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Abstract.

While standard procedures of causal reasoning as procedunedyzing causal Bayesian
networks are custom-built for (non-deterministic) prabiatic structures, this paper intro-
duces a Boolean procedure that uncovers deterministi@catnactures. Contrary to existing
Boolean methodologies, the procedure advanced here sfigeanalyzes structures of arbi-
trary complexity. It roughly involves three parts: firstieieninistic dependencies are identified
in the data; second, these dependencies are suitably nfizeéihén order to eliminate redun-
dancies; and third, one or — in case of ambiguities — moredharcausal structure is assigned
to the minimalized deterministic dependencies.
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1. Introduction

Since the early nineties, the philosophical literature anmsal reasoning
has been dominated by inference procedures developecdwaittiieoretical
framework according to which causal structures can be aedljn terms of
Bayesian network§.One of the key studies that has influenced and structured
that whole research program, undoubtedly, is Spirtes’,n®lyr’'s and
Scheines’ book oausation, Prediction, and Sear¢k000). That study has
inspired and provoked a host of literature that has in thertie®e profoundly
deepened our understanding of how, under what conditioms,t@ what
extent causal structures can be inferred from pertainingirgcal data. As is
well known, all the different causal discovery algorithneseloped in that
framework impose two important constraints on the causattires and the
data generated by these structures: The structures anctifendist satisfy
the causal Markov assumpticand thefaithfulness assumptich

Many causal structures undoubtedly satisfy these assongptbut cer-
tain common structures do not. One important type of causattsre that

1 With respect to the notion of a Bayesian network cf. e.g. (P&885).

2 The causal Markov assumption states that in a probabilityitution generated by a
(acyclic) causal structur€ a variableZ is independent of all its non-effects & conditional
on all of Z’s direct causes, provided that no direct common causesyofvem variables in
S are left out of P. According to the faithfulness assumption, there are neratbnditional
independence relations A than the ones implied by the causal Markov assumption (gf. e.
(Spirtes et al., 2000), pp. 29-31, (Glymour, 1997), (Glym@007)).
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2 Michael Baumgartner

does not conform to both of these assumptions is constitwel@terministic
structures that are investigated on a sufficiently finergr@ilevel such that
deterministic dependencies actually show up in the data. deterministic
structure every value of at least one exogenous variabtpughi determines
the values of at least one endogenous varidlflach deterministic dependen-
cies may, of course, not show up in corresponding data, rifinfstance, not
all variables involved in the structure are contained indéeof investigated
variables or if not all relevant factors are controlled fomi pertaining study.
However, if deterministic structures are investigatedragta causally homo-
geneous background — say, in a laboratory context — or if favlyinstances
of a causal structure are available — as in smalitudies in social sciencks
to the effect that deterministic dependencies are acteatjbited in the data,
the faithfulness assumption is violated and, accordirsibndard procedures
for the discovery of causal Bayesian networks are not agiplicor generate
inadequate outputs, respectively.

This paper introduces a procedure of causal reasoningstihastom-built
for deterministic structures and deterministic data. Assptfocedure analyzes
so-calledcoincidencedata, which is going to be properly characterized in
subsequent sections, it shall be labetagincidence analysjsor CNA for
short® While procedures uncovering causal Bayes nets explicitiynplic-
itly presuppose a probabilistic notion of causati@MNA draws on an account
of causation that is inspired by the regularity theoreticliion going back to
Mackie's (1974) theory of INUS-conditions. Instead of Baiam networks,
CNA implements Boolean techniques, predecessors of whichecfouhnd in
Quine (1952, 1959), Ragin (1987, 2000) and May (1996, 1989 nutshell,
the procedure consists of three parts: In a first step datésticidependencies
of sufficiency and necessity are identified in the data; arsebtep suitably
minimalizes these dependencies in order to eliminate @ahoies; and in
a third step the minimalized dependencies are causallypirtied. Before
CNA is properly introduced and illustrated in sections 3 to @tisa 2 is
going to briefly review its conceptual background.

3 For details cf. (Glymour, 2007), p. 236.

4 Cf. e.g. (Ragin, 1987).

® Such as to illustrate violations of faithfulness by detanistic structures assume that a
factor B is a common cause of andC, i.e.A «— B — (, and thatB is sufficient and
necessary fo€'. In that caseB and A are independent conditional @i, i.e.p(A|B A C) =
p(A|C), which is not implied by the causal Markov assumption (¢f. €Spirtes et al., 2000),
pp. 53-57, (Glymour, 2007)).

6 Coincidence analysis is not abbreviated by “CA” becausthérsocial science literature,
this acronym is often used faorrespondence analysishich must not be confused with
coincidence analysis
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Uncovering Deterministic Causal Structures 3

2. Conceptual Background

As mentioned above, the conceptual background of the iméer@rocedure
to be developed in this paper is located in the regularityrtigc tradition
of the philosophy of causation. According to one of the cerets of reg-
ularity theories, causation is deterministic. The quests to whether all
causal processes indeed are ultimately deterministic bcarobe bypassed
here. It seems hardly questionable that there are at least deterministic
processes — especially at a macro level. Thus, whoever twddishere ad-
ditionally exist irreducibly indeterministic causal pesses, e.g. at a micro
level, can simply view regularity theories as being conedrwith the de-
terministic structures at a macro level only. However, asei known, the
adequacy of regularity theoretic analyses of determmistiusal structures
has been broadly criticized during the past 30 years. Winévé argued else-
where (cf. (Baumgartner, 2008a)) that that criticism hammonly targeted
oversimplified regularity theoretic sketches, this is ried place to defend
a sufficiently sophisticated regularity theory of causatibhe prospects and
merits of CNA, in the end, do not hinge on whether deterministic causatstr
tures can successfully be reduced to regularities suhgigti nature or not.
All that matters for my current purposes is that when it cotoateterministic
structures regularities undoubtedly constitute an ingdrsort of empirical
information on which inferences to underlying structuraa be based.

CNA is designed to unfold deterministic causal structures pe tevel,
i.e. it analyzes general causation. The relata of genetslat®n can be seen
to be event types diactors for short. A factor that causes another factor is
said to becausally relevanto the latter. Factors are taken to be similarity
sets of event tokens. They are sets of type identical tokentsyof events
that share at least one feature. Whenever a member of a riiyngat that
corresponds to an event type occurs, the latter is said iashentiated Fac-
tors are symbolized by italicized capital lettets B, C, etc., with variables
Z, Z1, Z5 etc. running over the domain of factors. They are negatditie.
negation of a factor! is written thus:A. A is simply defined as the comple-
mentary set ofd. Alternatively, factors can be seen as binary variablet tha
take the value 1 whenever an event of the corresponding yp@&®and the
value 0 whenever no such event occurs. That mE&A is custom-built for
deterministic structures featuring binary variables. Tétriction to binary
variables primarily serves conceptual simplicity. It alkfor a straightfor-
ward implementation of Boolean optimization techniquebjolv shall turn
out to be of great relevance to the uncovering of deterningtructures.
Nonetheless, the restriction to binary variables implned structures involv-
ing multi-valued variables must be encoded in binary tereiste they can be
treated byCNA. For quite some time, however, there have been considerable
efforts in the literature on logic synthesis to generalizmBan optimization
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4 Michael Baumgartner

procedures as Quine-McCluskey optimization for systeraghitmg multi-
valued variables (cf. e.g. (Mirsalehi and Gaylord, 1986)Sasao, 1999), ch.
10). Even though — as we shall see in section @NA significantly differs
from the Quine-McCluskey algorithm, there seem to be nogplad obsta-
cles to generalizin@NA for multi-valued variables as well. That, however,
is not going to be attempted in the present context. For rsagbsimplicity,
CNA shall here be tailored to the case of causal structuresvimgpbinary
variables, i.e. factors, only.

Causal analyses are always relativized to a set of invéstidactors. This
set is referred to as thiactor frameof the analysis. Factors are virtually
never causally relevant to their effects in isolation. Ratlthey are parts of
whole causing complexescemplex cause®\ complex cause only becomes
causally effective if all of its constituents are co-ingtated, i.e. instantiated
close-by orcoincidently Coincidently instantiated factors are terngnci-
dencesAs will be shown below, coincidences constitute the eropirdata
processed bZNA.

Essentially, modern regularity theories analyze caudeVaace with re-
course to minimalized regularities among factors. Theiafumtion needed
in the definiens of causal relevance is the notion miiimal theory’ Briefly,

a minimal theory of a factoB is aminimally necessargisjunction ofmin-
imally sufficientconditions of B. A conjunction of coincidently instantiated
factorsA, A As A . A Ay, which for simplicity shall be abbreviated by a mere
concatenation of the respective factors, is a minimallficgeht condition of
a factorB iff A1A,... A, is sufficient forB, i.e. A1A4,... A4, — B, and
there is no proper patt of A1 A, ... A, such thate — B. A “proper part”
of a conjunction designates the result of any reduction i3f ¢bnjunction
by one conjunc. Analogously, a disjunction of factord; vV As V...V A,

is a minimally necessary condition of a factBriff 4, v A, v...V A, is
necessary foB3, i.e. B — A1V Ay V...V A,, and there is no proper part
Bof Ay vV Ay Vv ...V A, such thatB — 3. A “proper part” of a disjunction
designates the result of any reduction of this disjunctigmie disjunct.

That a disjunction of minimally sufficient conditions of atar B is mini-
mally necessary foB shall be symbolized by=-" which is termed alouble-
conditional Thus, a minimal theory has the following double-condi#ibn

" Cf. e.g. (GraRhoff and May, 2001), (Baumgartner and Gr&R38664) or (Baumgartner,
2008a).

8 Defining a minimally sufficient condition in terms of propearts and not — as might be
expected — in terms gfroper subsetshat correspond to reductions of sufficient conditions
by one or more conjuncts allows for a simpler procedure to identify miniipaufficient
conditions. For if a sufficient condition has no sufficiergper parts, it does not have sufficient
proper subsets either. Hence, in order to show that a suiffice@nditionA; A, . .. A, is mini-
mally sufficient it suffices to establish that A- . . . A,, has no proper parts — establishing that
it has no sufficient proper subsets is unnecessary. Forgmsaeasons minimally necessary
conditions are definied in terms of proper parts and not preplesets above.
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Uncovering Deterministic Causal Structures 5

form:
ACV DEV FGH = B D)

Informally, (1) says that whenevetC or DE or FGH are instantiatedB

is instantiated as well, and that wheneveris instantiatedAC or DFE or
FGH is instantiated as well, and that sufficient and necessangitons
contained in (1) are minimal. In this vein, both the prineipf determinism
and the principle of causality are formally captured in aigtitforward way:
Causes determine their effects, and if no causes are préiserffect is not
present either. Membership in a minimal theory inducestpesiirect causal
relevance: A factord is (positively) directly causally relevant to a factor
B iff A is part of a minimal theory oB.° Hence, (1) represents a causal
structure such thadC', DE and FGH are alternative complex causes®f
Correspondingly, a factad has negative direct causal relevance for a factor
Biff Ais contained in a minimal theory d@3.

Analyzing the disjunction of alternative deterministicusas of B as a
necessary condition @8 amounts to claiming sufficiency d® for just that
disjunction. As is often done by critics of regularity acots) the question
might thus be raised as to how the above account of causehrele captures
the undisputed non-symmetry of that relatidror if B can be shown to be
minimally sufficient forACv DEV FGH, it might be argued that — relative to
the above analysis B is likewise to be considered causally relevant to its al-
ternative causes. Contrary to first appearances, howewdpjetconditionals
as (1) are not symmetrical with respect to the expressiotisetteft and the
right of “=". The instantiation of a particular disjunct is minimallyf§cient
for B, but not vice versaB does not determine a particular disjunct to be
instantiated! B only determines the whole disjunction of minimally suffi-
cient conditionsAC andDE and FGH are each minimally sufficient faB,
the latter however is only minimally sufficient fotC'v DE v FGH. This
non-symmetry corresponds to the direction of determinatio

° In fact, in order for a minimal theorg to be causally interpretable, certain relational
constraints, as spatiotemporal proximity, have to be iragasn the events that instantiate
the factors in®. For simplicity, these constraints are neglected in thesgamecontext. For
a detailed presentation of the logical form of minimal thesrcf. (Baumgartner, 2008a).
Furthermore, as shall become apparent in section 7 belavigmalizing necessary conditions
paves the way for an accurate regularity theoretic treatofemmmon cause structures, which
—on account of Mackie’s (1974) famous Manchester Factomytéts counterexample — have
often been considered intractable by regularity theories.

10 For details on the notion of non-symmetry cf. e.g. (Lemma@8§3), p. 180. The relation
of general causation, which is of interest in the presentesanis non-symmetric and not
asymmetri@s is often claimed in the literature. Generic causal degrecids may be cyclically
structured.

11 Cf. (GraRhoff and May, 2001), pp. 97-99, and (Baumgartn@®8a). Similar analyses
of the direction of causation have been proposed in (Sanf®¥@d6), (Ehring, 1982), and
(Hausman, 1998).
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6 Michael Baumgartner

Accounting for the non-symmetry of causal relevance in teisn has an
important implication as regards the minimal complexity defterministic
structures. A conditiorAC' that is both minimally sufficient and necessary
for a factor B cannot be identified as the causemffor, in that casepB is
minimally sufficient and necessary fatC' as well. All empirical evidence
such mutual dependencies generate are perfectly codafet@mntiations of
AC and B — both are either co-instantiated or absent. Such data taer ei
stem from a structure such thdt”' is a cause ofB or vice versa orAC
and B are parallel effects of an uncontrolled hidden cause. If adiiteonal
empirical information such as temporal orderings of théainses ofAC' and
B is available, neithe®AC' nor B can be identified as cause or effect. As is
well known, similar ambiguities arise in case of probabiislata analyzed by
procedures uncovering causal Bayes nets (cf. (Spirtes. e0fl0)). Causes
and effects can only be kept apart based on regularity oeledion data
alone if the data is diverse enough such that at lemstalternative causes
of each effect are contained in the corresponding factondreSection 9 will
be concerned in detail with ambiguities that arise wheniihes to causally
analyzing data featuring deterministic dependencies.

Ordinary causal structures far exceed (1) in complexitystvicausally
relevant factors are of no interest to causal investigationare unknown.
That is why minimal theories either need to be relativized specific causal
background or must be kept open for later extensions. Ther latachieved
by means of variables. Variable$;, X, ... are introduced to stand for an
open (finite) number of additional conjuncts within a suéfidti condition,
while Y4, Yg, ... are taken to stand for an open number of additional dis-
juncts in a minimal theory. If (1) is in this sense kept open ddditional
factors, one gets:

ACX1VDEXy,VFGHX3VYg = B 2)

While direct causal relevance is analyzed with recourse eémbership
in simpleminimal theories as (1) or (2), complex causal structuresaasal
chains or common cause structures are representedrbglexminimal the-
ories. Simple minimal theories can be conjunctively comeated to complex
theories: A conjunction of two minimal theoridsand ¥ is a complex min-
imal theory iff, first, at least one factor i is part of ¥ and, secondp and
¥ do not have an identical consequent. The first constraintagitees that
complex theories represent cohering causal structuretharskecond restric-
tion prohibits the conjunctive concatenation of equivaleinimal theories
and thus excludes redundancies. The following are two ebesgh complex
minimal theories:

(AX,VDXoVYp = B)AN(BX3VGXyVYy = H) 3)
(AXl\/DXQ\/YB:>B)/\(DX3\/GX4\/YH:>H) 4)
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Uncovering Deterministic Causal Structures 7

(3) represents a causal chairB-is the effect factor of the first conjunct and
a cause factor in the second conjunct —, (4) stands for a concangse struc-
ture —D is a common cause d8 and H. In this vein, deterministic causal
structures of arbitrary complexity can be represented gulagity theoretic
grounds. Accordingly, a factof can be said to bmdirectly causally relevant
to a factorB iff there is a sequence of factots, 2, ..., Z,, n > 3, such
thatA = Z,, B = Z,, and for each, 1 < i < n: Z; is part of the antecedent
of a simple minimal theory o¥; ;.

3. The Basic Idea and Input Data

Minimal theories represent deterministic causal str@sun a transparent
way. Conjunctions in the antecedent of a minimal theorydtan complex
causes of the factor in the consequent, disjunctions ferredtive causes.
Hence, minimal theories are directly causally interprietaMoreover, min-
imal theories impose constraints on the behavior of theofaatontained in
them. For instance, (1) says that whenexé’ is instantiated, there also is
an instance of3. That means, according to (1), the coincident@B does
not occur. Consequently, information about occurring ama-accurring co-
incidences allows for conclusions as to the minimal theegyresenting the
underlying causal structure. If it is discovered, say, iy experimental
setup, thatdC is never realized in combination wiB, while bothAC' B and
ACB are found to be empirically realized, it follows thdt” is minimally
sufficient for B relative to the causal background of the pertaining setup.
In this sense, minimal theories constitute the link betwibenempirical be-
havior of the factors in an investigated frame and the detastit structure
behind that behavior. The empirical behavior of the factdi®ws for infer-
ring minimal theories that describe that behavior, andahbsories, in turn,
are causally interpretable.

The procedure of causal reasoning to be developed hereteperapure
coincidence data with respect to the factors involved in asabprocess
whose structure is to be revealed — hence the labglcidence analysis
Based on its input dat&ZNA determines for each factdf; in the analyzed
frame involving, sayy factors which deterministic dependencies hold be-
tween Z; and the othem — 1 factors in the frame. Most of these depen-
dencies will turn out not to be causally interpretable. Thegibly causally
interpretable dependencies are subsequently minimatinedexpressed in
terms of minimal theories, which, finally, are straightfandly causally in-
terpretable as shown above.

The data processed BYNA is listed analogously to truth tables. Tables
as in table | are referred to @sincidence listsThe rows in a coincidence
list shall be numbered starting with the first row below tlle tiow. The row
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8 Michael Baumgartner

Table I. Simple examples of coincidence lists as procesg&ziNA.

A B C

1 1 1 A B C

1 1 0 1 1 1

0o 1 1 0 1 1
A B C 1 0 1 1 0 1
1 1 1 1 0 O 1 0 O
1 0 1 0O 1 0O 0O 1 0O A B ¢
0o 1 1 0 0 1 0 0 1 1 1 1
0 0 O 0 0 O 0 0 O 0 0 O

—~
&
—~
O
~
—~
O
~
—~
o
~

constituted by f 1 1”inlist (a) is row 1 (R1), the row featuringl“ 0 1" is

row 2 (R2), and so on. In coincidence lists a ‘1’ in the colurfirsay, factorA
represents an instance Af a ‘0’ in that same column symbolizes the absence
of such an instance. Columns of coincidence lists thus dermtances and
absences of the factor mentioned in the title row, while thesrfollowing

the title row specify coincidences of the factors in theetitbw. For example,
the first row, R1, of (a) records the coincidert&C, the following row, R2,
indicates the coincidencé 5C.

List (a) in table | clearly exhibits dependencies among dtstdrs. For
instance, there is no row in (a) featurisg3C'. That means the coincidence
AB is sufficient forC'. Likewise, there is no row in (a) featuring in com-
bination withC, which amounts to the sufficiency df for C'. The sufficient
condition AB, hence, contains a sufficient proper patf,and, accordingly,
is not minimally sufficient. Factod, on the other hand, does not have any
sufficient proper parts and, thus, is minimally sufficient & Analogously
it can be shown thaBC' is minimally sufficient forA in list (a). As will be
shown below, some of these dependencies are causallyrigtafe, others
are not.

In contrast, list (b) contains all 8 logically possible cguifiations of the 3
factors in its frame. (b) is therefore referred to aompletecoincidence list.
Complete lists do not feature dependencies among thearfadkccordingly,
complete lists do not need to be analyzed for dependenchegyin with. De-
pendencies only emerge in incomplete lists, i.e. in listt thature less than
2™ coincidences of the factors in their frame. Upon investigating processes
with hard to control causal backgrounds, however, all laljjgpossible factor
combinations are no rare empirical result in scientific ficac In such cases,
it is often possible to exclude certain configurations asn"doare” cases
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Uncovering Deterministic Causal Structures 9

based on prior causal knowledtfe Alternatively, significance levels may
be introduced that exclude rarely found configurations foamsideratior}3
Thus, there are several methodologies available that eeclumplete coinci-
dence lists such as to render them interpretable in termsionglthe result of
deterministic causal structures.

List (c) in table | is not complete in this sense. There is n@ o that
list such thatA and B are instantiated without an instance Gf AB is
minimally sufficient forC relative to list (c). Finally, list (d) is incomplete as
well. It is incomplete to such an extent that too many depecids emerge.
According to list (d), every factor is minimally sufficienhd necessary for
every other factor in the corresponding frame. Given sucalamdance of
dependencies causes and effects cannot be distinguisisetheMprevious
section has shown, if causal dependencies are to be orientdde basis
of mere coincidence data, the analyzed factor frame musidacat least
two alternative causes for each effect. As in case of comglsts, prior
knowledge may provide a means to causally analyze datarifegtiinis kind
of insufficient diversity. It is possible that, based on skobwledge, lists as
(d) can be supplemented by additional rows representingcittinces that,
notwithstanding the fact that they have not been observadjiven study, are
known to be empirically possible. As such data adjustmemdver, is not
part of mechanically uncovering deterministic structupesa precondition
thereof, it shall not be further discussed here.

4. Empirical Exhaustiveness and Homogeneity

Apart from the requirement as to the minimal diversity of lgped coin-
cidence listsCNA imposes two important constraints on its input data: (I)
unambiguous causal inferences are only possible giverthibatoincidence
data is exhaustive and (Il) the causal background of coémaid lists must be
homogeneous. Let us take these constraints in turn.

Any procedure of causal reasoning, in some way or anotheynass
that its input data is exhaustive. Probabilistic proceslymeesume the avail-
ability of probability distributions over all variables ihe model space, or
Ragin’s (1987, 2000Y)C A-algorithm relies on the realizability of afi”
configurations ofn cause variables. Nonetheless, assumptions as regards the
exhaustiveness of empirical data are hardly ever madecixplistudies on
causal reasonintf. Such an implicit taking for granted of the suitability of in-
put data, however, will not do for the present context. Agtieyious section

12 Cf. (Ragin, 1987), pp. 113-118.

13 Cf. (Ragin, 2000), pp. 109-115.

14 One exception is Ragin (1987, 2000). He discusses at lemgtHimited empirical data
negatively affects causal reasoning.
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10 Michael Baumgartner

has shown, deterministic dependencies amerigctors emerge only if not
all 2™ coincidences are contained in an analyzed list. Of coumeciclences
may not only be missing from coincidence lists due to causpkddencies
among respective factors. Exhaustive data collection raaydr a host of

different reasons. Financial or technical resources mapdmto be limited

in experimental sciences or nature may be found not to peosidficient

data in non-experimental disciplines. Inexhaustive datkely to be one of
the main reasons for hampered causal interpretability aif data. Minimal

theories are only unambiguously assignable to coincidbsiseprovided that
the latter are assumed to be empirically exhaustive in theximg sense:

Principle of Empirical Exhaustiveness (FEX): The collection of empirical
data to be processed yNA faces no practical limitations whatso-
ever. All coincidences of the analyzed factors that are aiible with
the causal structure regulating the behavior of these faete in fact
observed.

(PEX) guarantees that whenever a coincidence is missing fr@hA-
processed list, this is due to underlying causal dependsnCilearly, (BX)
constitutes a sweeping idealization with respect to dali@amn. Such an
idealization, however, may prove to be useful in many pcatttontexts. It
can be implemented as a gauge by means of which concretedaiatetions
can be measured and thus evaluated. For clearly, if theeason to believe
that a particular study did not collect all the relevant @gdtaut an investigated
structure and if there is no other source available that lsapgnts missing
data, the pertaining structure simply cannot be fully ueced. Accordingly,
while (PeX) is a necessary condition for drawingambiguousnferences, it
is not a necessary condition for drawing (ambiguous) cangalences from
coincidence lists. If inexhaustive lists are processe@ N, as will be shown
in section 10 below, more than one minimal theory will be @ssd to such
lists. The number of minimal theories assigned to an inestiailist depends
on the logical possibilities of complementing a respediexhaustive list in
a causally interpretable manner. Thus, while it is impdedib infer a single
causal structure from an inexhaustive coincidence listt @fstructures can
be inferred such that all of its members are compatible vighcbincidences
recorded in the inexhaustive list. Assigning sets of cassattures to inex-
haustive lists, of course, also is a form of causal infereSeeh inferences
might prove to be of great practical use, for they at leastl dighit on what
structurescannotunderly an investigated factor frame. Theref@@®A does
not necessarily have to be based oaXP Nonetheless, as failures ofgR)
are a problem of proper data collection and as the lattertipaud of causal
reasoning per se, but a precondition thereoEXPshall be endorsed in sec-
tions 5 to 9 which are concerned with matters of causal réagamnly. A
detailed discussion of violations of €R) is postponed until section 10.
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Uncovering Deterministic Causal Structures 11

While violations of (FEX) induce ambiguities in the output @NA, yet
do not give rise to fallacious causal inferences, causkddials may result
if the causal background of an analyzed coincidence lisbicausally ho-
mogeneousA list as (a) in table | could be generated by suitable se¢para
manipulation of each factor. A causal interpretation otsa ‘artificial’ list,
of course, would be fallacious. Causal relevancies wouldttriuted to fac-
tors in the frame which, in fact, did not contribute to the dabr of respective
effect factors. Such as to forestall causal fallacies, istnine presumed that
the behavior of the factors in the investigated frame is cwtfoundedby
causally relevant factors not contained in the frame. Eaeltyais of a causal
structure is limited to a small subset of all factors invalve that structure.
Causal structures are extremely complex. Ordinarily, @enfgw factors are
of interest in the course of concrete studies. While it is metessary to
assume that &NA-analyzed coincidence list contains all causally relevant
factors involved in an investigated structure, it must besppposed that
a CNA-analyzed coincidence list over a frame consistingZef. . . , Z,, is
generated against a causal background that is homogenéibuespect to
confoundersot contained i{ 71, . . ., Z, }. In order to spell out the notion of
a confounder needed for our purposes, the notion of a caadalgprequired:
A sequence of factoré”,, ..., Z;), k > 2, constitutes aausal pathfrom
Z1 to Zy iff for each Z; and Z;, 1, 1 < i < k, in the sequenceZ; is directly
causally relevant t&;, ;. A condition X; is said to be part of a causal path,
if at least one conjunct ok; is contained in the sequence constituting that
path. Now the notion of a confounder can be clarifiedZ}f is an effect, a
confounder ofZ,, is a minimally sufficient conditionX; of Z,, such thatX;
is causally relevant t&,, and X; is part of a causal path leading #, not
containing any of the factor&y, ..., Z,_1. That means a factar, that is
causally relevant to an effeét, and that is not contained in the investigated
frame {Z1,...,Z,} cannot confound causal reasoning if all causal paths
connectingZ, and Z,, contain at least one factor §¢71,...,2,}, i.e. if Z,
is a cause or an effect of a factor in the investigated frameorfounder is
a factor or a conjunction of factors by means of which the stigated effect
can be manipulated independently of the factors in the frame

The notion of a confounder is to be understood relative tawesponding
effect. Basically, any factor in an analyzed frame can be ssean effect of
an underlying causal structure. However, as will be showavipehere are
several constraints subject to which a factor can be exdlfrden the setV
of potential effects contained within a given factor fram@pto causally
analyzing that frame. Still, depending on the specifjcce W analyzed in
the course of a particular run @NA, different factors are to be seen as
confounders and, accordingly, must be homogenized. Gigndrput data
processed bZNA is assumed to be generated against causally homogeneous
backgrounds in the sense of ¢4
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12 Michael Baumgartner

Table Il. Two coincidence lists that cannot be causally yred, for none of the involved
factors can be interpreted as an effect of an underlyingataisucture in accordance with
(He).

A B C A B (C
1 1 1 1 0 O
1 0 1 0o 1 O
0o 1 1 0 0 1
1 1 O 0O 0 O

Homogeneity (Hc): The background of a causally analyzed listafcoin-
cidences over a factor frame containing the\weof potential effects is
causally homogeneous iff for every confoundér of every factor inW:
X is absent in the background of one coincidencgiffis absent in the
backgrounds of all othef, — 1 coincidences.

While only homogeneous coincidence lists are causallyyaable, (H)
does not guarantee the causal analyzability of coincidésise Rather, (K)
prevents causal fallacies. Therefore, a coincidence kst well be homoge-
neous in terms of (H), even though confounders are instantiated in its back-
ground — as long as these confounders are instantiated battegrounds of
all coincidences. If confounders are universally insttetl, effects will be
present in all coincidences, irrespective of whether tlnerofactors in the
frame are present or absent. In this case no dependenciegesamel thus no
inferences as to underlying causal structures are drawa.cAgsequence, no
causal fallacies are committed either.

(Hc) excludes a number of coincidence lists from causal anbilza
The lists fed intoCNA may well reveal certain backgrounds to be causally
inhomogeneous. Consider, for instance, the lists in tdblessumeB to be
an effect of the causal structure generating list (a) iretélb/A comparison of
the coincidences recorded in rows 1 (R1) and 2 (R2) showsith&tin fact
were the effect of the underlying structure, list (a) wouidlate (Hc). The
only factor varying in R1 and R2 iB; no other factor in the framgA, B, C'}
is accountable for that variation &, therefore, it must be due to a varying
confounder ofB in the unknown or unconsidered background of list (a). That
means assuming to be an effect contradicts the homogeneity assumption.
In contrast, if B is taken to be a cause factor of the underlying structure,
(Hc) is not violated. Thus, assuming (hito hold for list (a) implies thal3
cannot be seen as a possible effect. The same holds for retathfactors in
{A, B,C}. In R1 and R34 is the only varying factor, while no other factor,
apart fromC, varies in R1 and R4. Hence, there is no factor in list (a) that
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Uncovering Deterministic Causal Structures 13

could possibly be an effect of an underlying causal strgcimraccordance
with (Hc). Analogous considerations apply to list (b) of table II.

That means there cannot be a causal structure underlyimgy dit (a) or
(b) that would be compatible with (). Neither list comprises a factor that
could be seen as an effect in accordance with)(He. W = (). Whenever
for everyfactor Z; contained in the factor frame of a coincidence dighere
are two rows R and R in C such thatZ; is the only factor varying in R
and R, the background against which the dataCims collected cannot be
homogeneous, for there is no causal structure that couklippgenerate
and accord with (18). | shall in this context speak @fihomogeneous coin-
cidence lists(Hc) excludes all inhomogeneous coincidence lists from being
processed bCNA. It must be emphasized, however, that the homogeneity
of coincidence lists is an assumption to which every infeeeof CNA must
be relativized. It might well be that a list which is not inhogeneous in
the sense defined above, as e.g. list (a) in table I, in fadbdsrésult of
an uncontrolled variation of background confounders. ia fiense, only a
sufficient and no necessary condition for the inhomogerafitycoincidence
list is given above. Causal inferences drawnGiA will always be of the
form “Given that (H) is satisfied, such and such are the underlying causal
structure(s)”. Homogeneity is never beyond doubt.

Generally, determining whether empirical exhaustivenasd homo-
geneity are satisfied ultimately calls for some form of irttigcjustification
which, however, is not going to be discussed in the preseriegb Empirical
exhaustiveness and homogeneity shall simply be taken tothednductive
risk that comes with drawing causal inferences baseGNA.

5. ldentification of Potential Effects

After having clarified the presuppositions on whiCNA rests, we can now
proceed to introduce the inference rulesGMA. As anticipated in the pre-
vious section, a first algorithmic step consists in parshrgugh the factor
frame of a coincidence list in order to determine which of flagtors could
possibly operate as effects within the causal structure tevealed. This step
yields a seWV of factors whose dependencies on the other factors in tme-cor
sponding frame are then successively determine@N. The identification
of potential effects shall not be considered a proper pa€iA, for any
sort of context-dependent empirical information or evaprprausal knowl-
edge is allowed to enter the determinatiorVéf For instance, if, in a given
experimental setup, a factdf; is generally instantiatetemporally before
every other factor in an analyzed franf&,, ..., Z,}, Z; cannot function
as an effect within the underlying causal structure.p@or causal knowl-
edgecould be available that establishes the members of a projoses of

det _kluw2.tex; 18/05/2008; 14:04; p.13



14 Michael Baumgartner

{Z1,...,Z,} asroot factors i.e. as factors that are causes, but no effects
within a causal structure. In both cases there is no needédgrite respective
factors inW. CNA does not have to evaluate dependencies among factors
that can be excluded from the set of potential effects torbegih. These
context-dependent constraints @ are not systematizable or, at least, a
systematization shall not be attempted here. Accordimglyrecursively ap-
plicable or computable rule can be provided, which essgnig why the
determination oV is not seen as a proper partONA.

Still, the determination dfV is not only regulated by spatiotemporal pecu-
liarities of an analyzed process or by prior causal knowdedg the previous
section has shown, factors can be excluded from the set ehfait effects
based on homogeneity considerations: In order for a fatttw be a potential
effect, it must not be the case that the corresponding aencie list contains
two rows such tha¥; is the only varying factor in those rows. Furthermore,
since CNA shall be designed to infer causes of both positive and negati
factors,W, in principle, may contain both positive and negative fextblow-
ever, to every minimal theory of a positive factdy, there exists an equivalent
minimal theory ofZ;, and vice versa.

ACV DE = B (5)
ADVAEVCDVCE = B (6)

(5) and (6) are logically equivalent and one of these expesss a minimal
theory if and only if the other one is td8.Hence, for simplicity’s sakeGNA
can be confined to identify minimal theories of either pwsifiactors or their
negative counterparts. For this reason, we stipulate thitiye factors only
shall be included iW.

These considerations taken together yield the followiramaard as re-
gards the determination &. In order to indicate that the non-computable
identification of the set of potential effects is a precaoditof launching
CNA, yet not a proper part thereof, it shall be referred to ag“Sté.

Step 0* — Identification of potential effects: Given a coincidence listC
over afactor framé 7, ..., Z, }, identify the subsetv C {7,,..., Z,}
such that for every;: Z;, € W iff

(1) The totality of available information as to the spatioperal order-
ing of the instances of the factors {¥1, ..., Z,} and the avail-
able prior causal knowledge about the behavior of the faator
{Z1,...,Z,} does not precludg; to be an effect of the underlying
causal structure.

15 For a detailed proof of the existence of an equivalent mihttmeory of a negative factor
to every minimal theory of a positive factor cf. (Baumgar{r&906), ch. 3.
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Uncovering Deterministic Causal Structures 15

(2) C does not contain two rowsARand R such thatZ; is the only
factor varying in the coincidences recorded by &d R.
(3) Z; is a positive factor.

6. ldentification and Minimalization of Sufficient Conditio ns

After having identified a non-empty set of potential effe@8IA proper sets
in. In a first stage, sufficient conditions for each membek\bare identi-
fied and minimalized. In order to illustrate this first statgt,us look at a
concrete example. Assume the coincidence list depictedbletlll to be
our input data. None of the factors in our exemplary frafde B, C, D, E'}
shall be excluded from effect position by prior causal krexge or addi-
tional information as to spatiotemporal orderings. Noakdbs, the set of
potential effects does not correspond to the factor framéable IIl, i.e.
W £ {A,B,C, D, E}. For reasons of compatibility with (&), A, B, and
D cannot be effects. For each of these factors there is a peowaf in table
- (R1,R4 for A, (R1,R3 for B, (R1,R2 for D — such that the respective
factor is the only varying factor. Thus, interpreting ondtuse factors to be
an effect of the underlying structure would contradiA’s homogeneity
assumptionC and E, thus, are the only potential effects of the structure
generating table Ill, i.eW = {C, E'}. For each of the factors W minimally
sufficient conditions are now identified. This is done in fetaps: (1) a factor
Z; € W is selected, (2) sufficient conditions &f are identified, (3) these
sufficient conditions are minimalized, (4) the procedureeigarted at (1) by
selecting anothef; € W, until all factors inW have been selected. Let us
take a detailed look at these four steps.

Step 1 — Selection of a potential effectRandomly select one factar; <
W such thatZ; has not been selected in a previous run of steps 1 to

Table lll. Exemplary coincidence list to be analyzed@yA.
A B C D FE

OO Rr OO0 R L R
OO O R R ORBR
CO R RPRREBRPR
OFrRr OO R Rk O R
ORr OR R R R R
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16 Michael Baumgartner

4. Z; is termedeffect* the factors iZ1,...,Z;—1,Z;41,...,Z,} are
referred to asemainderst®

Step 2 — Identification of sufficient conditions: Identify all sufficient con-
ditions of the effect*Z; according to the following rule:

(SUF) A coincidenceX}, of remainders isufficientfor Z; iff the input
list C contains at least one row featuritig. Z; and no row featuring
X Z;.

The order of selecting effects* in step 1 does not matteroag ks it
is guaranteed that, eventually, all memberd\bfire selected. According to
(SUF), a coincidence of remainders can only be sufficienafoeffect* if it
is instantiated at least once. Moreover, a coincidencensneders contained
in the input list is not sufficient for a selected effect* ifistalso instantiated
in combination with the absence of that effect*.

Let us perform these two steps on our example of table Il sy §ielect-
ing C as effect*. Step 2 identifies six sufficient conditions@f i.e. there
are six coincidences of remainders that conform to (SUBDE, ABDE,
ABDE, ABDE, ABDE, ABDE. The first row (R1) of table Il features
the coincidenceABDE in combination withC' and there is no row such
that ABDE is contained therein in combination with. ABDE, thus, is
a sufficient condition ofC' according to (SUF). Analogous considerations
apply to the other sufficient conditions mentioned above:idfR@onstituted
by ABDE, R3byABDE, R4byABDE, R5 by ABDE, and R6 features
ABDE without either of these conditions being contained in coration
with C' in table Il1.

Before sufficient conditions of the remaining effedi*are identified, we
proceed to minimalize the sufficient conditions(of

Step 3 — Minimalization of sufficient conditions: The sufficient conditions
of Z; identified in step 2 are minimalized according to the follogyi
rule:

(MSUF) A sufficient conditionZ; 72 . .. Z;, of Z; is minimallysufficient
iff neither 7,75 ... Z, nor Z1Zs ... Zy nor .. .NOrZ1 Zs ... Zp—q
are sufficient forZ; according to (SUF).

Or operationally put:

16 Selected factors are labelleffects*to indicate that theypossiblyare the effects of the
causal structure generating the input list. Effects* do metessarily turn out to be (actual)
effects at the end of @NA-analysis. For instance, the set of effects* containedsin(tl) of
table | contains all factors in the frame — provided no furtilformation is available that
distinguishes among causes and effects. Yet, none of tifilestsé is identified as an actual
effect byCNA, because causes and effects cannot be kept apart relatia tist.
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Uncovering Deterministic Causal Structures 17

(MSUF") Given a sufficient conditionz,2 ... 7, of Z;, for ev-
ety Z, € {Z1,2,...,Zp}, h > g > 1, and everyh-tuple
(Z11, Zor, . .., Zpr) Whichis a permutation of the-tuple(Zy, Zs, . .., Zp):
EliminateZ, from Z1Z, . .. Z;, and check whethef; ... Z,_1Z,41 . .. ZnZ;
is contained in a row of. If that is the case, re-add, to
21 ... Ly 12441 ... Zy and eliminateZ, ¢, if that is not the case,
proceed to eliminateZ,; without re-addingZ,. The result of
performing this redundancy check on every factor contaimed
Z1Zs ... Zy is a set of minimally sufficient conditions &f;.

(MSUF) is nothing but an adaptation of the notion of a minignalfficient
condition as defined in section 2 to the context of coincigdiats. (MSUF"),
on the other hand, can be seen as an operational expressimanialysans of
the notion of a minimally sufficient condition implemented(MSUF). That
is, (MSUF) might be rephrased as follows: A sufficient cooditZ, 75 . . . Zj,
of Z; is minimally sufficient iff it results from an application of (MSUF’). At
the expense of high computational complexity, the formaotabf (MSUF’)
is kept as simple as possible above. The order in which faaoe elim-
inated from sufficient conditions matters as to the minizaion of such
conditions — thus the systematic permutation of elimimaticderst’ In many
cases, however, it is not necessary to completely perfoahgarmutation.
For instance, assume artuple Ty = (Z1,...,Z4, Z4+1,- - -, Zp) has been
minimalized by means of (MSUF’) up to elemexj, that minimalization of
T, can be taken over for all-tuplesTy = (Z1,...,Zq, Zgy1/, ..., Zy) that
coincide withT; up to elementZ; without reapplying (MSUF’) tdls. Or
suppose it has been found that = 7, ... Z,; is a minimally sufficient con-
dition of an investigated effect and a sufficient conditip = 7,75 ... Z;,
containing Z; ... Z, is to be minimalized by means of (MSUF’). In that
case, it is not effective to minimaliz&, by first eliminating the factors not
contained inX7, for this elimination order would just yield’; again.

Further optimizations of (MSUF’) are conceivable, yet anegoing to be
discussed here — they will have to await another paper. Mopeitantly, the
intuition behind (MSUF") can be more colloquially capturdevery factor
contained in a sufficient condition df; is to be tested for redundancy by
eliminating it from that condition and checking whether theaining condi-
tion still is sufficient forZ; or not. A sufficient condition ofZ; is minimally
sufficient iff every elimination of a factor from that conidit results in the
insufficiency of the remaining condition.

17 This is an important deviation from the minimalization off&ient conditions in the vein
of the Quine-McCluskey optimization of truth functions. i@erMcCluskey optimization only
eliminates conjuncts of a sufficient condition if the latteduced by the respective conjunct
is actually contained in the truth table. As will become appéin section 9, this restriction is
a serious limitation of the minimizability of sufficient cditions involved in chainlike causal
structures.
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Performing step 3 on our exemplary case is straightforw&tep 2 yielded
six sufficient conditions of’'. For brevity, | only illustrate the minimalization
of these six conditions by means of two examples. First, #kD . That
this sufficient condition is not minimally sufficient fé¥ is seen by removing,
say, D and finding thatABE itself is sufficient forC, for table Il does
not contain a row featuringl BE in combination withC. ABE still is not
minimally sufficient. For instance, botB and £ can be removed without
sufficiency being lost. There is no row in table Il featuridg’, which in-
duces thatd is sufficient and, since it is a single factor that does notaian
proper partsminimally sufficient for C'. There are other ways to further
minimalize ABE: A removal of A and F still yields a sufficient condition
of C. There is no row in table Il featuringgC'. ThereforeB is minimally
sufficient for C'. Second, let us look at the second sufficient conditiod’ of
identified by (SUF).ABDE is not minimally sufficient becauséB can be
removed without sufficiency fo€ being lost. There is no row in table IlI
featuring D E in combination withC', which induces thab E is sufficient for
C. If DE is further reduced, sufficiency is lost. R7 featuéeB and R8CD.
DE, hence, is minimally sufficient fof’. Minimalizing the other sufficient
conditions ofC' by analogously implementing (MSUF’) does not yield any
further minimally sufficient conditions. All in all, therefe, minimalizing the
sufficient conditions of” generates the following three minimally sufficient
conditions:A, B, andDE.

After having identified the minimally sufficient condition$ a first factor
Z; € W, the same needs to be done for all other effects*. We thus atmap
that bringsCNA back to step 1, if not all factors W have been assigned
minimally sufficient conditions yet.

Step 4 — (MSUF)-Loop: If all Z; € W have been selected as effects* pro-
ceed to step 5, otherwise go back to step 1.

Applying this loop to our example yields six sufficient caiis of £. Each
row featuring £ comprises a sufficient condition of remaindessBC D,
ABCD, ABCD, ABCD, ABCD, ABCD. For example, R2 of table IlI
is constituted byABC D and there is no row featuring BC'D along with
E, or R3 comprisesABCD and no row in table Il containstBCD in
combination withE. The sufficiency of the other conditions is analogously
demonstrated. Employing (MSUF) or (MSUF’) to minimalizeesie condi-
tions brings forth three minimally sufficient conditions Bf B, D, andAC.
The list in table 11l contains no rows featuring eithBi&Z, DE, or ACE.

As an overall result of performing the first stage (steps 1) tof £NA on
our exemplary case, we have thus identified the followingimmetly suffi-
cient conditions of the factors W:
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A,B,DE for C,
B,D,AC for E.

7. ldentification and Minimalization of Necessary Conditilns

As the famous Manchester Hooters counterexample againsti&s (1974)
INUS-theory of causatidf demonstrates and as articulated in the analy-
sis of causal relevance given in section 2, minimally swgfiticonditions
are not generally causally interpretable. Only minimailffisient conditions
that are moreover non-redundant parts of minimally necgssmditions are
amenable to a causal interpretation. After having ideutifrenimally suffi-
cient conditions, we thus now proceed to first form necessangitions of
the effects* from their minimally sufficient conditions atiten minimalize
these necessary conditions. Since factor frames procbg$&ldA are incom-
plete with respect to underlying causal structures, ieetsupposedly will
always be many causally relevant factors not containedautihists, effects*
can only be assigned necessary conditions relative to timegeneous back-
grounds of corresponding coincidence lists. This is easilyomplished by
disjunctively combining the minimally sufficient conditis of each effect*,
yielding one necessary condition relative to an inputdiand its background
for each factorz; € W.

Step 5 — Identification of necessary conditionsldentify a necessary con-
dition of each effect*Z; by disjunctively concatenating;’s minimally
sufficient conditions according to the following rule:

(NEC) A disjunctionX; VvV X5 V...V X} of minimally sufficient condi-
tions of Z; is necessaryor Z; iff C contains no row featuring; in
combination with—(X; vV X5 V...V X}), i.e. no row comprising
X1Xo... XpZ;.

Performed on our example, step 5 issdeg BV DE andBV DV AC as
necessary conditions af and F, respectively. Such as to determine whether
the minimally sufficient conditions assigned to the effeeiisthe end of the
previous section in fact are non-redundant parts of negeseaditions, these
necessary conditions have to be minimalized.

Step 6 — Minimalization of necessary conditionsThe necessary condi-
tions of everyZ; € W identified in step 5 are minimalized according to
the following rule:

18 Cf. (Mackie, 1974), (Baumgartner and GraRhoff, 2004), ch. 5
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(MNEC) A necessary conditioX; V X, V...V X} of Z; is minimally
necessary iff neithekK, v XsVv... X nor X, vXsv... X, nor...
norX; VX, V...V X;,_1isnecessary foZ; according to (NEC).

Or operationally put:

(MNEC’) Given a necessary conditioX; V X, V ... V X}, of Z;,
for every X, € {X1,Xo,..., X3}, h > g > 1, and everyh-
tuple (Xy/, Xor, ..., Xp/) wWhich is a permutation of thé-tuple
(X1, Xs,..., Xp): Eliminate X, from X; vV X, V...V X} and
check whether there is a row i featuring Z; in combination
with (X, V...V Xg1 V Xgy1 V...V Xp), i.e. a row com-
prising X ... Xy_1 X441 ... X, Z;. If that is the case, re-add,
toX1V...VX,_1VXg1V...VX, and eliminateX, ;; if that is
not the case, proceed to eliminatg_ ; without re-addingX,. The
result of performing this redundancy check on every miniynal
sufficient condition contained iX; vV Xs V...V X}, is a set of
minimally necessary conditions &f;.

In analogy to (MSUF), (MNEC) is nothing but an adaptation lod hotion
of a minimally necessary condition as defined in section zhto dontext
of coincidence lists. (MNEC’), on the other hand, can be see@an oper-
ational expression of the analysans of the notion of a millymmeecessary
condition implemented in (MNEC). That means (MNEC) mightéehrased
as follows: A necessary conditiok; vV X, V ... V X} is minimally nec-
essary iff it results from an application of (MNEC’). The fioulation of
(MNEC’) has been kept as simple as possible at the expenss obin-
putational complexity. Analogous optimizations as in caBéMSUF’) are
possible with respect to (MNEC"). The intuition behind (MBE can also be
more colloquially captured: Every minimally sufficient abtion contained
in a necessary condition df; is to be tested for redundancy by eliminating
it from that condition and checking whether the remainingdition still is
necessary foZ; or not. A necessary condition ¢f; is minimally necessary
iff every elimination of a minimally sufficient conditiondm that necessary
condition results in the loss of necessity of the remainimigdition.

Let us illustrate the minimalization of necessary condsidy first per-
forming step 6 on the necessary conditiéy BV DE of C. That disjunction
is not minimally necessary fd@r', because it contains a necessary proper part:
AV B.WhenevelC is instantiated in table Ill, there is an instance of either
or B. Table Ill does not contain a row featuring3C. DE does not amount
to a non-redundant part of a minimally necessary condifmmyheneveD £
is instantiated in combination with, there also is an instance dfv B. The
same results from applying (MNEC’) tév BV DE. When eliminating4 we
find that the rest is no longer necessary@gmbecause R3 of table 11l features
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BDE andC or, more specificallyBDE andC. Hence,A is re-added. The

same is found upon removing. R5 featuresADE andC or ADE andC,
respectively. Removind E, however, does not result in a loss of necessity.
Therefore,DE is not re-added. For analogous reasans, D Vv AC does not
amount to a minimally necessary conditionfogither. B v D v AC contains

a necessary proper part: Vv D. There is no row in table Ill featuring DE.
AC is not part of a minimally necessary condition6f for wheneverAC is
instantiated, so i$3 vV D, but not vice versa. All in all, therefore, we get the
following minimally necessary conditions for our example:

Av B for C,
Bv D for E.

8. Framing Minimal Theories and Causal Interpretation

In the remaining step o€ENA minimal theories are framed from the min-
imally necessary disjunctions of minimally sufficient camhs identified
for eachZ; € W in step 6. This is done by means of a twofold procedure:
First, simple minimal theories are formed for eathc W, and second, if the
minimal theories® and ¥ of two different factors inW have a non-empty
intersection of factorsp and¥ are combined to form the complex minimal
theory® A ¥, such thatb A ¥ conforms to the requirements imposed on the
notion of a complex minimal theory in section 2.

Step 7 — Framing minimal theories: The minimally necessary disjunctions
of minimally sufficient conditions of eacl; € W identified in step 6
are assembled to minimal theories as follows:

(1) For eachZ; € W and each minimally necessary disjuncti&n v
X5 V...V Xy, h > 2,19 of minimally sufficient conditions o;:
Form a simple minimal theory of Z; by makingX; v Xo V...V
X, the antecedent of a double-conditional aridts consequent:
XivXoV... VX, = Z,.

(2) Conjunctively combine two simple minimal theoriésand ¥ to
the complex minimal theorgp A W iff & and ¥ conform to the
following conditions:

(a) atleast one factor i is part of U;
(b) ® and¥ do not have an identical consequent.

19 The constraint as to a minimum of two alternative minimallfisient conditions for
each effect* does justice to the minimal complexity of a @hssructure required such that its
direction is identifiable (cf. section 2).
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In our exemplary case, step 6 GNA generates one minimally necessary
disjunction of minimally sufficient conditions for eac) € W. As we shall
see in section 9, step 6 sometimes identifies more than orimalin neces-
sary disjunction for certai&r; € W. Yet, before we look at ambiguities arising
when it comes to framing minimal theories let us concludeattedysis of our
first exemplary coincidence list. Step 7.1 straightforiyasdelds one simple
minimal theory forC' and E each:Av B = C, BV D = E. While these
theories hold for the specific causal background of tablet ihust not be the
case thatd and B are themselves sufficient far, or B and D are sufficient
for E. Moreover, there may well be further minimally sufficiennditions of
bothC and E. Therefore, suspending the relativization to the backggloof
table 11l and expressing these dependencies in their gemedabackground
independent form leads to:

AX{V BXyVYe = C (7)
BX3VDX,VYp=E (8)

The simple minimal theories @f andE share one common factor. The causal
structure regulating the behavior &fis not independent of the structure be-
hind the behavior of” and vice versa. The behavior of the factors in table I,
thus, is regulated by a complex structure. Accordinglyp §t@ of CNA urges

us to conjunctively combine (7) and (8) to a complex mininteddry. All in

all, thus, step 7 assigns the following complex and backgtandependent
minimal theory to the coincidence list in table 11l

(AXyVBXo VYo = C)N(BXsV DXy VY = E) 9)

After having assigned a minimal theory to a coincidence st by far
most intricate hurdles on the way to uncovering the detdastiéncausal struc-
ture behind that list have been overcome. As we have seenctiose?,
there exists a straightforward syntactical conventionezmmds the causal
interpretation of minimal theories. Minimal theories rendausal structures
syntactically transparent:

Step 8* — Causal interpretation: Disjuncts in the antecedent of simple min-
imal theories are to be interpreted as alternative (complaxses of
the factor in the consequent. Conjuncts constituting susjartts cor-
respond to non-redundant parts of complex causes. Triglésctors
(Zn, Zi, Z;), such thatZ;, appears in the antecedent of a minimal theory
of Z; and Z; is part of a minimal theory of;, are to be interpreted as
causal chains.

This interpretation rule is not to be seen as pa@ A proper. Nonetheless, it
fulfills an essential function on the way to a causal infeesii@r this reason,
the rule concerning causal interpretation is starred.
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CNA thus determines the coincidences in our exemplary tablt e
the result of a deterministic common cause structrexnd B are parts of
alternative causes af', while B and D are parts of alternative causes of
E. Steps 0* to 7 assign a minimal theory to a coincidence list step 8*
causally interprets that theory.

9. Multiple Theories

As is well known from the literature on causal Bayesian neksoempirical
data is not always unambiguously identifiable to be the teswoine particular
causal structure. At times, data could stem from more than structure.
Such ambiguities are not a particularity of the probaldidata processed by
procedures analyzing causal Bayes nets, for, as the exgnapliacidence list
analyzed in this section illustrates, ambiguities can atsse in case of deter-
ministic data. Consider the list in table IV. It covers thengafactor frame as
table Il and only differs from the latter with respect to asiagle row: R6.
In order to determine the s&{ of potential effects, it again is assumed that
no factor in{ A, B,C, D, E'} is excluded from effect position by prior causal
knowledge or spatiotemporal constraints. For reasons mipatibility with
(He), however, factorsd, B, and D cannot be effects. Thus, as in case of
table lll, C and E are the only potential effects, i.\&/ = {C, E}.

Performing steps 2 and 3 @rtand FE yields the following:

Sufficient conditions of C: ABDE, ABDE, ABDE, ABDE, ABDE,
ABDE.

Minimally sufficient conditions of C: A, B, DE.

Sufficient conditions of E: ABCD, ABCD, ABCD, ABCD, ABCD,
ABCD, ABCD.

Table IV. A second exemplary coincidence list over the saaatof frame as the list in table
111

S
s
Q
!
=

OO RrR OO0OR R R
OO0 O R R OPR PR
OO R PR R PR R
OrRr OO R R O R
O R R R R R R R

det _kluw2.tex; 18/05/2008; 14:04; p.23



24 Michael Baumgartner
Minimally sufficient conditions of E: A, B, C, D.

After having identified minimally sufficient condition€NA proceeds to
first form and then minimalize necessary conditions for esftdrt*.

Necessary condition oC: AV BV DE.

Minimally necessary condition of C: AV B.

Necessary condition oft’: AV BV CV D.

Minimally necessary conditions ofE: AV BV D,CV D.

The necessary condition 6f, A v B v DE, contains a necessary proper
part,viz. AV B. WheneveC' is instantiated in table 1V, there is an instance of
either A or B. DE does not amount to a non-redundant part of a minimally
necessary condition, for whenevBXE is instantiated in combination with
C, there also is an instance df vV B. The necessary condition @&, A v
B Vv C VvV D, not only contains one but two necessary proper pétts: D
and A v B v D. There is no row in table IV featuring’DE or ABDE.
WhenevelFE is instantiated, there is an instance(df/ D and ofAV BV D.
These two ways to minimalizd v B v C' v D stem from the fact that there
are biconditional dependencies among the minimally sefficconditions of
E. Within the homogeneous background of table ¢¥is instantiated if and
only if A v B is instantiated.

Drawing on this inventory of minimally necessary condis@NA frames
one simple minimal theory faf’ and two forE:

AXyVBXo VYo = C (20)
AX3VBXyVDX5VYy=FE (12)
CXegVDX7;VYp=F (12)

The simple minimal theories @f and E' share common factors. The behavior
of the factors in table 1V, thus, is regulated by a complexsehstructure. In
order to determine what that structure looks like, the sampinimal theories

of C and E are to be conjunctively combined to form a complex theory.
Here an ambiguity emerges: (11) and (12) — if causally im&tgal — identify
different direct causal relevancies bt While according to (111 andB are
directly causally relevant té/, (12) instead hold€’ to be directly relevant to
E. The coincidences in table IV are either generated by a tahain such
that A and B are parts of alternative causeofvhile C' and D are contained

in alternative causes @, or they are generated by a common cause structure
such thatdA and B are parts of alternative causes@fwhile A, B, andD

are contained in alternative causesmfThe two causal structures possibly
underlying the list in table IV are graphed in figure 1.
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(@) (b)

Figure 1. A causal chain and a common cause structure that both coudérlynthe
coincidences in list IV.

Step 7 of CNA reflects that ambiguity by assigning the following two
alternative complex minimal theories to list IV.

(AXl\/BXQ\/YC=>C)/\(CX3\/DX4\/YE:>E) (13)
(AXl VBXs VYo = C) A (AX5 VBXsVDX,VYg = E) (14)

Based on list IV alone it is not determinable whether the bemaof
A,B,C,D,FE is regulated by a chain or a common cause structure. If
no prior causal knowledge is available that disambigualtes inference,

a disambiguation has to await later expansions of the fdcéone and a
corresponding collection of further data. If it is, for iaste, found that
by manipulating a further factof' it is possible to manipulat€’ while

E remains unchanged, the structure behind list IV can unamobigly be
identified as a common cause structure. | systematicallgstiyate the
ambiguities that may arise in the course of uncovering detestic causal
chains in (Baumgartner, 2008b).

Before we move on to consider the consequences of violatb(BEX),
emphasis must be put on a major difference between Ragif''d-algorithm
and CNA that is exhibited by this second exemplary applicatiorCHfA.

An application of the)C A-algorithm presupposes that factors (or variables)
that function as causes in an investigated structure aepamtient and are,
thus, co-instantiable in all logically possible combinag?® This assumption
allows for a recourse to the well-known Quine-McCluskeyimj#ation of
truth functions in order to minimalize sufficient condit®within theQC A
framework?! This independence assumption, however, has the consieerab
drawback that causal chains cannot be analyzed by me&)s df for chains

20 May’s four-field method (cf. (May, 1999)) also requires putel causes of an investi-
gated effect to be independent in this sense. Structurasrifegdependencies among causes
such as causal chains, hence, can neither be directly aaiatbya)C A nor four-field testing.
For a discussion of the limitations of the four-field methduen it comes to uncovering chains
cf. (Baumgartner and GraRRhoff, 2004), ch. 12.

2L Cf. (Quine, 1952), (Quine, 1959), (Ragin, 1987).
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involve dependencies among cause factors. As soon as thageindence as-
sumption is dropped — as done in the contexCoOfA — Quine-McCluskey
optimization no longer eliminates all redundancies. Thengxary coinci-
dence list in table 1V features a dependency amdng B andC which all
could function as causes within the underlying structuleer€ is no row in
IV reporting a coincidence of, say, andC. Quine-McCluskey optimization
only eliminates redundant conjuncts of sufficient condsiaof a respective
truth table contains two rows which differ only with respé&zipresence and
absence of that conjunct. Thus, minimalizing the sufficeaditions of &
in table IV along the lines of Quine-McCluskey would not itign say, A
as a minimally sufficient condition oF, notwithstanding the fact that ta-
ble IV does not contain a coincidence dfand £. Rendering coincidence
lists generated by causal chains amenable to a Boolearsaalgcordingly,
calls for a custom-built minimalization procedure thafefi$ from a standard
Quine-McCluskey optimization insofar as it systematicda##sts conjuncts
Z; of a sufficient conditionX; for eliminability, irrespective of whether the
corresponding coincidence list contains another suffi@endition X; that
only differs fromX; with respect to presence and absencg of

10. Empirical Exhaustiveness Violated

As indicated in section 4, assuming the exhaustiveness alfyzed data
(Pex) is a precondition of an unambiguous inference to a detéstitn
structure. Nonetheless, £R) is not a necessary assumption on which an
application ofCNA must be based, for even inexhaustive data provides some
information as to underlying causal structures. In ordeilltstrate this,
consider the four coincidences listed in table V which arelikéwise
contained in tables Illl and IV. Against the assumably homegeas
backgrounds of the coincidences in tableA/and B are each minimally
sufficient for the other three factors, while the dependeneimong’, D,
andF are symmetric and, thus, not causally interpretable. Atingty, CNA

Table V. An exemplary inexhaustive coincidence list.
A B C D E

O O R .
O R O
O R Rk R
O R Rk
O R Rk
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Table VI. (a) and (b) are two extensions of table V that arecaosally interpretable. (c) does
not allow for an integration oD into the underlying causal structure. Added coincidences a
marked with “+”.

A B C D FE A B C D FE
1 1 1 1 1 1 1 1 1 1
+1 1 0 1 1 1 0 1 1 1 A B ¢ D E
+1 1 1 0 1 o 1 1 1 1 11 1 1 1
+1 1 1 1 O +0 0 0 0 1 1 0 1 1 1
1 0 1 1 1 +0 0 0 1 O o 1 1 1 1
0o 1 1 1 1 +0 0 1 0 O +0 0 O 1 O
0O 0 0o O oO 0O 0 0o O oO 0 0 0o O oO

—
&
—
O
~
—~
(2
~

assigns the following complex minimal theory to table V:

(AX1VBXoVYe = C)N(AX3VBXyVYp = D)N(AX5VBXeVYE = E)

(15)
If (PEX) is assumed to be satisfied, (15) constit@®A’s final output. Yet, if
(PeX) is not taken for granted, subsequent extensions of listevpassible.
Additional coincidences, of course, may drastically cle@iNA’s output.
Depending on whether table V is complemented in terms of tabies Il or
IV, CNA determines the structure underlying an accordingly compteed
list to be the result of a common cause structure or a chaspewtively.
In both casesA and B are no longer held to be causally relevant/io
Nonetheless, the causal relevancedoénd B to C' and F is untouched by
extending table V in the sense of either Il or IV.

Table V only features four of the 32 logically possible cadlences over
the frame{A, B,C, D, E}. If (PEX) is not taken for granted, any of the 28
remaining coincidences may be observed later on and inezfjrato table
V. However, only a small subset of all these logically polesiextensions
would be causally interpretable. Suppose, for instanceg,ath 28 remaining
coincidences are in fact incorporated in table V. The reisuli complete
coincidence list, which, as shown in section 3, does noufeaany deter-
ministic dependencies. The same consequence follows fréending table
V in terms of lists (a) or (b) in table VI. Neither (a) nor (b)eacausally
interpretable because none of the involved factors candreagan effect of
an underlying structure. For all factors there is a pair @fgosuch that the
corresponding factor is the only varying factor in that BaiThus, lists (a)
and (b) are inhomogeneous and, accordinglg (. An extension of table
V as indicated in (c), on the other hand, does not altogetsistra causal

22 Cf. section 4.
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interpretation.A and B are still minimally sufficient forC', D, and E, yet
factor D cannot be an effect of the underlying structure any longee. fewly
added coincidence featurés as the only varying factor when compared to
the last coincidence listed in (c). Thus, (c) is not homogesevith respect to
D. D cannot be integrated into an underlying structure as ranorfaither,
for it is not part of a minimally sufficient condition of any dfie possible
effects contained in (c). In consequenGNA assigns a minimal theory to
(c) that corresponds to (15) reduced by the middle conjunthe same vein,
extensions of table V may be inhomogeneous in regard to dmey effects in
(15).

These examples of violated empirical exhaustiveness demabe that
causal reasoning based on insufficient data is radicallyengedermined.
Nonetheless, inexhaustive lists allow for excluding soraesal structures
from possibly underlying a respective list. For exampleertension of the
list in table V will ever revealD to be a cause of eithet or B. The assumed
homogeneity of table V determines that, even thodgand B may or may
not be contained in an underlying causal structiiréhey are thus contained,
they areroot factorsof that structure. For botd and B there is a pair of rows
in table V such that they are the only varying factors in theit,[@nd, as upon
extending coincidence lists no coincidences are removedxinsions of
table V will be inhomogeneous with respectdcand B. Accordingly, CNA
can be said to identify all causal structures not featuriugsal relevance of
eitherC, D, or E to A and B as possibly underlying the coincidences in
table V. That set of causal structures also includes theestpicture, i.e.
the structure such that, B, C, D, andE are mutually causally independent.

Depending on the previous causal knowledge about the steicinder
investigation the amount of possible extensions of a givancidence list
may be narrowed down significantly. Certain causal reagpniethodolo-
gies available in the literature, hence, propose to supghrmexhaustive
data by assumptions embedded in the available causal kdgevigbout the
examined process. Thus, the underdetermination of causal reasoning based
on inexhaustive data may be compensated by additional Icassamptions.
Or put differently, the amount of elements in the set of stes assigned
to an inexhaustive list as V can be reduced if it is e.g. knowfolehand
that certain factors cannot be causally related or that daster can only
be the effect and not the cause of some other factor. Howexrexnever
such previous causal knowledge is not available, inexhausmpirical data
inevitably underdetermines causal inferences.

2 Cf. e.g. (Ragin, 1987), ch. 7, (Ragin, 2000), pp. 139-148-202, 300-308.
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11. Summary

The causal structures and the data analyzed in this papaolalie the causal
faithfulness assumption and, accordingly, are not pred#ssby standard
algorithms analyzing causal Bayesian networks as predente in (Spirtes
et al., 2000). The procedure developed in this paper rerakesministic
causal structures mechanically analyzable notwithstanthie fact that they
violate faithfulness.CNA implements Boolean techniques and is custom-
built for deterministic structures. Contrary to other altftons embedded in
the Boolean tradition as Ragini@gC A-algorithm,CNA does not presuppose
that factors operating as causes in an investigated steuate independent.
Dropping that independence assumption, on the one hardensNA capa-
ble of analyzing chainlike structures, on the other haneygmtsCNA from
simply drawing on standard Quine-McCluskey optimizationew it comes
to minimalizing deterministic dependencies.

Sections 3 and 4 have shown that not every coincidence lstusally
analyzable. Moreover, in section 9 we have seen that notoalicitlence
lists can be unambiguously identified to be the result of gexific causal
structure. Like algorithms for causal Bayes n&f$yA sometimes assigns
multiple structures to corresponding data. AccordinGIMA cannot be seen
as acompletanference procedure in the sense that it assigns a spedific de
ministic structure to a coincidence list whenever the ddiecces in that list
are in fact the result of such a structure. Empirical data besufficient to
unambiguously uncover its causal regularities. Howeber,daim defended
in this paper is tha€CNA is acorrect causal inference procedure in the sense
that wheneveCNA assigns a set containing one or more deterministic struc-
ture(s) to a homogenous coincidence list, that list is it fpamerated by a
member of that set.
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