
Siesta caminando
Andrei Postnikov
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For whom this reading

Vuestra merced came to an idea to try the SIESTA code – but is this a really good idea, and what
to begin with? The present document intends to save you some pains of decision making, of trial,
and of error. It does not replace basic reading on condensed matter physics, density functional
theory, or SIESTA documentation.

What SIESTA is and isn’t

SIESTA is a calculation method and computer code which solves problems at the level of density
functional theory (DFT). These problems are, generally, related to ground-state properties. En-
ergy/volume curves, phase diagrams (e.g., magnetic ones), phonons, molecular dynamics are all
related to ground-state properties. Electron excitations are not. So if you need to calculate a good
excitation spectrum you should better go for a good TDDFT code, or a method which implements
the GW approximation.

As other DFT codes, SIESTA provides no access to many-electron wavefunction and deals
with electron density which is in many aspects good and reasonable, but is a single-determinant
density. Hence the effects of Configuration Interaction, accounted for in quantum chemistry meth-
ods, are not included, even insofar as ground-state properties are concerned! Extensions beyond
“standard” DFT like hybride functionals, LDA+U , self-interaction correction are not included either.
In the description of correct equilibrium geometry, even as the latter is a ground-state property,
SIESTA has problems (albeit of fundamental character and shared by many other DFT methods)
in correctly describing van-der-Waals interactions and hydrogen bonds.

In this sense, SIESTA falls, in what regards its general range of applicability, into what is also
covered (apart from small variations in the list of individually calculable properties) by a number of
existing DFT codes, including TBLMTO, WIEN2k, CRYSTAL, FPLO, VASP, ABINIT, PWSCF. Why
should you use SIESTA for your purposes, and should you really?

Among the above listed realizations of DFT calculations, there are differences in practical
realization, and, as a result of it, some codes are better suited for special types of problems
and materials than the others. The first important distinction comes along the line all-electron
vs. pseudopotential methods. TBLMTO, WIEN2k, CRYSTAL, FPLO are all-electron methods,
which take into account, and re-adjust in every iteration, the wave functions of all electrons in
each atom, from 1s upwards. On the contrary, SIESTA together with ABINIT, PWSCF, VASP and
many others is a pseudopotential method. In such methods, only valence electrons (down to
some depth, probably including so-called semicore states) are explicitly included in the equations,
whereas deep core states is excluded from the treatment, thanks to the use of pseudopotential (or,
projected augmented waves approach). This is usually accurate enough for describing chemical
bonding, equilibrium geometry, phonons etc. However, the properties immediately related to core
electrons, like e.g. hyperfine field at atom cores, isomer shift, electric field gradient are either
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hopelessly bad, or simply non existent in SIESTA. If you are interested in calculating any of these
properties, SIESTA is not your choice.

The second important distinction concerns the choice of basis functions, used to expand the
solutions of the Kohn-Sham equation. Two big groups of methods are i) those which use atom-
centered bases, usually relatively compact ones (of the order of ∼101 functions per atom), and ii)
atom-independent ones, the most typical example – plane waves. The number of plane waves in
a calculation may easily go into thousands, but they allow simple evaluation of matrix elements,
easy parallelization and many other advantages. Finally, there are hybride methods, which com-
bine numerical accuracy in intraatomic regions with reasonable flexibility in the interatomic region.
Speaking of the above methods – TBLMTO, CRYSTAL, FPLO use atom-centered bases, let’s re-
fer to them as “tight-binding” group of methods; ABINIT, PWSCF, VASP use plane waves, and
the basis in WIEN2k is a hybride one. Which basis to use is a trade between accuracy, flexibility
and efficiency. Planewave methods allow systematic improvement of basis by varying a single
parameter (planewave cutoff), but the necessary number of basis functions and hence calculation
time may, as the desired accuracy increases, grow very fast. In a planewave method, one pays
for the volume of the periodic cell (as the number of planewaves, for a given k-cutoff, scales with
volume) and not directly for the number of atoms. Therefore a calculation for a low-density porous
structure, or a molecule put in a sufficiently large simulation box, in order to prevent its interaction
with its repeated/translated replicas, may become very expensive. Differently with atom-centered
basis functions: the volume as such costs nothing (or nearly); the price to pay scales with the
number of atoms (and number of basis functions on each atom). So if we managed to find a good
basis which offers good variational freedom in the regions where it is most needed, i.e. where
the chemical bonding takes place, a calculation may become very efficient. Unfortunately, there
is no general rule how to construct such efficient basis functions, therefore a tuning of good basis
sets becomes an issue, and often a source of artistic pride, in a corresponding tight-binding com-
munity. Enjoying a good atom-centered basis set, we can never be sure that we haven’t missed
the variational freedom is some other region of space (due to anomalies at a surface or defect,
accumulation of charge at the chemical bond, or whatever else) where it was in fact badly needed,
but haven’t been thought about.

SIESTA falls into category of methods with atom-centered basis sets. It means that it is not that
much afraid of big unit cell volumes, that for big systems it would make sense to optimize basis
set in order to perform calculations within reasonable time, and that in sensible cases it makes
sense not to trust the results immediately but make a test (whenever possible, on a reduced
model system) against a planewave or hybrid-method calculation. Moreover we add that SIESTA

does not use any symmetry in the calculated system whatsoever (apart from the time reversal
symmetry for k-points, allowing to use a half of the full Brillouin zone). So we cannot gain anything
when the system is supposed to be in fact symmetric (and it comes out never exactly symmetric
from the relaxation in SIESTA, some numerical noise is always present), but we either don’t lose
anything when the system prefers to develop large distortions, when we study vibrations, etc.

Now with this attribution done, what is special about SIESTA? What is its standing relative to
other methods which use atomic-centered bases, e.g., Gaussian-type orbitals?

The specifics of different tight-binding schemes is how matrix elements are evaluated. The
matrix elements needed are between two basis functions (for overlap) or between two basis func-
tions with a potential, or nabla operator, or Laplace operator in between (for the Hamiltonian).
Different realizations exhibit a broad spectrum of technical solutions. Either it is done analytically
(Gaussian-type orbitals), that however demands a special shape of basis functions, or the shape
of functions is not restricted, but special tricks are used for spatial integration (e.g., diophantine
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random integration in the Discrete Variational Method). The convention in SIESTA is that basis
function might be of any form, even drawn by hand and digitalized, but they must have a finite ra-
dial extension. (This applies, of course, to the radial component of basis functions, as the angular
part is described by spherical harmonics, as in almost all other methods). A not necessary but a
very reasonable additional condition is that the basis functions go continuously into zero starting
from a certain radius; even better if they do smoothly go into zero. The evaluation of matrix el-
ements is done in a tricky way, via transformation, tabulation and interpolation, efficient because
the range of overlap of two given functions is limited. The range of overlap is ultimately defined
by a human calculator, but typically it includes second / third coordination spheres around each
atom, depending on the system.

What follows from this strategy: SIESTA keeps trace on overlapping of basis functions between
atoms; if there are not so many neighbouring atoms (examples: organic molecules, 4-coordinated
semiconductors), the calculation can be very fast. This is further helped by the fact that the number
of k-point needed for crystals with band gaps and not much pronounced energy dispersion is low.
SIESTA is very forgiving in introducing, if necessary, a lot of vacuum around a molecule, a slab
or an atomic chain, much more forgiving than plane-wave methods are. The vacuum comes not
quite for free in SIESTA, but at a generously discounted price. On the contrary, close-packed metal
systems are very hard cases for SIESTA, for two reasons: large number of overlaps to count in
say, fcc or bcc structure, and a large number of k-points needed to well describe a metal, probably
with some flat bands crossing the Fermi level. You remember that SIESTA does not make use of
symmetry, therefore a modest 10×10×10 division of the Brillouin zone results in more or less 501
inequivalent k-points! For such a system it can easily happen that an accurate all-electron method
like WIEN2k would beat SIESTA by far in efficiency.

First steps: crystal structure, system type

In order to start a new calculation, you need to provide a single .fdf file, PLUS an extra pseu-
dopotential file for each (chemically distinct) species involved. Pseudopotentials will be discussed
later on. The main .fdf file is well documented in the SIESTA user’s guide, has flexible format,
and allows many options to be omitted and to be replaced by default settings. This is in fact quite
convenient. In my opinion, there are only two worries about this whole convention. The first is,
many entries are not required and constructed by default without duly informing the user what is
going on. (So, you should carefully read the output file). A problem may happen when you misprint
a parameter name, it was not duly recognized and was replaced by a default setting, whereas you
are in good faith that you have properly declared what had to be declared. The second worry
is that if the .fdf contains more than one declaration of the same parameter, only the first ap-
pearance is registered, and the following ignored. This might be easily overlooked by a user who
desperately corrects an entry at the end of the .fdf file whereas there is the similar entry near
the beginning which in fact takes effect.

The first good thing to know is that SIESTA always use a simulation box, like all bandstructure
methods do. If one wants to calculate a molecule or a cluster, it is usually possible with any band-
structure method – one simply chooses the periodic unit cell large enough so that the spurious
interaction between a molecule and its trnnnlated replicas can be neglected. (You remember that
in planewave methods, an increase of the cell size, even empty, costs you computer resources –
memory and calculation time). The interaction between translated fragments, however small, give
rise to energy band dispersions. The larger the cell – the weaker the interaction – the smaller the
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bulk slab, or chain molecule

Figure 1: Types of structure automatically recognized by SIESTA. Periodic unit cells and the extension of basis
functions centered at atoms are schematically shown.

band dispersion, which ultimately can be, for practical purposes, neglected, and calculation done
with a single k-point. So far the general observation. The peculiarity of SIESTA is that, since the
basis functions are strictly confined, the interaction between them becomes, from a certain dis-
tance on, exactly zero, so the further increase of the cell size does not change anything1. Hence
the band dispersion is strictly zero; you can calculate with a single k-point or with many – the re-
sult will be the same. Therefore SIESTA allows to treat on the same footing 3-dimensional periodic
systems (crystals), 2-dimensional periodic ones, cut in the third dimension (slabs), 1-dimensional
periodic and finite in other two dimensions (chains) or 0-dimensional (finite in all three dimension;
clusters or molecules) systems. The distinction between these cases is done automatically, judg-
ing by whether the basis functions “overlap across the unit cell boundary” in 1,2,3 dimensions. The
result of this analysis is reported someplace in the main output file at the beginning of calculation,
as a message

siesta: System type = bulk

or

siesta: System type = molecule

etc. So it is good to check whether this identification corresponds to your expectations. How can
SIESTA misinterpret your definitions? There are many ways. Note that the positions of atoms

%block Atomic_Coordinates_and_Atomic_Species
...
%endblock Atomic_Coordinates_and_Atomic_Species

must be defined in the .fdf file, SIESTA is not that intelligent to guess them. However, the lattice
parameters are not a must entry; hence if they are missing, SIESTA will apply its own logic. It will
admit that your System type is “molecule”, it will measure the size of your “molecule” (i.e. min-max
spread of whatever is in your “atomic coordinates” block along each of X,Y,Z directions), it will add
the spread of the basis functions on corresponding atoms, it will add some 10% extra for safety,
and with thus maximal obtained value along each of three Cartesian directions it will construct a
cubic box around your atoms. So better check if that is really what you need. Personally I believe
it is something you’d never really need, because if you are calculating a molecule, you may wish
to reserve some freedom for structure relaxation, or for other distortions of your molecule, and

1or nearly...
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it seems more reasonable to fix the size of the simulation box by hand, simultaneously fixing by
this the real-space mesh (see below) etc., than let SIESTA to vary it ad hoc with the shape of the
molecule. How to estimate the size of molecule by the eye, finding min and max over thousands
of coordinates of atoms? A trick owed to Gustav Bihlmeyer: read the list of coordinates as (X,Y,Z)
table into gnuplot or Grace and plot it “with lines” as Y(X) and then as Z(X)...

Apart from this molecule/simulation box problematics, even if you think that you declared the
Lattice vectors or Lattice parameters block explicitly and you are in the clean, there
is always a possibility to mess up with the units. The chances to make something wrong are: to
define LatticeConstant in Bohr instead of Å or vice versa or forget it whatsoever, in which case
SIESTA will figure out the value herself (as the cubic box size above); declare atomic coordinates
as ScaledCartesian whereas in fact your numbers belong to Fractional, feed them in as if
they were in Bohr, or many other nice possibilities. The only rocksolid way to check that SIESTA

understood your input correctly is to look at the .XV file (produced by SIESTA after the first CG step;
also if zero steps were demanded). This file contains all structure information (simulation box +
atoms) in a fixed format, as it was internally recognized by SIESTA, it can be easily transformed
into XCrySDen format for visualization, and could (should) be looked at.

Another friendly default definition is for k-points: if they are forgotten to define, the default
kgrid cutoff is zero and hence Γ point only is calculated. A surprise for whoever might have in
mind calculating a metal...

Basis

If you don’t know better, the standard SIESTA setting – DZP – is quite reasonable, so you can go
ahead with it. The only problems appears when your pseudopotential includes semicore state,
and SIESTA demands you to explicitly describe them in the basis. This is indeed very simple, here
is an example for Cr with double-ζ 3p semicore, double-ζ 4s with polarization orbitals, and triple-ζ
3d:

%block PAO.Basis
Cr 3 0.0

n=4 0 2 P
0.0 0.0

n=3 2 3
0.0 0.0 0.0

n=3 1 2
0.0 0.0

...

The resulting basis set is documented in the output file; notably the figure of its maximal extension
(confinement radius) for each atom is hidden behind a quite misleading title like

Vna: Cut-off radius for the neutral-atom potential: 6.250681

in Bohr units. Note that the extension of basis could be needed for estimating the box size in the
treatment of a molecule. The PAO.EnergyShift parameter, as described in the SIESTA literature,
influences the confinement of basis: the larger the EnergyShift, the stronger the confinement.
Note that the files with basis functions are explicitly generated and can be directly plotted, e.g. the
beginning of the file called ORB.S3.2.Ga looks like:
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# Ga 2 3 2 0 0.0000
#(species label, l, n, z, is_polarized, popul)

0.00000000000 16.7721119042
0.307593796936E-02 16.7717020784
0.615187593872E-02 16.7704470847
0.922781390808E-02 16.7683555217
....

which is hardly publishable in a paper but which (the plot) could add a touch of credibility to your
report or a PhD work :-) An extensive literature in the basis set generation in SIESTA is aimed at
obtaining bases with less functions yet not inferior quality. This can be achieved by using auxiliary
Simplex code.

An arguable weak point of SIESTA bases is that they are fixed – same as most of Gaussian-type
orbital packages – and not adjustable from iteration to iteration, as in hybride methods like LAPW
or LMTO. As a consequence, one cannot a priori expect equally good performance of basis over
a large range of bond lengths and, say, pressures: as the pressure is varying, the “completeness”
or “variational freedom” of basis in the region of chemically relevant, under a given pressure, bond
lengths do vary; consequently the calculated pressure/energy curve may slightly differ from that
obtained in a “benchmark” FLAPW calculation. In any case, special care must be taken with
respect to this issue. I repeat: be careful when exploring large volume variations with SIESTA.

Pseudopotentials

If you don’t know better, you’d probably look for a suitable pseudopotential in the SIESTA database,
Abinit→SIESTA conversion database, or issue a desperate cry into the mailing list. It won’t always
help, so from time to time you’d need to generate pseudopotentials on your own. It is not so
difficult as a procedure, but the criterion of “good” pseudopotential is difficult to formalize; that’s
why the construction of pseudopotentials has an aura of art and mystery. The atom package within
SIESTA is well documented; I’d outline here only essential steps. Note that a reasonably detailed
documentation is available in 〈SIESTA-VERSION-DIRECTORY〉/Pseudo/atom/doc/atom.tex

The construction of pseudopotential comprises several desicions, apart from the more general
choice of the exchange-correlation potential (LDA or GGA relativistic or not) and the flavour for the
pseudopotential construction (Kerker, Troullier–Martins etc.), namely 1) electron configuration; 2)
pseudoization radii; 3) use or not of the core correction.

1) The choice of configuration means which number of electrons to take in valence s, p, d, f
states. As a common sense, this configuration should be representative for a system in question.
The nominal free-atom configuration is usually a reasonable first choice; for transition metals, a
common variation is the s→d promotion, e.g., 3d74s1 for Fe, instead of the nominal 3d6s2. Another
variation can be trying an ionic configuration – an anionic one for what is expected to be more
electronegative and cationic one for whatever is likely to lose its electrons in a compound. Note
that the choice of atomic configuration for the pseudopotential has nothing to do with doing calcu-
lation for a charged system, or with enforcing certain charges on the atoms in the system under
study. The distribution of electron density between the atoms will come out of the band structure
calculation, by itself, whereas the different charge the pseudopotential generation will merely yield
a little bit different pseudopotential, that’s all.

2) The pseudoization radius rc, defined in each l-channel separately, is the radius beyond
which the pseudopotential equals the true potential and the pseudo-wave function matches the
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Figure 2: Pseudopotential generation with rc=3.2 Bohr. Top left: All-electron (thin line) and pseudo (thick line)
functions; top right: Fourier transform of the pseudo function. Bottom left: true (thin line) and pseudo (thick line)
potential; bottom right: Fourier transform of the pseudopotential.

true (“all-electron”2) function. Inside the rc, the pseudofunction will be constructed such as to have
no nodes (in contrary to all-electron function which would have n − l − 1 nodes), but the same
norm as the all-electron one. Our aim is to achieve a faithful description of the maximum of the
pseudofunction, responsible for the chemical bonding and at the same time we’d like to have a
“well-behaving” pseudopotential whose fluctuations are well localized in both real an reciprocal
space.

Figures 2 and 3 show the pseudopotential and corresponding pseudofunction in the f channel,
along with their all-electron counterparts, for a fictive (not to follow in real calculation) case of Sm
in the 6s26p05d04f6 configuration. They illustrate a general trend which will apply for every element
and any l value. Setting rc too large as in Fig. 2 would result in a too weak constraint imposed on
the shape of pseudofunction, so that its radial behaviour inside rc may become too different from
that of the all-electron function. On the contrary, setting rc too short as in Fig. 3 may result in too
strong constraint on the pseudopotential, leading to its too large fluctuations.

As a rule of thumb, choose the rc just beyond the last maximum of the all-electron function.
But if you set it more outwards and see that the behavior of the pseudofunction is still OK, you may
wish to accept this higher radius. On the contrary, for diffuse outer functions, whose maximum is
well beyond the atomic radius, the rc does not have to be related to this maximum and can be
set at smaller value. You still follow? Look at the shape of pseudopotential along the real-space
and reciprocal radial axes. Both functions must be smooth, well-balanced, pleasant to the eye,

2in a sense that it comes from a calculation of an atom with its all electrons, from 1s upwards. But this is of course
still one-particle wavefunction, that of Kohn–Sham equation, and by no means a many-particle one. – Just to avoid a
possible confusion.
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Figure 3: The same as Fig. 2, for rc=1.5 Bohr.

Zen-like. A good pseudopotential is a nice pseudopotential. You see now that it is difficult to
algorithmize?

Finally comes the testing. Mind that any pseudopotential is generated with just one specific
atomic configuration, but it (pseudopotential) is supposed to be transferable, i.e. provide an ade-
quate description of an atom if the valence electronic configuration of the latter is varying in rea-
sonable limits (shuffling electrons here and back between different l-channels). You should check
a number of different trial configuration, calculate atom with a chosen pseudopotential for these
trial configurations, and compare the results with the all-electron ones, obtained for the same trial
configurations. Which trial configurations to take? Those which are probable to come about in a
compound. Taking an all-electron calculation of these different configurations as a reference, one
should check whether the pseudopotential calculation yields (i) good energies of valence states,
and (ii) relations between total energies of different trial configurations. The absolute total ener-
gies in all-electron and pseudopotential calculation, also between different pseudopotentials, will
be very different, but the relative energy differences (called cross-excitations) between different
configurations within each scheme, either all-electron or pseudopotential, must be close. These
energy differences are produced in a form of triangular table at the end of both all-electron and
pseudopotential-test calculations, and these tables have to be compared. Have a look at the docu-
mentation accompanying several personally uploaded pseudopotentials on the SIESTA web page,
this will give you an idea how the tests should be run. At last,

3) the importance of core correction. There are general criteria which tell us that this correction
is important when a non-negligible overlap occurs between core and valence functions. In principle
the effect of core correction can be explored is a systematic way – adding it and looking at how the
energy characteristics (valence-state energies and “triangular table” of total-energy differences)
will be affected – in a noticeable way, or not.
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k-mesh

This seems to be an easy topic, and the one not much different in SIESTA, as compared with other
bandstructure codes. Moreover it is well documented in the main SIESTA paper and (basics of) in
the Moreno+Soler PRB paper of 1992. Still, some remarks for impatient readers may be in place:

1) The k-mesh with more than one point is needed only for periodic system where there is
dispersion of energy bands; for molecules one k-point is just fine. Note that exactly this case (k=0
only) is the SIESTA default. So be careful and define k-mesh explicitly if you do a periodic system.

2) There are different methods of integration over k-space available on the market; what is im-
plemented in SIESTA is the Monkhorst-Pack sampling only. It is not particularly bad, but personally
I’d prefer to have a tetrahedron method implemented as an addition option, which won’t be that
difficult to do.

3) The k-mesh may be either shifted, or not. The default case is single Γ point (0. 0. 0.)
and hence not shifted. The k-mesh defined by a single k-grid cutoff parameter is generated
shifted, for example the input entry

kgrid_cutoff 16.0 Ang

in combination with a certain lattice vectors may lead to the following statements in the output:

siesta: k-grid: Number of k-points = 500
siesta: k-grid: Cutoff = 16.041 Ang
siesta: k-grid: Supercell and displacements
siesta: k-grid: 10 0 0 0.500
siesta: k-grid: 0 10 0 0.500
siesta: k-grid: 0 0 10 0.500

Here the number of divisions (10×10×10) was estimated from the kgrid cutoff of the input,
and the resulting cutoff (16.041 Å) is then adjusted (upwards) from the actual accepted integer
numbers of divisions. In the 〈SystemLabel〉.KP file we find the explicit list of k-points (in an obscure
order, with plain cartesian coordinates in the units of 1/Bohr, the last column being the weight
attributed to each point):

500
1 0.036647 0.036647 -0.549630 0.002000
2 -0.036638 0.109931 -0.476346 0.002000
3 -0.109924 0.183215 -0.403062 0.002000
...

499 -0.329784 0.989339 -0.329784 0.002000
500 0.329784 0.329784 -0.989339 0.002000

The above list is obviously shifted, because none of the points has zero coordinates. An unshifted
list always includes the Γ point. The “unshifting” can be enforced by directly giving the number of
divisions, e.g.

%block kgrid_Monkhorst_Pack
12 0 0 0.
0 12 0 0.
0 0 12 0.

%endblock kgrid_Monkhorst_Pack
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For a simple cubic cell, this definition would mean that a cubic Brillouin zone is divided with a step
(2π
a )/12.

What is the main difference between shifted and unshifted mesh, and which one to choose?
As unshifted mesh explicitly contains the Γ and other symmetric points, it is likely to well represent
the band edges – maxima and minima – which might be useful for directly reading the band gaps
(obviously wrong in the straight DFT, but anyway) from the calculation. Whereas the shifted mesh
misses the band extremities, but is somehow more economic (less inequivalent k-points than in
unshifted mesh, at the same mesh density). Basically you should check the convergence of your
relevant results with the mesh density, whether shifted or unshifted.

4) Mind that the definitions for energy band plotting, e.g.

%block BandLines
1 0.00000 0.000000 0.000000 \Gamma

40 2.00000 0.000000 0.000000 H
28 1.00000 1.000000 0.000000 N
28 0.00000 0.000000 0.000000 \Gamma
34 1.00000 1.000000 1.000000 P
%endblock BandLines

have nothing to do with the k-mesh. This block describes at which k points the band energy must
be calculated for making a nice (smooth) band structure plot, hence for purely illustrative purposes.
This won’t affect the quality of your results, previously converged (or not) with a certain k-mesh.

Basis, pseudopotentials, MeshCutoff, k-mesh: what does really matter
and how to manage them all in the same time?

SIESTA does not allow, by turning something in basis or pseudopotentials, to tune the results to
“whatever you want”. This can be considered, generally, as a good news. Usually a reasonable
result is there in place already with relatively low level of SIESTA’s ingeniosidad. The bad news are,
it is sometimes very difficult to improve initially good but not yet perfect result. Well, at least we
should be consistent in what we are doing and check the convergence of whatever is convergent.
In total there are four important pieces of the SIESTA machinery: pseudopotentials, basis, k-mesh
and MeshCutoff. (One can be tempted to play around with exchange-correlation flavour, but this
is not what we are discussing here). Let’s establish some systematics between the four factors.

1. Pseudopotentials should be prepared in the best way we can judging by pseudopotentials’
intrinsic criteria (see above) for the system in question (e.g. probably different for oxide than for
metal system), and otherwise left in peace. However, sometimes it becomes evident only from
the SIESTA calculation that certain states, initially attributed to core, must be treated as valence.
It usually becomes clear from markedly wrong results for elastic properties – bulk modulus or Γ-
phonon in benchmark calculations, whereas the electronic structure looked OK. In this case, the
potential must be generated anew for a different atomic configuration, and the other tests (see
below) repeated.

2. Basis set should be prepared in a reasonable and responsible way, but otherwise it remains
the author’s choice. Within the given class and size of basis chosen (DZP vs. soft-confined vs.
whatever else), some optimization of parameters is possible (using e.g. the Simplex program), but
the choice of class and size is not subject to optimization. Meaning, this is the author/user who
ultimately decides whether he/she would trade some accuracy for efficiency, or other way around.
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Figure 4: An analysis of the eggbox effect. Each edge
of the unit cell is cut by the number of divisions con-
venient for fast Fourier transform. The number of di-
visions depends on the MeshCutoff and can be found
in the output file in the ‘‘InitMesh:’’ line. The
test consists of applying the uniform displacement of all
atoms, using the AtomicCoordinatesOrigin pa-
rameter, and observing the numerical noise in the sum-
mary force over all atoms in the unit cell. The three
Cartesian components of this summary force, which
ideally must be zero but in fact fluctuates around zero as
a function of uniform displacement, can be found in the
output file, in the line following siesta: Atomic
forces (eV/Ang):. The fluctuations of summary
force are periodic with the edge of a microcell (unit
cell divided by the number of mesh divisions), and their
amplitude does systematically decrease as ever larger
MeshCutoff is taken and, consequently, the number
of mesh divisions increases. In order to have reliable
forces in a calculation, one should check that the mag-
nitude of fluctuations of the summary force throughout
the microcell remains inferior to 0.1 eV/Å.

3. k-mesh is as in any other band-structure code: we should check the convergence, in terms
of gradually increasing the k-mesh density (i.e., in fact increasing the kgrid cutoff parameter)
NOT OF THE TOTAL ENERGY but of those properties which are relevant for our study in question:
the energy difference between two phases, the phonon frequency, etc. We should not bring the
k-mesh density to overkill (because dense k-meshes are expensive in SIESTA), but we should be
serious about this convergence, especially when dealing with a metallic system. SIESTA does not
provide tetrahedron integration, and fine fluctuations of the density of states in the vicinity of the
Fermi level might be difficult to converge.

4. MeshCutoff is a peculiarity of SIESTA; it scales the calculation resources (memory, time)
with the cell size, independently on the number of atoms – in about the same way as it hap-
pens in planewave codes. However, its role is different. The planewave cutoff in planewave
codes affects the completeness of basis. In SIESTA the basis is given independently of MeshCut-
off, but the latter affects the numerical noise in the Fourier transformation of the charge den-
sity. This noise is translated into the noise in the total energy and, especially, forces. The
noise mean fluctuations of the respective property (i.e., total energy or forces) depending on
the uniform displacement of all atoms with respect to the unit cell, which is referred to as egg-
box effect. This is indeed something very peculiar of SIESTA, let’s think about it: no symmetry
is taken into account, no special atomic positions exist, atoms are absolutely decoupled from
the reference system of lattice vectors. In real world, the drift of crystal as a whole with re-
spect to a fixed coordinate system would cost no energy and induce no force. However, nu-
merically there may be variations, periodic with the step of the mesh grid. Suppose that you
have a lattice vector of the length, say, 8 Å, and your MeshCutoff is such that produces 64 di-
visions along the lattice vector in question (the actual number of divisions stands in the output
file, in the InitMesh: ... line). Then, as you smoothly shift all atoms of your system along
the direction of the said lattice vector (technically this can be achieved by variying the entries in
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the Atomic Coordinates Origin block), you’ll see fluctuations of calculated total energy and
forces with the periodicity of 8 Å/64 = 0.125 Å. In order to explore these fluctuations, you’d scan
this interval (or slightly beyond it, for curiosity) with a sufficient number of steps to describe a peri-
odic behaviour. Let’s say take 16 or so displacements, that will mean a step of roughly 0.008 Å in
varying the Atomic Coordinates Origin. Seems a small and negligible number, but it offers
a view into the microscopics of the SIESTA numerics, so every SIESTA user should try it once to
understand how the “eggbox effect” works. I explain it in detail because it is a sensitive issue: you
prepare a sequence of jobs, differing only in the values of Atomic Coordinates Origin, e.g.
(for the case that you have Atomic Coordinates Format Ang) like in the following:

0.000 0.000 0.000
0.000 0.000 0.008
0.000 0.000 0.016
...
0.000 0.000 0.128

and otherwise completely identical. (Make sure that MD.UseSaveXV is set to F, otherwise you’ll
always read the structure information from the same .XV file, overriding the above definitions). As
the jobs are through, you mark down the total energy values and forces, as e.g. in my old test
for GaAs (where the displacement is taken along the x direction and not along z as in the above
example):

X-disp E_KS Fx_(Ga) Fx_(As) Sum(Fx)
0.00 -4407.6258 -0.003054 0.000283 -0.002771
0.03 -4407.6263 -0.005995 0.043142 0.037147
0.06 -4407.6275 -0.005154 0.084228 0.079074
0.09 -4407.6284 -0.001510 0.064327 0.062818
0.12 -4407.6291 0.006985 0.028604 0.035589
0.15 -4407.6293 -0.008506 -0.008077 -0.016583
0.18 -4407.6288 -0.008196 -0.039131 -0.047327
0.21 -4407.6278 0.002202 -0.065475 -0.063274
0.24 -4407.6269 0.002043 0.070230 -0.068187
0.27 -4407.6260 -0.000245 -0.023124 -0.023369
0.30 -4407.6259 -0.005478 0.025734 0.020256

What you should be careful about is that fluctuations of the summary force (in the last column
above) stay within 0.1 eV/Å or so, otherwise the calculated phonons and elastic properties might
be useless, and the relaxation won’t be good either. The amplitude of fluctuations can be sys-
tematically pushed down by increasing the MeshCutoff. Note that the period of fluctuation is
diminishing as MeshCutoff and, consequently, the number of divisions grow. The forces as such
(the third and the fourth columns of the above example) are of course not a priori obliged to be
small, unless your system is at equilibrium. But still, they should remain stable within the accuracy
of ∼0.1 eV/Å.

How to continue smoothly and which files are really needed

In the course of calculation, SIESTA creates a lot of files, some of which are quite large (e.g.,
〈SystemLabel〉.P? files containing mixing information). The larger part of them is created anew,
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so there is no need to keep them once the calculation is done (or, stopped). It makes sense to
save, or backup from time to time, only the following files:
〈SystemLabel〉.DM – the density matrix. This is the main information which is updated from

one iteration to another, and, as a difficult calculation is converged, it makes your most important
capital (for further refining the calculation).
〈SystemLabel〉.XV – the crystal/atomic structure information, which is updated in the course of

CG relaxation, or molecular dynamics.
〈SystemLabel〉.ANI (or other dynamic files) – if you are doing molecular dynamics and store

its history.
The density matrix, which is sparse, is stored in a specific (yet undrstandable) format, giving

a list of who (which basis orbital) overlaps with whom, and what are the occupation numbers as-
sociated with each overlap. The .DM is quite robust in a sense that you can smoothly continue
calculation after changing MeshCutoff, k-mesh, ElectronicTemperature – none of these parame-
ters is explicitly stored in .DM. When doing such changes, however, be sure to remove the .P1 and
.P2 files, which are the mixer files affected by the history of previous iterations. As you change
the above calculation parameters, the “path of history” is about to change, and relying on previous
mixer information may extrapolate/shoot your calculation in a completely inpredictable way. Better
to start from “semi-good” DM smoothly and forget the history of how we arrived at it.

The same robustness of the .DM is valid, within some reasonable limits, as we slightly change
the crystal structure: converge one volume and take the resulting DM as a hopefully good start for
a slightly different volume, or if we otherwise introduce a small distortion.

What you cannot change “on the fly”, however, is the basis set. If you touch it, the whole
system of numbering the non-zero elements in the DM will be damaged; SIESTA will complain
about it (expected to find so many elements in the DM file... but found only so many) and stop.
The same problem will occur if the atomic structure was so changed from the previous step that the
previous system of overlaps between basis functions is no more valid. The only quant of solace
then can be that the structural information we thus arrived at is more valuable than the density
matrix, so that the latter can be sacrificed (renamed/erased), and the calculation continued from
this last structure and anew overlapped atoms.

A simple set of tools for manipulating the .DM file available from
http://www.home.uni-osnabrueck.de/apostnik/Software/DMtune.tar.gz
allows to make a reasonably good continuation from already available density matrix, avoiding
start from scratch, in cases like when a non-magnetic case has to be expanded into magnetic
one, spin on certain atom(s) inverted, etc.

A word of caution

You may be tempted to look just at final results you are interested in (total energy for the equation
of state curve; magnetic moments for a magnetic system; phonons; ...) and ignore the rest of
the output data, unless the code explicitly complains about something. It is more important than
you’d a priori think to get a clear idea about the electronic structure, whether it comes about as
expected. Please make an effort to construct, and to look at, good old band dispersions and
densities of states (at least once for every new structure under study), think about whether the
placement of different bands is compatible with chemical intuition. If your system is supposed to
have a band gap (even if obviously wrong as in DFT), does it really have it? If your system is oxide,
do you have O2s band in its usual DFT place, at 17-19 eV below O2p? Are the semicore bands
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reasonably placed? These evident checkups would make sense when using any band structure
method, but SIESTA may have some specific reasons for misconduct. To name just one: basis
functions, when less extended than they should have been, may result in missing overlaps with
neighbours and spurious lack of dispersion.

My favourite SIESTA traps

1. The 100-atom trap:
by default, the SolutionMethod is diagon for ≤100 atoms and OrderN otherwise. If you don’t
know which SolutionMethod is good for you, the answer is diagon: it is never wrong, even if
sometimes les efficient than OrderN. In fact OrderN is quite fragile: it doesn’t tolerate more than
one k-point, needs large band gap, etc. So better leave OrderN to the case when “you know
what you are doing”. Yet this option is activated by default as soon as you constructed a cell with
more than 100 atoms! In the best case, the calculations stops immediately, complaining about
more than one k-point; in a worse case (you’ve have one one k-point already) it continues a bit,
crashing later with an obscure message. A solution: set SolutionMethod diagon explicitly.

2. UseSaveData and frozen phonon calculation:
As the frozen phonon calculations (MD.TypeOfRun FC) do usually proceed after an achieved
CG relaxation, it is reasonable to start from a converged density matrix which is available. How-
ever, the option UseSaveData T implies not only the use of the available .DM, but – if available
– of the .XV as well. The .XV file contains the geometry after the relaxation, so it seems reason-
able. However, the .XV is updated in each geometry step, including each atom displacement in
the frozen phonon run. What may happen: your phonon calculation stopped or crashed at some
point, and you want to continue. Yet the available .XV file is not that for the equilibrium geometry
anymore, but that after the last successful FC displacement. And as you continue, you start a
series of displacement from this new reference point, which is not quite compatible with the pre-
viously collected data. A solution: after completion of the CG run, freeze the relaxed coordinates
into the .fdf file of the phonon calculation, set there

UseSaveData T
MD.UseSaveXV F

and stop/continue frozen phonon calculations as you wish.

3. Initializing magnetic calculation:
In order to start spin-polarized calculation, you have to set SpinPolarized T. If nothing
else is defined, all spins will be set parallel and to maximal possible value on all atoms (ruthlessly
including all oxygens, carbons etc. of your system). This might be not exactly what you have
in mind. For keeping control over the initial magnetic configuration, you should use the block
DM.InitSpin setting anything (usually just the “+” or “−” entry suffices for a good start) on those
atoms only which have to be magnetic.

The author bears no responsibility for nothing,

but please send your bug reports and suggestions of improvement to postnikov@univ-metz.fr
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