storage applicationseséttly achieved numbers for known
molecular magnets (of the order of tens of K) fall far shortdeirable values. Other ap-
plications, like switching magnetic state of a molecule ight, seem more close. All these
applications under discussion deal with the switching eetwdifferent metastable states of the
electron system in the magnetic molecule in question. Toeret is essential to provide an
adequate description of electron characteristics, anéngitehd what they depend upon. This
is the subject of the present lecture to show how such deseripan be achieved, what are
the characteristics to look for, and how reliable the olgdinesults are. It is good to realize
that the calculation output, even if obtained by quite @&éamethods, must be whenever pos-
sible checked against experimental data, for the sake afahuérification. On the other side,
guantum theories of magnetism (the subject of the lecturé. I8chnack), even as they heav-
ily depend onad hocparametrisation, go well beyond quantitative simulatiohglectronic
structure in what regards the issues of statistical phyancsthermodynamics. Therefore the
cross-checking between different branches of theory igjaally important.

2 Relevant physical properties andab initio point of view

2.1 Spin Hamiltonians

A comforting feature of modern studies on molecular magisethat different groups of re-
searchers, be they chemists, experimental physicistsehaodab-initio theorists, employ es-
sentially the same language for representing their reshhsis, the language of model Hamil-
tonians. Consequently, if one agrees on a basic model of iymephysics, one can discuss
specific numbers of parameters entering such models, detingither from experiment, or
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from first-principles calculations. This helps to undemstavhether theory agrees with experi-
ment, and also to verify whether the accepted model wadazatisy, in the first place, or needs
revision.

An essential element of such model Hamiltonians are spinabges, that's why we’ll speak in
the following of spin Hamiltonians. The values of spins ddiindual atoms which build a par-
ticular SMM are usually clear from very basic chemical cdesations, such as formal valency;
if this is not the case, quite straightforward experimetdals, like magnetization or Bssbauer
effect measurements, might provide additional hints. Ugtize values of constituent spins are
not subject to controversy between experiment and thelogyniechanisms and parameters gov-
erning their interaction, on the contrary, often are. Irt tae model spin Hamiltonians neglect
the true chemical environment and bonding and reduce allantions to just a few model pa-
rameters. One is dependent on experimental input in ordestimate these parameters, and the
accuracy of quantitative predictions depends on the paemehosen. Even more problematic,
it is nota priori clear which interactions are important and should be irexdlid the model and
which are negligible.

Let me now become more specific. The parameterization of anetaginteraction normally
includes, as the presumably leading term, the Heisenbemgltdaian

i>j

with the summation indicating that each pair of spg#sS; is counted only oncé As only the
relative orientation of both spins matters, this intei@cis isotropic.

The dependence on absolute spin orientation, i.e. withetgp the crystal lattice, can be
brought in via a modification of the Heisenberg model takimg account anisotropy:

H= =23 J; [SiS; +(SEST +5'SY)] - @

1>7

This form of interaction recovers the conventional Heisgglmodel in case of=1, reduces
to the Ising model fon=0, or to the 2-dimensional interaction fers-1. Surprisingly, even
in case of the seemingly simple Ising model so far analytiotems are known only for one-
dimensional and two-dimensional lattices [6].

Further on, the single-spin anisotropy can be includedth@@eeman term added, yielding

H=-2) Ji;(8S;))+ D> (S)>+gu.» BS;, (3)

1>] %

with the Lanc g-factor being normally close to 2, apg being the Bohr magneton. The single-
spin anisotropy term may lack some of the true physics. Icaesl with its corresponding
constantD and depends on the orientation of each $jirelative to a reasonably chosen fixed
direction in space;; the Zeeman term scales with the external magnetic felfibr the chosen
value of theg factor.

Such model spin Hamiltonian can be further sophisticatedtogducing additional parameters,
i.e., distinguishing between random (varying from siteite)sand constant (global) magnetic
anisotropy, yielding the appearance of distiigtparameters in Eq. (3). Moreover, higher-
order terms in isotropic interaction (biquadratic exchgregc.), as well as from antisymmetric

INote that the definition of sign and prefactor may vary betwaablications.
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Dzyaloshinsky-Moriya spin exchange [7, 8]

Hom = Y Dy [SixS;] | 4)

i>j

can be introduced. This might be necessary to grasp edggmgsics, but makes the extraction
of parameters, usually from a limited set of experimentéhdmore ambiguous, leading to a
problem of over-parameterization.

It should be noted that the definition of the Heisenberg Hami&n in different publications
differs sometimes in the sign and in the presence of prefacthat must be taken into account
when comparing different sets of extracted parameters.nbtetion as above corresponds to
J >0 for the ferromagnetic (FM) coupling.

In the following, the relation of model spin Hamiltonians ficst-principles calculations is
briefly discussed. The introduction of microscopic consgfike orbitals, permits to link the
exchange constants with the real chemical structure andibgpnDepending on the character
of the states involved in the exchange mechanism, one canglissh between them and quan-
tify the above mentioned concepts like direct exchangeemaqechange (indirect exchange) in
insulators, itinerant exchange (RKKY interaction) in mstalouble exchange in some oxides
or anisotropic (Dzyaloshinsky—Moriya) exchange. Moreadstwere given by Anderson [9]
and Blundell [10].

The advantage adb initio approaches in the extraction of interaction parametensatder-
tain mechanisms of interaction can be switched on and offfirlya controllable way. Thus,
all anisotropy terms may only have effect if the spin-orbieraction is explicitly present in
the calculation. The non-collinear orientation of indivad spins can sometimes be arbitrarily
chosen, or at least different settings of “up” and “down” figarations of spins with respect to
a global quantization axis are available in a calculatidmeste, so that angles between spins
become in one way or another directly accessible.

2.2 Magnetic interactions

Given the above examples of spin Hamiltonians, one can as#hah the magnetic interaction
parameters/;; and anisotropy parametef3 are the properties of primary interest. Indeed,
they are crucial for the behaviour of SMM in question in pdjve practical applications, as
mentioned above. High values (if expressed k7T, and compared to envisaged operation
temperature) make sure that the spins within the molecufeire coupled and not disorder.
High D values make sure that the resulting magnetic moment of acuelenaintains its spatial
orientation and cannot be easily rotated due to thermalufticins. The quest for hight and

D is an important driving force in a search for new better SMM.

Discussing first the magnetic interactions generalizeal jitit is important to understand that
they arenot of purely magnetic order, as for instance magnetic dipdierattion would be.
Purely magnetic interactions, dipole or quadrupole, arakwvand may play a role, say, for es-
tablishing a magnetic order throughout a crystal betweeénigual magnetic molecules, which
are often separated by long organic fragments. On the egntrauch stronger intramolecu-
lar interactions occur via chemical bonds, and they ardrelstatic in their nature. The mutual
arrangement of spins happens due to an interplay between@buhteraction and Pauli exclu-
sion principle, in what is referred to agchange interactianrhe attraction by atomic nuclei and
repulsion by other electrons governs the arrangement ofretec states in molecular orbitals,
whereby the Pauli principle demands that only two electreitis opposite spin may share the
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same orbital. The simple case of two electrons helps to stetedt why this interaction is called
exchange. Given two non-interacting electrons,andr; with their respective wave functions
¢1(r1) andeps(rs), we can build up a trial two-electron wave function from thiegucts of the
latter. As the electrons are indistinguishable, the proinaldensity should remain unaffected
if we exchange them; this leaves the only possibilities tfezifully symmetrized (S) or fully
antisymmetrized (AS) combinations @of and,:

belryrs) = %[sol<r1>so2<rz>+¢1<r2>w2<r1>1;

Prsr1, ) = %m(rlm(rz)—w(m)w(ro].

So far we considered only the spatial component of the wanetifon, but the electrons are
also characterized by a spin. In fact the complete wave iumébr electrons)(ry, o1; 1o, 03),
including spatial and spin components, must be antisymopétence we have two possibili-
ties: an antisymmetric spin singlet state 5= 0) together with a spatial symmetric state, or
symmetric spin triplet T§ = 1) with an antisymmetric spatial part:

. _ Xs(Ul,Uz)ws(I‘l,I?) )
¢(r1,01,r2702) B { XT(Ul,Uz)?/JAs(I'l,Q) . (5)

The energy difference between the singletand the tripletE; states allows to define the
exchange constantbetween the spins,

(6)

A positive value ofJ (Eg > ET) favours the triplet state with =1; J < 0 — the singlet one.
Where does the difference between energies of singlet gldttstates come from? Obviously
itis determined only by spatial shapewfandy,s. Some general ideas about the sigl pivith
the use of kinetic energy and Coulomb repulsion argument®, been given by Anderson [9].
Let us assume that there are two electrons on the same at@nspahally antisymmetric wave
function minimizes the Coulomb repulsion, because the twotedns are spatially separated.
Hence the spin triplet state is lower in energyis positive, and the resulting ferromagnetic-
like interaction between the spins is consistent with Harfast rule. Another enlightening
example is represented by two electrons on neighboring stemthat they can form bonds.
The corresponding molecular orbitals can be spatially sgtmm(bonding) or antisymmetric
(antibonding) as outlined above. The antibonding orbitd larger kinetic energy (larger cur-
vature, on the average), which implies that it is energiyicaore expensive. This favours the
spin-antisymmetric singlet state with the spatially syrnmmdonding molecular orbital, hence
the exchange constant is negative resulting in an antifeagmetic-like interaction.

While this concept is straightforward for two electrons, #xtension to many electrons be-
comes complicated. Still it provides a useful starting péon further qualitative discussion of
exchange in many-electron systems.

As a further refinement when discussing exchange interatioough chemical bonds, one has
to distinguish between direct exchange (due to an immediadap of atomic states of mag-
netic atoms) or indirect one, occurring via an intermedében or group of atoms (diamagnetic
groups), which form aexchange patbf coupled chemical bonds. Whereas the direct exchange
is crucial for transition metals (TM) and alloys, the phgsaf molecular magnets, as also in
TM oxides, is governed by indirect exchange.
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A concept ofdouble exchangantroduced by Zener [11] in order to explain FM ordering in
conducting complex oxides, and further elaborated by Asmlerand Hasegawa [12], might
turn out helpful for some SMM, and a profound discussion arp&exchange”, a term coined
by Anderson [13] forinsulating (and usually antiferromagnetic) TM oxides — for some other
SMM. The starting point of Anderson’s analysis is the introtion of localized magnetic or-
bitals, related to a certain TM ion but including also somecebn states of a diamagnetic
ligand. Different magnetic orbitals may therefore sharemmon ligand and either experi-
ence an overlap there, or be orthogonal. The simple arguofiériderson is “that antiparallel
electrons can gain energy by spreading into non-orthogmrealapping orbitals, where parallel
electrons cannot”. This is generalized in form of the Goadgyh-Kanamori(-Anderson) rules
[14-16], stating that if two electrons are in orbitals thaedtly overlap, their exchange (i.e.,
the 180-exchange) is strong and of AFM type, whereas for the (icterg) orbitals which are
orthogonal, the (98)exchange is weak and of the FM type. The real world might dvax
deviate from these rules.

2.3 Relation to first-principles calculations

Each of the above cited models for exchange provide an at@arametrisation of the result-
ing J in terms of, say, Coulomb integral, overlap of different tats and transfer probabilities.
However, it is not a good idea to rely on such parameters asatsid fromab initio calcula-
tions, because of ambiguities in their definition — which ezéunctions to use, how to account
for screening effects, etc.

More promising strategy is a “low-level” parameterizatiohthe interaction energy directly
in terms of few basic observables. A good example is the iHbes® model which casts the
interaction of (presumably well defined) spins into a simgad@lytical form, incorporating all
underlying physics in a single isotropic interaction pagéen An advantage of introducing
such parameters (of interaction between nominal spingisthey are better accessible in ex-
periment. For example, the calculated Heisenberg exchpageneter would have the same
meaning as that extracted from observed Curie-Weiss behaivneasured magnetic suscepti-
bility. The disadvantage is that the underlying physicsetlibr the obtained interaction comes
about due to superexchange, double exchange or whatev@ingesomehow hidden. This dis-
advantage is actually not so serious, because once thdatadous done, a careful analysis of
its results — energies, wave functions etc. — might recoggraal deal more useful information
than merely interaction parameters. The issues of hylatidia, localization, charge transfer
are typical ingredients of a quantum chemical analysis,remchally they do give insight into
the origin of a particular magnetic ordering. If we undemstéhem, we may hope to find possi-
bilities to “design” or at least to influence the magneticpaudies.

By first-principles calculations we mean those which atteimpblve the most general quantum-
mechanical equations, i.e. either Safinger or Dirac equation, for a system of either fixed,
or movable point-charge nuclei, accommodating many elastrFor cases more complex than
a hydrogen-like (one-electron) ion, analytical solutismot possible. The necessary approxi-
mations can be divided into conceptual and technical onke.fGrmer are about reducing the
underlying physical problem to a feasible one; such was t#ree—Fock (HF) approximation,
casting the many-electron wave functidnr,, ..., ry) as a single Slater determinant, and in-
troducing the mean-field concept. Systematic improvemehtee HF scheme, which make
use of multi-determinantal wave functions, constitutedbmain ofquantum chemistr{QC).
Another example is density functional theory (DFT), a tieliiaworking horse in practical elec-
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tronic structure calculations since 1960s — see Dreizléi@Guoss [17], Eschrig [18] for reviews.
Its central idea is the removal of many-electron wave fumcfrom the picture whatsoever,
putting at its place the one-electron density

p(r) = /\If*(r,rg,--- ,rn) U (r,rg, -+ - ,ry)dry - - dry

as subject to variation in the search for the total energyhefdground state. It turned out
useful, as was proposed by Kohn and Sham [19], to exprese#rehed for density(r) via
fictitious functionsy;(r), which are postulated to be wavefunctions of non-intengatjuasipar-
ticles without apparent physical meaning, but possessiagame density as the true physical
system:

N
= [wa). (7)
a=1
The variational principle applied to wavefunctiongr) leads to a set of Kohn-Sham equations:
h2 dI‘ (5Exc[ ]:|
——V2+U / wa _ana r). (8)
B ] T op(r) (r) (r)

DFT claims to be an exact theoiry principle, at least in what regards the treatment of ground-
state properties. However in practical terms, in order gcgp the exchange-correlation term
dExc|p]/op(r) in the above Kohn—Sham equations, one has to choose onetbeaparametri-
sation. This gives rise to different “flavours” of DFT, likedal density approximation (LDA),
generalized gradient approximation (GGA), etc. The lectwy R. Zeller on band magnetism
offers a more extended covering of DFT.

Approximations of technical kind are about how to accontpiiee necessary “number crunch-
ing” in a more efficient way, without big loss of accuracy. Jlkovers the choice of adequate
computation scheme with its choice of basis, represemtatiqootential and charge density,
performing necessary integrations, etc. Among a largeeyanf calculation schemes being
developed since decades, not all are well suited for sinomision molecular magnets. Several
examples will be discussed below in Section 3.

Turning now to the problem of evaluating the parameters iof lpmiltonians from first princi-
ples, we note that in executing the calculation one has gealtyrm to impose certain constraints
(fix the magnitude or orientation of magnetization, modifg fotential felt by certain elec-
tronic states, switch on or off the relativistic effectsfanspect the effect of these constraints
on the total energy. Moreover, one-electron eigenvaluescanresponding (Kohn-Sham, or
Hartree-Fock) eigenfunctions are also available from &c®isistent calculation. There are
certain subtleties related to the extraction of exchangarpeaters from QC and DFT calcula-
tions which one should be aware of.

In QC one deals with a multi-configurational scheme whichvedl to mix different spin con-
figurations and to classify energy eigenvalues accordirdifterent total spin values. For two
interacting spin$;, S, summing up t&8’ = S; + S, one gets

28,8, =S”? - 8282,

with eigenvaluegS’(S” + 1) — S1(S1 + 1) — S5(S2 + 1)]. For a textbook examplé; = 3,
Sy = % this yields a singletS’ = 0) and a tripletS” = 1) states. The corresponding eigenval-
ues of the Heisenberg Hamiltonian must be tB¢nJ and—1/2.J, correspondingly.
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Indeed, the basis functions in ab initio calculation are normally pure spin states. In the basis
of spin functiongmg, ms,), for the cases; = % Sy = % the Heisenberg Hamiltonian takes the
form:

msms, (138 |4) [5=1) |4

IREE

‘_% %> J/2 —J (9)
|3 -3) -7 J)2

= -3 —J/2

The diagonalisation of (9) is achieved by a basis transfaomavhich mixes differentng

values:
L[ -1y -]y (singlety S=0 E=3J;

V2 22 5
49 "o
\/Lﬁ(‘% 20+t 33)) (triplety S=1 F=-17J.

In a QC (multi-determinantal) calculation the eigenvalagsinglet and triplet statedyg and
E+, are immediately accessible. This allows the (formal yetrabiguous) mapping of a first-
principles result onto the Heisenberg model:

Es— FEr=2J, (11)

identically with the above discussed model case of two edest(6). The cas§; , = ; corre-
sponds to, e.g., two interacting €uions. Other ions from théd row yield richer systems of
eigenvalues — for instanc#, » = 1 (two Ni** ions) produces a quintet levely beyond singlet
and triplet, with the energy separation

Es— Eq=06J. (12)

Whether both equations (11) and Eq. (12) can be satisfied sathe/ is a measure of validity
of the Heisenberg model.

In DFT, the search for the “true” wave function is avoided audbstituted by the variational
search for the charge density and total energy. As the eddiges of multi-determinantal states
are not available, one must either rely on the Kohn-Shammeegors or on total energies in
specially prepared symmetry-breaking metastable statdgect to different constraints with
respect to the spin states of a system. In practice, one gégrtomagnetic (FM) or antiferro-
magnetic (AFM) configurations of two spins, or impose thedigpin moment (FSM) scheme,
first introduced by Schwarz and Mohn [20]. The total energdiiferent spin configurations
doesnotrelate to the eigenvectors but to diagonal elements of, taggHamiltoniari+ of (9):

11 11 1
E _ ([ == S N
FM <22’H‘22> 7
11\ 1
Eprv = <—— 'H ’—5 §>=§J> (13)

hence
Earm — Epm = J (14)
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for the above case df, , = % This is a valid representation fof provided the Heisenberg
model itself remains valid throughout the path from FM to ABMte. The latter formula can
be approximated using the concept of magnetic transitiate $£1]. Generally, according to
Slater, the shift in the DFT total energyFE due to a whatever chanden; in the occupation of
certain orbitals is

AE =) Aniel +O(An?), (15)

wheree? are Kohn-Sham eigenvalues obtained self-consistently egtupation numbers mid-
way between initial and final states. For the flip from FM to Aledhfiguration,

Eem — Earm > Y (0t —nj)) (5, — <5 ») (16)

Where(n;‘}—nﬁ) is the magnetic moment (which gets inverted) in the orbit@ihe latter bracket
is the spin splitting (in energy) of the same orbital, cadted! in the configuration with zero spin
on atomA (transition state), i.e. induced fully via the interactwith the second spin. While
being approximative, the magnetic transition state schemgét have a certain advantage of
numerical stability over explicit comparison of large l@aergy values. Moreover, the result is
available from a single calculation and offers a microscalinsight of how different orbitals
are affected by magnetic interaction — information whichhaéns hidden in the total energy
numbers. Being of use a number of times in the past (primaofynfagnetic oxides), the
method has recently been applied to the analysis of exchaargeneters in Mp-ac [22].

The validity of either “finite difference” scheme (14), orifférential” procedure (16) presumes
that the mapping onto the Heisenberg model makes sensefinsthy@ace. However, with just
two interacting spins we have no immediate criterion whethis is true. The applicability of
the Heisenberg model would mean that the functional parhefinteraction comes from the
scalar product of two spin operators, with the paramétebeing independent off; andS;.
The mapping on the Heisenberg model may be less ambiguowsé ds a limiting case of
small deviations from a certain stationary state. The nm&pof such deviations in the DFT
might be some admixture to pure spin states (in the senseaif$pin density functional), i.e.,
non-diagonal (in the spin space) form of density matriceslldws a transparent quasi-classical
interpretation in terms of non-collinear magnetic densayying from point to point in space
— see Sandratskii [23] for a review. If a pair of local magoetioments can be reasonably
identified in the calculation, and their small variationsnir the global magnetization axis are
allowed, the counterparts in the Heisenberg model will beatdi®ns of local exchange fields at
two corresponding sites. Matching the leading terms in tigubar dependence of interaction
energy in the DFT and in the Heisenberg model yields the elésirapping:

JZ] == Z A;nm/ X:‘ZLnL’m”m”’ A‘anlml/// (17)
{m}

where A is the spin-splitting of the on-site potential, possiblynrdiagonal in the expansion
over spherical harmonics around a given center,@his non-local susceptibility, specified in
Appendix 1 in terms of eigenvalues and eigenfunctions. Feedf arguing resulting in Eq. (17)
goes back to at least Oguchi et al. [24] who extracted intenaparameters in simplf oxides
from DFT calculations. Liechtensteet al. [25-27] worked out closed expression fof in a
form consistent with spin-fluctuation theories, in termshef elements of the Green’s function
(see Appendix 1).
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2.4 Spin-orbit coupling and magnetic anisotropy energy

It was earlier mentioned that high anisotropy values arergisd to ensure that the resulting
magnetic moment of a SMM maintains its spatial orientatind eannot be easily rotated due
to thermal fluctuations. Together with high magnetic exmtaparameters, it is therefore an
important “figure of merit” for various applications of meldar magnets. In general, the mag-
netocrystalline anisotropy reflects the energy differefocedifferent possible orientations of
spins with respect to crystallographic axes. Such disaa@tion may only occur via the spin-
orbit coupling and hence is a manifestation of relativigtifects in the electronic structure.
Well known for bulk magnetic materials, magnetic anisoyrdptermines the preferential type
of magnetization of a sample and fixes, in the most genera&, ¢@seasy, medium and hard
magnetic axes. A special case is uniaxial anisotropy wheeiiergy depends only on the angle
to one certain axis, irrespectively to the direction of ottveo. The preferential orientation of
magnetization along this selected axis is referred to asy‘aais” type of anisotropy; the op-
posite case, when the magnetization accommodates itgeffatly to the selected direction, is
called “easy plane”. In any case the magnitude of the enaaggtion while scanning different
directions of magnetization is quite small, of the order @f*-10-% eV per atom.

In cubic systems the second order contributions to the &gy energy vanish by symmetry,
so that like in bulk Fe, Co or Ni there will be only 4th order aalmitions which are very
small. Most molecular nanomagnets are low-symmetric gfioee the second order anisotropy
is present in them, achieving in some cases the values afadde

Recently, Pederson and Khanna [28, 29] have developed a dhfethaccounting for second-
order anisotropy energies (see Appendix 2). In the absdracmagnetic field, the second-order
perturbative change to the total energy of a system withraryisymmetry becomes

1 12 21 11 22 12 21 <Si><5j>
% i
Herei, j run over sites, 1 or 2 label spin directiorj\g,;}”/ accumulate the matrix elements of
the potential between occupied and unoccupied stétés,s an excess number of majority-
spin electrons — see Appendix 2 for details. Section 4 belk®wniews the applications of this
formula for some systems of actual interest.

3 Calculation difficulties and suitable calculation schemes

Beyond the conceptual approximations adopted for solviagitany-electron problem, as dis-
cussed in Sec. 2.3, e.g., HF approximation, QC multi-dateamal approach, or Kohn-Sham
equations, one has to choose how to solve the corresponduajiens numerically. This in-
volves additional approximations, which are of purely t@chl character, but demand a fair
amount of physical insight and programming sophisticatioorder to combine accuracy with
feasibility of the calculations. In virtually all cases om&s to decide first on an appropriate set
of basis functiong,(r) used to expand the sought for one-electron orbifalg), which enter
the Kohn-Sham equations (8):

Q
Ya(r) =Y Copxp(r) . (19)

This expansion is always finite, but the dimension of thedi@snust be reasonably larger than
the number of occupied electronic stafésfor providing sufficient flexibility in the variational
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search for the solution of either Kohn-Sham, or HF equatidie two most common choices
of x,(r) are plane waves and atom-centered localized functionsforirer are defined as

1 iGr

Xa(r) 7o et (20)
i.e. labeled by vector& of the reciprocal lattice, which corresponds to a periodit cell of
volume (). Such a periodic cell (simulation box) must always be inticet for calculations
with planewave basis sets, even if the simulated systemigaility not periodic (e.g., a sin-
gle molecule). The number of planewave basis functionsegtéat sufficient accuracy grows
rapidly with the size of the simulation box, independenttytbe actual number of atoms con-
tained in the box. The planewave basis (see, e.g., Ref. [BOhéoe details) has the advantage
of becoming ultimately complete under the variation of gk@rcutoff parametei;,..,., since it
includes all planewaves witliz| < G,... The planewave cutoff energy can be kept reasonably
low by using, instead of true (deep near the nuclei) Coulonterg@ls, screened pseudopo-
tentials and correspondingly smoothed pseudofunctionglfxrtrons in valence shells, thus
excluding the core states from the calculation.
The atom-centered functions, on the contrary, are betiéedséor describing strong spatial
fluctuations of the one-electron functions within atoms ledce allow much smaller (and even
almost minimal,(Q = N) basis sizes. However they face problems, or at least antiegun
a consistent generation of efficient basis sets, and in penfigg spatial integrations. The atom-
centered functions can be further divided into numericdl amalytical ones, energy dependent
or not, fixed or adjustable in the course of iterating the k@tram equations to self-consistency.
A common workable choice among fixed analytical basis fumstiare Gaussian-type orbitals
— see, e.g., [31] for a review.
Recently, there was a notable increase in the number of adiloug which solve the underlying
equations on a real-space grid [32, 33], with finite diffes or finite elements technique
[34, 35]. Yet this is equivalent to the use of piecewise lim@gpolynomial functions, localized
at grid points, as a basis. Attempts to combine the advastaigdanewave and localized-basis
techniques resulted in a number of high-precision calmnatchemes, like the full-potential
linearized augmented plane wave (FLAPW) [30, 36] or the mte augmented-wave [37,
38] methods. In essentially all calculation schemes, thmdiuction of the basis expansion
(19) reduces the system of coupled integro-differentiabéigns Kohn-Sham equations (8) to a
generalized eigenvalue problem:

>, { Jr@rds - e [y ) dw} —0. (21)

whereH is the operator acting at the functign (r) or ¢, (r) on the left side of Eq. (8). In most
cases (basis functions either energy-independent, orlovdgrly dependent on energy) the
remaining technical problem reduces to the evaluation afim@ements of the Hamiltoniak
and of the overlap, and the diagonalisation. After solvimgrnatrix equations one can calculate
the electron density (7) and the total energy, which are #seclcharacteristics of the ground
state. A number of other properties (spin density, forcegtoms, vibrational frequencies) may
be calculated as well.

The physical questions which are of interest in the study oliecular magnets are not intrin-
sically different from those encountered in the study of nmedgm and electronic structure of,
say, bulk solids, surfaces, of clusters from first princpile the DFT. One is interested in a
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description of the ground-state electronic structure asdar as possible, of the lowest excita-
tions, in terms of Kohn-Sham eigenvalues and the correspgrutharge and spin density. The
simulation of molecular magnets presents, however, cetéghnical difficulties which are not
necessarily typical for all DFT applications, and impogeitations both on the choice of the
computational code for an efficient use and on the number stkgys addressed so far in a
first-principle simulations. These difficulties are:

e large number of atoms, up to several hundreds of atoms peateg structural unit;

e low or no symmetry, which makes it difficult to split the geal&zed eigenvalue problem
(Eq. 21) into symmetry-resolved smaller blocks;

e large size of a simulation box, that means large number ofgpleaves is needed, if they are
used as basis functions;

e an important role of “heavy” atoms with deep core states angetimes with important semi-
core — this may create difficulties for the use of pseudopitiebased methods;

e the lack of energy dispersion (due to very week coupling betwmolecular units) and quite
commonly a dense spectrum of nearly degenerate discrdes stathe vicinity of HOMO-
LUMO gap, which makes the self-consistency slowly convet@e even unstable.
Retrospectively, it seems understandable that a large nuaflmalculations done so far em-
ployed one or another scheme using flexible tight-bindingeba Pseudopotential planewave
calculations are not much represented so far. An accuriagdeagtron FLAPW method, a rec-
ognized tool of choice when dealing with different “conventl” solids, faces its specific prob-
lems in treating atoms of very different size in the sameudaton, as it is needed for molecular
magnets. So far such schemes were used only for benchmarkatadns on simplified sys-
tems.

Coming down to “hands-on” calculation tools, we’ll see theseyal calculation methods have
been so far applied with considerable impact in the studiesabecular magnets. Boukhvalov
et al. used theThe Tight-Binding Linear Muffin-Tin Orbital method (TB-LMTO, see [39—-
41]) for their calculations of electronic structure and meiic interaction parameters in lyjrac
[42] and V;; [43]. The interatomic exchange parameténaere estimated along Egs. (17) and
(34). The TB-LMTO method employs flexible basis of numericaidtions, which are adjusted
in the course of approaching the convergence; the methagdtsrbbust and normally provides
reasonable description of the electronic structure evetbmplex materials. Weak features
of the method are the spherical-symmetric averaging of titential insideatomic spheres
circumscribing each atom, an approximation not good endoigiiow a reliable calculation of
forces and relaxation of structure. Moreover the treatnoémpen systems demands to pack
large interstitial space witampty spheresa cumbersome, ambiguous and seldom satisfactory
procedure. These deficiencies are known to degrade detiesigts of calculation, such as
accurate placement of some bands, or fine details of thggedi®on in solids.

Boukhvalov et al. emphasize the importance of intraatomicetation for correct description
of magnetic interactions and excitation spectra of,Mac and \{5. Technically the desirable
correction is provided by the LDA¥ [44] ansatz implemented in the Yekaterinburg version
of the TB-LMTO code and nowadays part of many other calcutatiodes. In the LDA#
scheme, the interaction energy within a certathhocchosen group of states, which are ex-
pected to be particularly localized and hence “correlaiggiically, transition metall states)

is accounted for like in the Anderson model, with approgtiathosen average Coulomb inter-
action parametdr and occupations of affected one-electron state&or these selected states
only, the model treatment of interaction among such “catesl” electrons substitutes the con-
ventional mean field-like DFT treatment — say, within thealogensitzy approximation, LDA.
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Such a correction in a simplified case, without accountimgafdegeneracy within the affected
subsystem ofV electrons yields

LDA+U _ pLDA 1 1
E =F —§UN(N—1)+§Uanj. (22)
i#]

There are certain arguments for the choice of the parameterthe above mentioned papers,
one recommendE =~ 4 eV for V5 andU = 8 eV for Mn;;-ac. As the magnitude df is in
fact a free adjustable parameter of a calculation, it oftetkes sense to vary it, checking its
effect on the results. For Mgrac one finds that on varying from 4 to 6 to 8 eV, the exchange
interaction parameters between the four inner Mn atomseMh,,-ac core vary from 37 to
33 to 30 K (other Mn—Mn interaction constants, of the same=ioad magnitude, change in
a similar manner). Moreover, the local magnetic momentslblia atoms become slightly
enhanced, and the band gap increases from 1.35 to 1.78 te\X.0d a minute we’ll compare
these results with what provide other calculation method$hfe same system.
Another method, or rather a whole large family thereof, usgidsets constructed from atom-
centeredsaussian-type orbitals These orbitals are not so flexible and efficient as numerical
basis functions, but they have wonderful mathematical gngs enabling easy analytical ma-
nipulations, including analytical evaluation of many tethspatial integrals. The methods in
guestion can be referred to as “full-potential” ones, in $kase that no muffin-tin or atomic
spheres geometry is imposed, and the spatial form of thenpalés fairly general. In par-
ticular the version implemented in the Naval Research Ldbopraviolecular Orbital Library
(NRLMOL) code [45-47] has been frequently used in calcuketion molecular magnets. The
NRLMOL program package developed by Pederson, Jackson amddgpis an all-electron
Gaussian-type orbital implementation of DFT [45, 46, 48-8Y including the spin-orbit cou-
pling it is possible to calculate the magnetic anisotropgrgy, as outlined above in Sec. 2.4.
The agreement between experiment and the result from thepfirgiples calculation is in
many cases surprisingly good (see Sec. 4.4 below).
The Discrete variational method (DVM) [52, 53], one of the earliest DFT schemes to find
applications in chemistry, seems to be potentially veryl au@ted for the studies of molecular
magnets. The method is an all-electron one, it uses basigrméncal atomic orbitals, and an
efficient scheme of 3-dimensional spatial integrationngsa pseudorandom numerical grid.
DVM was used quite early for first-principles calculatioriglee electronic structure of a large
molecular magnet such as the 10-member “ferric wheel” [54].
It so happened that all three methods discussed above havedpplied to the calculation
of electronic structure and the evaluation of magneticradigon parameters of Mgrac, a
molecule shown in Fig. 1. An overview of results, resolvedrawree structurally inequivalent
groups of Mn atoms — Mn(1) in the inner cube, Mn(2) and Mn(3thi@ peripheral region, and
the couplings between members of these groups — is givenhile Ta Differences should be
noted in the meaning of data obtained by different calcotathethods. Local magnetic mo-
ments are attributed to the spin density integrated ovetaan-aentered sphere of certain radius
(TB-LMTO, NRLMOL) or to the Mulliken popultion analysis (DVM)Exchange parametess
have been extracted in the TB-LMTO calculation [42] by usimgformula (17), whereas in the
NRLMOL calculation [55] — by fitting the total energies fromveeal trial spin configurations
onto the Heisenberg model. Finally, Zeng et al. in their DValcalation [22], one of the first
ab initio studies of the Mp,-ac, estimated Heisenberg exchange parameters in the titagne
transition state scheme [21], an extension of Slater'smmalgransition statansatz through a
procedure outlined above in Sec. 2.3. Flipping the spin ataiom and detecting the shift of
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Table 1: Electronic structure parameters (magnetic moments andéidierg exchange param-
eters) of Mn,-ac from ab initio calculations by three different methods.

Method Magnetic momentg{ )  Exchange parameters (K)
Mn(1) Mn(2) Mn(3) Jiz i3 Jo3
DVM« 3.056 —-3.889 —4.039 -—-136 -72 -102
NRLMOL? 257 -3.63 —-3.58 -57 -41 -8
LMTO¢, U=4eV 272 —-3.44 —-3.65 —-53 47 —-19
LMTO¢, U=8eV 292 —-352 -3.84 —47 -26 -7

“Ref. [22]; LDA.
’Ref. [29]; GGA; moments within a sphere of 2.5 Bolirvalues by Park et al. [55].
‘Ref. [42]; LDA+U; moments within spheres of 2.7/2.8 Bohr (inner/outer Mn a&pm

the 3d-energy level on another one due to induced magnetic patésiz helped to arrive at a
system of equations in which different interatomic excleapgrameters were coupled. For the
sake of simplicity and the clearness of analysis, only ctile (hon-symmetry-breaking) spin
flips on all atoms belonging to each set of Mn atoms were altbwéehe analysis of Zeng et al..
This means that four spins within each group always remaiiggdly ferromagnetically cou-
pled. This resulted in a system of three equations, whereealues of/;,, J,3 and.J;3 could
have been determined. The DFT results were explicitly fitbetthe Heisenberg Hamiltonian of
the form of Eq. (1). However, the parameteks etc., representing the coupling within each
group, did not appear in the fit, because the spin excitatn@egssary to probe them, which
would break the symmetry of the molecule, were not allowdakiinclusion in an otherwise
executed calculation could result in a renormalizationxah@ange parameters.

The values ofJ;3, Jo3 and Ji3 are given in Table 1; they are all negative, i.e. indicate an
AFM coupling (as could be expected due to a more-thans@@erexchange pathway through
bridging oxygens), and hence frustration in accommodadtirghree spin subsets.

My instrument of choice, at least in what regards the catmrna of molecular magnets, is the
Siestamethod and computational code [56-59]. This code againam®pact atom-centered
basis functions, but — differently from NRLMOL — numericalesnwith strict spatial confine-
ment (see Refs. [60] and [61] for details). Due to a number @frstechnical solutions,I8sSTA

is a great method for treating large low-coordination lgmametry structures, as molecular
magnets exactly are. Differently from the two previouslgalissed methodsjEsTA is not an
all-electron one but employs norm-conserving pseudopi@den Therefore, as is also true for
many other pseudopotential methods, certain care is rjirirchoosing and testing pseudopo-
tentials prior to calculation.

The application of &STA to molecular magnets is relatively new. In the following esat
recent results, obtained with this method, are outlined.

4 Recent calculation results

In the following, some recent results on relatively “new” lemular magnets, i.e. systems which
have only become available during the last few years, atmedt Most of the calculations have
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been done with the I8STA code. The motivation for the study of these systems is mighifo
“Ferric wheels” gained interest, not in the last place, lsezof their beautiful shape and a rich
physics they offer in manifesting their quantum proper(see the lecture by J. Schnack).,Ni
is a seemingly simple magnetic molecule for which a fit of expental data of magnetization
vs. magnetic field to the Heisenberg model fails quite drasally, and possible reasons for
deviation have been studied, with the help of first-priregptalculations. Finally, a two-nuclei
model system is considered with the aim to study the effeicttaiatomic correlation (within the
LDA+U approach) on the electronic structure and interatomic ®iggimteraction parameters,
using a numerically more accurate method (namely, FLAPW) tha TB-LMTO of earlier
Mns-ac calculations by [42]).

4.1 “Ferric wheels”

Hexanuclear “ferric wheelsl/Fe;[N(CH,CH,0);]¢Cl (M = Li, Na, see Fig. 2), the systems to
be discussed below, were synthesized at the Institufganische Chemie in Erlangen [62] and
labeled as substancésnd3in the latter publication. There exist a large family of fewheels
with a different even number\ = 6, 8, 10, 12, 18) of iron atoms. Besides the ferric ones, there
have been reports on wheels with other transition metalsach as an eight membered Cr(l11)
wheel [63], Cu(ll) [64, 65], Co(ll) [66], Mn(Il) [67] and a 24 nmebered Ni(ll) wheel [68]. The
latter structure contains the largest number of transiti@tal ions in a wheel-like structure so
far. The synthesis of odd-numbered magnetic wheels appehesa nontrivial task.

Fe atoms in these compounds are connected by oxo-bridgdsaréh reminiscent of the 90
coupling of magnetic atoms in transition-metal oxides. mbarest coordination of the Fe atom

Fig. 2: Structure and spin density distribution in “ferric wheel” riegules. Left panel: top
view of the Li-centered molecule. The Li ion is in the middi¢he ring; the distant Cl ion
is not shown; the rest of (electrically neutral) solvent igleeted. Right panel: iso-surfaces
correspond tOj:O.Ole/AS, according to NRLMOL calculation [69]. While most of the mata
moment is localized at the Fe atoms, there is still some sgarization on O and N.
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is octahedral; two pairs of O ions form bridges to the neigingpFe atoms on both sides; the
fifth oxygen (referred to below as “apical”) and the nitrogen are connected by the,8,
group. The octahedra are slightly distorted, to accomneotted stiffness of oxo-bridges with
the curvature of the molecular backbone. While the Fe—O-gkeariffer slightly in the Li-
centered and Na-centered wheels (10-dd 103.3, respectively), the structure of the two
molecules is almost identical.

According to magnetization and torque measurements by Méaiad et al. [70], these systems
are characterized b§=5/2 on the Fe site, thus implying a highly ionized Fe(llatst More-
over, a fit to the spin Hamiltonian of the Heisenberg modelyi&)ds the.J values of—18

to —20 K for the Li-wheel (depending on sample and method) a2@.5 to—25 K for the
Na-wheel, thus implying an AFM ground state [70]. X-ray pdelectron and X-ray emission
spectroscopy studies [71] allowed for probing of the etautr structure in the valence band
and on the Fe site, albeit without resolution in spin. Whetkagnagnetic measurements data
are by now well established, the spatially resolved distidm of magnetization was not yet
accessed prior to calculations by J. Kortus and myself [9pecifically, we compared the
results of electronic structure calculations by two defer methods within the DFT, 18sTA
and NRLMOL. In both cases, the generalized gradient appratkan after Perdew, Burke,
and Ernzerhof [72] was used. The most important differeretevéen two methods, in what
regards the present study, is that STA uses norm-conserving pseudopotentials whereas NRL-
MOL is an all-electron method. The results are however verylar, even as the calculations
were in fact performed for two different systems (Li-centdreel by SESTA vs. Na-centered
wheel by NRLMOL, with tiny structural differences). The NRLMGreatment was restricted
to the ground-state AFM configuration (alternating oritiotes of Fe magnetic moments over
the ring); the &STA calculation addressed in addition different magnetic gumétions, that
allowed for the extraction of DFT-based exchange parameter

Fig. 3 displays the partial densities of states (DOS) on Faitarseveral neighbors in the AFM
configuration, as calculated by both methods. The discesteld of the energy spectra are
weighted (with the charge density integrated over atontered spheres in NRLMOL, or ac-
cording to Mulliken population analysis inSsTA), and slightly broadened for better visibility.
The local moments corresponding to integrating such p&y@s over occupied states are given
in Table 2. Both calculations give a consistent descriptibstate densities at Fe and O sites,
even though this property is rather loosely defined, andhitsutation differently implemented
in SIESTA and NRLMOL.

Notably, both methods find the local magnetic moments ontEs gery close to 4, andnotto

5 ug as itis generally assumed, based on the above mentionecetizgion data. The maximal
magnetizationS=5/2 of the Fe atom corresponds to a Fe(lll)-ion with d?cﬁ configuration.
Our first-principles calculations suggest a somewhat idiffepicture: the minority-spin DOS
has a non-zero occupation due to the hybridization (chdiarading) of F&d with O2p states.
However, the magnetic polarization in the organic ligandohlprovides the octahedral coordi-
nation for the iron atoms, due to Fe is substantial, the mstqunced effect being on the apical
oxygen atom (which is not participating in the bonding tonlke&t Fe neighbor). Taken together
with the (smaller) polarization of the bridging oxygen atband magnetization at the nitrogen
site, the distributed magnetic momeydr Fe atom yields 5., recovering the agreement with
the magnetization results.

A clear visualization of the above discussed delocalizedrédher, distributed) magnetic mo-
ment associated with the Fe atom comes from the map of spsitgesbtained from the NRL-
MOL calculation (Fig. 2, right panel). One should take intz@unt that the volume enclosed
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Fig. 3: Atom- and spin-resolved partial densities of states asutated for Li-centered
molecule bySIESTA (left panel) and for Na-centered molecule by NRLMOL (rightgdanThe
DOS at the Fe site is scaled down by a factor of 2 relative torathastituents. The numbering
of atoms which are neighbors to the Fe atom is shown in the inset.

by the iso-surfaces is not directly correlated to the totahmant at the site. One sees moreover
an absence of magnetization on carbon and hydrogen sites.faththat the magnetization
is noticeable and changes its sign when passing throughgebagygen atoms emphasizes the
failure of methods depending the spherical averaging shatentered potentials.

An important consequence is that the charge state of irootiBe(lll) but more close to Fe(ll).
Moreover, the distributed magnetic moment behaves likgid one, in a sense that it can be
inverted, following a spin flip on a Fe site. This is illusedtby the analysis of other mag-

Table 2: Local magnetic moment® at Fe and its neighbors. NRLMOL results correspond to
spin density integrated over sphere of radiisentered at corresponding ator8IESTA values
are due to Mulliken population analysis.

Atom R(a.u.)  M(ug), NRLMOL  M(ug), SIESTA
Fe 2.19 3.85 3.91
O (apical) 1.25 0.20 0.30
O (bridge) 1.25 +0.01 +0.02

N 1.32 0.07 0.09
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netic configurations, done withiSsTA [71]. The local DOS does not change considerably
when switching from AFM to FM configuration — only the HOMO/M®D gap becomes less
pronounced, and a slight ferro-magnetic shift betweenwloespin bands appears.

For the sake of improving both the stability of convergend \8IESTA and for pinning down
a particular spin configuration (FM, or with one or more Fe n&lig moments inverted), the
fixed spin momen=SM, [20]) scheme was applied in the calculation. Imposinginteger)
spin moment per molecule fixes the number of electrons in piw channels and removes a
possibility of spin flips, which are a major source of humafrinstability, as there are many
nearly degenerate states in the vicinity of the Fermi lemeghe molecule (and no symmetry
constraints on these states ireSTA). The FSM procedure would normally split the common
chemical potential in two separate ones, for majority- amaomnity-spin channels, that corre-
sponds to an effective external magnetic field and hencediti@ial (Zeeman) term in the total
energy, in analogy with Eqg. (3). Since molecular magnetsgssa HOMO-LUMO gap, the
latter correction must only be considered if such gaps indpio channels do not overlap.

Fig. 4 shows the total energy values and energy gaps for F&Mwvaf 30u; (FM case), 20 and
10 i (one and two local moments inverted, correspondingly);lt@ri@ate-spin AFM case). A
linear change of the total energy while inverting one and tin® local moments from the FM
configuration is what would be expected from the Heisenberdahwith “rigid” magnetic mo-
ments (in the sense that théirvalues do not depend on the total spin of the system), asgumin
moreover that only nearest-neighbors interactions betwpes are important. An additional
justification of the validity of the Heisenberg model comesni an observation that the mag-
nitudes of local magnetic moments on the Fe atoms alwaysinect@se (within several per
cent) to 4y, and the partial DOS on Fe sites remains largely unaffegtatdactual magnetic
ordering. Similarly unaffected is a pattern of local magnetoments at O and N neighbors of
a particular Fe atom, always getting inverted as the lakperences a spin flip. Keeping this
in mind, and assuming Heisenberg-model spin Hamiltoniam &ection 2 with theS value
of 5/2 (i.e., for the total spin which gets inverted), we rat the estimate for.J of around

total energy of a molecule (eV) HOMO-LUMO gaps (eV)
relative to the FM state in two spin channels
-2
(0] o L
. GGA
0.2
0.4 I
N I S [ [ Y I [ I A M | _2.8|IIIIIIIIIIIIIII
0 10 20 30 0 10 20 30
fixed spin moment (1) fixed spin moment (1)

Fig. 4: Total energy per Fe atom (left panel) and energy gap in two spannels (right panel;
shaded area — majority-spin, thick lines — minority-spioni fixed spin moment calculations.
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80 K (over both 36-20 and 26-10 s flips). This is qualitatively correct (i.e. indicates a
preference toward AFM coupling) and even of the correct oafenagnitude. However, two
observations can be made here. First, the “true” AFM conédityom (with half of magnetic mo-
ments inverted on the ring) does not follow the linear tresek(Fig. 4) and lies actually higher
in energy than the configuration with two spins inverted. ©hgin of this is not yet clear to
us at the moment. There are several possibilities, the Z8M-configuration is, technically,the
most difficult to converge, so some numerical instability stll play a role. On the other hand,
a true (mixed) quantum-mechanical ground state of a systémsix coupledS=5/2 spins may
win over both our DFT solutions which correspond to selegtddesS.=0 or S.=5 of the total
spin. Moreover, the necessity to include magnetic intewastbeyond first neighbors, not yet
considered at the moment, might further complicate thesdn. The second observation con-
cerns the magnitude of exchange paramétand the fact that it is probably overestimated by
a factor of~4 in our calculation. The origin of this lies most probablyoin-site correlations,
which, if treated accurately beyond the standard schem#ésedDFT, would primarily affect
localized F&d states, shifting the bulk of occupied states downwards argn the bulk of
unoccupied states upwards, expanding the energy gap, ahdtewer scheme to use for esti-
mating exchange parameters — substantially reducingriregnitude. This effect, with respect
to Mny,-ac, has been discussed in the previous Section and madmuslikom Table 1.
Summarizing our analysis of the electronic structure ofdnd Na-centered “ferric wheels”,
one can conclude that thecal magnetic moments on Fe sites seem to g dather than S

as is often assumed. This implies a valence state close(lip than to Fe(lll), with a substan-
tial covalent part in the Fe—O bonding. The local spinSef/2 per iron site consistent with
magnetization measurements is however recovered if oes thk magnetization of neighbor-
ing atoms into account. The largest moment is on the apical@xatom, followed by smaller
moments on nitrogen and the bridging oxygen atoms. Thisiggds well confirmed by a spatial
distribution of spin density.

With respect to its magnetic interactions, this system @amhbpped reasonably well onto the
Heisenberg model; hence we deal witid magnetic moments which are nevertheldstocal-
ized— an interesting counter-example to the common belief tteaHeisenberg model primarily
applies to localized spins.

4.2 Ni

“Ni,” is a shorthand notation for a molecular crystal [MOs(12—OH);oH2{Ni(H20)3}4] -

14 H,0, synthesized and characterized byilMr et al. [73]. This material crystallizes in a
structure containing two formula units (shown in Fig. 5)ated by the 180rotation around
an edge of the Nitetrahedron. The Ni-Ni distance is 6.6—@\7and magnetic interactions are
mediated by a longer path than in the systems discussed.above

Magnetic properties are due to’Nions in the 3® configuration §=1); the ground state is anti-
ferromagnetic. An intriguing aspect of this compound id tha measured zero-field magnetic
susceptibility can be very well mapped onto the Heisenbardeh) whereas the measurements
of magnetization cannot. The inclusion of different amigpy terms in the Heisenberg model in
order to improve the description of experiment had only tedisuccess [74]. First-principles
calculations have been performed using thesSA method in order to access the electronic
structure and estimate the magnitudes of magnetic interagarameters.

Similarly to the case of the “ferric-wheel” system discusabove, the FSM scheme was used
for pinning down different spin configurations and compagrtheir total energies. The local
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Mo, cage + Niy tetrahdron

Mo—Ni are bonded full molecular unit
via oxygen bridges

Fig. 5: Buildup of the “Ni;” molecular unit.

DOS is practically indistinguishable for the cases of zetaltmoment (the AFM structure,
which has indeed, in agreement with experiment, the lowsat energy) and configurations
with local magnetic moments inverted at one or two Ni atonmsldyng, in the last case, the FM
configuration). The local moment per atom in these casegagigh thes=1 estimation derived
from magnetization measurements. As it was discussed dboother magnetic molecules, the
magnetic moment is not fully localized on the Niion; smalt ban-negligible magnetization is
induced on neighboring oxygen atoms, and even on more tigtaatoms (Fig. 6, left panel).
As the Ni—Ni interaction path is much longer than in othetieadiscussed magnetic molecules

local densities of states
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Fig. 6: Left panel: local DOS of atoms at the Ni—Ni magnetic path. Rpgrtel: a scheme of
energy levels in different spin configurations of jNaccording to the Heisenberg model and
from first-principles calculations.
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Fig. 7: Total energy (left panel) and HOMO-LUMO gap (right panebrfr FSM calculations
of “Ni,". See text for detalils.

(see inset in Fig. 6), the energy differences between canatligins with FSM values of 0, 4 and
8 1z are small. These solutions are separated by other magmetiiggrations which can be
converged (2 and @;) and correspond to a non-magnetic configuration of one Nmateith
unchanged and differently coupledl at three others (as schematically shown in Fig. 7, left
panel). The energies of these intermediate configuratiensubstantially higher, and HOMO-
LUMO gaps in two spin channels move apart, indicating theeasity of an external magnetic
field (hence additional Zeeman energy) for stabilizing ¢hadificial configurations. On the
contrary, the three lowest-energy configurations have HAMMO gaps common for both
spin directions (Fig. 7, right panel), therefore the magpoithe Heisenberg model can be done
directly, without considering the Zeeman term.

An attempt of such mapping is schematically shown in thetnogimel of Fig. 6; obviously the
sequence of energies of the configurations with one or twossipiverted (starting from the
FM solution) is only in qualitative agreement with the Heiserg model, but the numerical
energy differences do not allow for the evaluation of a uaigalue ofJ, in contrast to the
case of “ferric wheel” discussed above. At best, one can malkrigh estimate of the order
of magnitude of-J, that yields 30 — 90 K. This failure suggests that the magneteractions

in “Ni,” are strongly anisotropic, and in any case more sophigittatodel Hamiltonian is
necessary for its adequate description that the simpldasthleerg model of Eq. (1).

4.3 A model Fe-binuclear system

Binuclear metal-organic systems form a large, and very sngroup among molecular mag-
nets. Even if their magnetic characteristics like ordetemperature and bulk magnetization
are not necessarily outstanding, they help to grasp impoptaysics of3d—3d magnetic inter-
action mediated by an organic ligand and thus offer a coevemnodel system. Moreover, an
interesting effect of spin-crossover has been observednmessuch systems, for instance in
[Fe(bt)(NCS)]2-bpym (bt= 2,2’-bithiazoline, bpym= 2,2’-bipyrimidineg switch from LS-LS
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Fig. 8: Two views of the [Fe(bt)(NCg)-bpym molecule (left panel) and a simplified periodic
Fe-binuclear system used in the FLEUR calculation (rightgia

to LS-HS to HS-HS configuration (LS: low spin; HS: high spibjlee increase of temperature,

where the intermediate LS-HS state gets stabilized neaKi@ to an interplay between inter-

molecular and intramolecular magnetic interactions [73—®ne demonstrated the possibility
of optical switching between different magnetic statestanodight into discussion the prospects
of their use as active elements in memory devices.

In the present context, such binuclear system will servenasdel molecular magnet, for which
we’ll assume a simplified structure, but calculate its eteut structure using a method of rec-
ognized accuracy, — namely FLEUR code [78], an implemetadi the FLAPW method, —
with the specific aim to look more precisely at the effect afliling intraatomic correlation
effects (“Hubbard/”). Starting from the real structure of [Fe(bt)(NGE)}bpym (see Fig. 8,
left panel), we “streamline” it somehow to fit it into a compamit cell for an accurate cal-
culation by a band structure method with periodic boundanydations (Fig. 8, right panel).
This transformation preserved the bipyrimidine part betwivo Fe centers, but “shortcut” the
distant parts of ligands to make a connected structure. @nesee that, in contrast to “ferric
wheels”, the Fe atom is now octahedrally coordinated bygén ions. The resulting partial
DOS for self-consistent FM and AFM configurations are showfig. 9. These results have
been published in Ref. [79].

Certain similarities can be found with the Fe local DOS in fiilewheels” — clear splitting
into ¢,,-like ande,-like states in nearly octahedral ligand field, full occupatof majority-spin
Fe3d states and one electron per Fe atom trapped in tBé-f&p hybridized band of minority
spin. The values of magnetic moments (total per Fe atom ifrthease, along with the local
moment, integrated over the muffin-tin sphere) are listethinle 3. The interatomic exchange
parameters have been estimated from total energy diffesdoetween FM and AFM cases.

Since the magnetic moment is largely localized at the Fetbigenclusion of intraatomic corre-
lations beyond the “conventional” DFT might be importanelexchange parametefsiepend
on the spatial overlap of théorbitals on different Fe-sites. It is well known that w®rbitals
within DFT are not localized enough compared to experimemsequently thg values will
be overestimated. There are two main reasons for this gimoimg. First, possible on-site
correlations as known from atomic physics are underestichiait case of “conventional” DFT.
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Fig. 9: Densities of states in FM and AFM cases for the model Fe-be#ansystem, calculated
by FLEUR in the LDA+ approach. Fe local DOS are shown as shaded areas.

Second, DFT is not free from spurious self-interactionstduge replacement of the point-like
electrons by corresponding densities. Bringing in the atgphiysics in the form of LDAVY,

i.e., adding a local orbital dependent atomic Coulomb imtéza parametet/ to DFT [44],
would affect the results in the following way: the energiéocupiedd-orbitals get lower,
whereas the unoccupied ones drift to higher energies. Asrikegies of spin-flip excitations
contribute to the denominator of the nonlocal susceptybii Eq. (34), this has an effect of
reducing the interatomic exchange interactibnOne can recollect that such trend has been
already mentioned in relation with the TB-LMTO calculati@sults of Mn,-ac (Table 1).

The LDA+U scheme leaves it to the user to single out certain orbitdtscatized and to choose
an appropriate value for the “Hubbatd’ parameter. For Fe-binuclear system a presumably
reasonable valug=4 eV (based on the experience of other calculations fordsed systems)

Table 3: Magnetic moments and interaction parameters as estimateal fihodel Fe-binuclear
system (Fig. 8) from calculations by FLEUR with and without blatol U .

M(Fe) MlFe AE J (5=5/2)

U=0 FM 3.62 4.10
AFM  3.61 — 102.5meV —-190K

U=4eV FM 3.93 4.94
AFM  3.92 — 76.8 meV —-143K
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has been chosen; in principle, the main motivation here wasudy qualitative trends, as we
deal with a model system anyway. One observes from Tablet3hitbanclusion of intraatomic
correlation enhances somehow the local magnetic momeme &« site, and to a much smaller
extent — the total magnetic moment (in the FM configurati@uit the effect on the/ parameter
much more pronounced; the interatomic magnetic interadtecomes noticeably reduced due
to the inclusion of correlation.

4.4 Magnetic anisotropy in single molecule magnets

As a modification of Eq. (3), which introduced the anisotrapthe simplest form, Kortust al.

in a number of publications distinguished between axial @adsverse anisotropy, with their
corresponding parametefsand F, which enter the magnetic spin Hamiltonian (in the second
order) as follows:

H = DS? + B(5? - 52), (23)

The results, both those obtained from calculations witiNR&EMOL code and estimated from
experiments, are summarized in Table 4 after the data prdvbgt J. Kortus.

Table 4: Comparison of the calculated by NRLMOL and experimental ntagaeisotropy
parameterD for the single molecule magnets. See theory referencesfopgatational details.

Molecule S D(K)

Theory  Experiment
Mn50;2(0,CH);6(H20),4 10 -0.5¢ —-0.56
[Fes0,(OH);5(CeHy5N3)6Brg )™ 10 -0.53 —0.30
[Mn;,04(2,2"-biphenoxide)Bry;]*~ 13  —0.06 —0.05
Co4(CH,C5H4N)4(CH30OH),Cl,4 6 -064 -07--09
Fe (OCH,)s(C4HyON)g 5 —0.56 —0.57
Cr[N(Si(CHs)3)2]3 32 —-2.49 —2.66"°
Mng O34 Cs2N5H35 17/2 —-0.33 —0.32
Ni;O16Ci6H40 4 -0.385 —0.40
Mn,O3Cl, (O,CCH,CH3)3(NCsH5)s  9/2  —0.58 -0.72

2128], *[80, 81],°[82], ¥[83], ¢[84], 7[85], 9[86], "[87], ‘[88], /S. Schromm, O. Waldmann, and PiiNér,
*[89], 'G. Rajaraman and R. E. P. Winpenff§{90], "[91].

In all the cases presented here the calculated spin orderimggreement with experiment. The
calculatedD parameters for M3, Mn,4, Mnyg, the ferric star Feand Cr-amide molecular mag-
nets are in excellent agreement with experimental valubs. ohly remarkable discrepancy is
found for Fg, a system which seems to pose complications for the DF Tnesatt Apparently
the DFT may be unable to predict the ground state densityramdy enough due to impor-
tant electronic correlations beyond the mean-field treatraemissing Madelung stabilization
(absent in the isolated system).
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The SMM listed in Table 4 are in general characterized by b Bgn ground-state. However, a
high spin state does not necessarily correlate with a higgoaopy barrier. The prefactdp is
also very important. In order to increase the barrier onddasderstand and contrél, which
will be the main goal of future research in this area. In allesawhere thé parameter is not
zero by symmetry it has been predicted with similar accuesdy — see relevant references for
details. The results obtained make one confident in the greglipower of the formalism. It
has been already mentioned that a microscopic understa(tziised on the electronic structure
of SMM) of the magnetic anisotropy parameters is crucialtfa rational design of single
molecule magnets.

5 Conclusion

Molecular magnetism is a rapidly development topic, andrsdiest-principles calculations in
this domain. Other methods of practical calculation gatogaition beside those chosen for the
present outline, and new calculations for different systappear almost every day. Hopefully
this lecture helped to grasp the essential problematicsapptbaches now in use. In coming
years we'll witness the expansion of sophisticated tealesdo treat electron correlations, ex-
citation processes and transport properties, well estadydi by now in the study of less complex
systems, over the area of molecular magnetism. This midptbeesolve several controversies
remaining in the present-day interpretation of some nmalteri
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Appendix 1. Interatomic magnetic interaction

The following line of argument is due to discussions with \higimov and V. Mazurenko.
Given the interaction energy of two quasi-classical spins

E = JyS:S;, (24)
its variation due to the change of the angles of the spinsiy; reads:
OE = J;;5%00i0p; . (25)
In the attempt to cast a variation of DFT total energy in a caraple form, one can profit from

the Andersen’s local force theorem, which works here bexzaugsare interested in infinitesimal
deviations from the ground state. An explicit derivationta# local force theorem in the desired
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form is given in an Appendix of the paper by Liechtensteinlef2®]. In terms of the Green’s
functiong and Kohn-Sham HamiltoniaK the first variation of the total energy reads

€F

5B =t /de ImTr (51 G) (26)

™
(which can be shown to be zero), and the second variation

€F

§°F = —%/de ImTr (8°HG + dHGIHG) . (27)

The variation of the Kohn-Sham Hamiltonian can be expiiaélated to rotations in spin space
as

5H = 50pi[H, 0] (28)

with the Hamiltonian composed of a spin-dependent partesite:, with A; = ViT — W [a
potential, in general, non-diagonal(ihm)] and the rest:

A (10 10
H_7(0—1)+H0(01)' (29)
This yields for the variation of{
7 0 1 1 01

Extracting from Eq. (27) the terms bilinear dip;, recovering site and spin indexes in the ele-
ments of the Green’s functicd” and implying the summation ifi, m) yields

€F

This is the final formula for the interaction between isadaspins in an otherwise infinite and
unperturbed environment. If one is interested in the imiBya between twasublatticesof
periodically repeated atom typésand j, the Green function follows explicitly in terms of
Kohn-Sham eigenfunctiong’i” and eigenvalues,,
= *ilm¢jl’m’
G (€) = Y (32)

€— €
kn nk

Using the following relation for the product of Green'’s ftioos

1 1 1 1
- - 3
(E_Gn)(ﬁ—ﬁn/) €n — € (€_€n E_En/) ) (3 )

the integration in energy over occupied states yields Ef), (& terms of a non-local susceptibil-
ity, which in a crystal with periodic boundary conditiong@ads on the Kohn-Sham occupation
numbers, kg,

: Npkt — Mp/k . T o1
ij . nk] n'kl xilm glm” Gilm! xjlm
Xmm/m/!'m!" = w nkTwnkT n’klw n'k| > (34)

K/ €nkl — €En’k|

— a formula probably first given by Liechtenstein et al. [98Haused in a number of publi-
cations. It should be understood that this formula impliesqalicity and hence describes the
interaction between two sublattices rather than two spiteice the obtained numbers may be
very different from those by straightforward applying of.E#j7).
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Appendix 2. Second-order anisotropy energy

The following derivation of the second-order anisotropgrgyy, along the lines of Pederson
and Khanna [28, 29], has been given by Jens Kortus in Ref. [é]pkceed from the Cartesian
representation of the spin-orbit term

1
U(r,p,S) = _Q_CQS px V®(r). (35)
Using single-particle wavefunctions expressed in ternesledisis set
Yis(t) = Y C5(r)xo, (36)
7,0

where thep,(r) are the spatial functions andare spin functions, the matrix elements can be
expressed as

Ujoko = (&iXo | U(r,p,S) | drXor) (37)
= _i<¢j | Va | ¢k><XU | Sy | XU’> (38)

where the operatdr, is defined as
1 do; | - | dow do;
4 - | LN 2
(05 1 Va | on) 202<<dz ‘dy> <dy

In the above®(r) is the Coulomb potential. Thus this treatment uses matrimetgs of the
Coulomb potential with partial derivatives of the basis fimes, thereby avoiding the time
consuming task of calculating the gradient of the Coulomie ikl directly.

Here we generalize some of the derivations from uniaxialmeginy to an arbitrary one. The
same definitions and lettering of the symbols is used as bgrBed and Khanna [29]. In the
absence of a magnetic field, the second-order perturbdtarege to the total energy of a system
with arbitrary symmetry can be expressed as

Np=> Y M S77S877, (40)

oo’ g

dz

q)‘%». (39)

which is the generalization of Eq. (19) of Ref. [29]. In the ed@xpressiony sums over the
spin degrees of freedom amgdj sums over all the coordinate labels,y, = respectively. The
matrix elementss?®’ = (x“|S;|x?") implicitly depend on the axis of quantization. The matrix
elementsMg.‘" are given by

M%U' - _ Z <¢l0‘vﬂ¢ko/><¢ka”v}‘¢la>7 (41)

&l €lo — Eko’

whereg,, are occupied and,,- and unoccupied states asid are the energy of the correspond-
ing states.

The above equation can be rewritten in a part diagonal inghreisdex plus the non-diagonal
remainder according to:

Do= Y MFSTSy+3 > My sy sy =[1]+[2]. (42)

ij o ij oFo!
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Using the following relation for the expectation value of @insoperator in a closed shell
molecule with excess majority spin electragvy

sy = ~@isiz) = 2, (43)

the first term of Eq. (42) can be expressed as

. _ Z MH T M22 <(ki>]i[5;32> (44)

With the help of
(115i]2)2[5;11) = (1]5:.55]1) — (1] S[1)(1].55[1)

= (15;8;]1) — <(SA>]§[S)§>, (45)

and similar relation for(2|5;|1)(1|S;]2), and a bit of algebra the second term of Eq. (42)

becomes
_ Z M12 + M21
ij

Constructed from Eq.(44) and Eq.(46), the resulting secaddrcshift A, of Eq. (42) yields
Eq. (18). As can be easily verified, for uniaxial symmetnystaquation is identical with Eq.
(21) of Ref. [29], where the Cartesian off-diagord}; matrices vanish and/g?" = MJ7".
The above derivation of Eq. (18) did not assume any parti@ylmmetry and is therefore quite
general.

. Z M? + M (46)
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