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In these notes, we explain how the rules for limits and continuity of functions of a single
variable also hold for functions of several variables.

1 Statements

Theorem 1.1 (Rules for limits). Let f and g be functions of n variables, and let ¢ be a
function of one variable.

1. (Sum.) If f and g have a limit at @, then:

2. (Product.) If f and g have a limit at @, then:

lim (/(2)9(7)) = (1im £(7)) (lim (7))

r—a r—ad

3. (Quotient.) If f and g have a limit at @, and limz_,z g(Z) # 0, then:

f(f) o hmf_ﬂj f(f)
(@

Z—a g(f) N hmf_ﬁg
4. (Composition.) If limz_ .z f(Z) = L and ¢ is continuous at L, then
lim o (£(2)) = ¢ (lim /(7)) = @(L).
r—a r—a

Proof. 1. Let € > 0. Since f has a limit L; at @, there is a number d; > 0 satisfying the
implication
€
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Likewise, since g has a limit L, at d, there is a number 9, > 0 satisfying the implication

0< |7 —a <52;»|g<f)—L2|<§.

Take 6 := min{dy, d2}. For any input Z satisfying 0 < |¥ — @| < 0, we have

This proves limz .,z (f(Z) + g(&)) = L1 + Lo.
Parts (2), (3), and (4) are proved similarly. O

Corollary 1.2 (Rules for continuity). Let f and g be functions of n variables, and let ¢ be
a function of one variable.

1. (Sum.) If f and g are continuous at @, then f + g is continuous at @.
2. (Product.) If f and g are continuous at @, then fg is continuous at a.
3. (Quotient.) If f and g are continuous at @, and g(a@) # 0, then % is continuous at a.

4. (Composition.) If f is continuous at @, and ¢ is continuous at f(d), then the compo-
sition @ o f is continuous at a.

Proof. 1. We have:

Parts (2), (3), and (4) are proved similarly. O



2 Examples

To simplify the notation, we will work with functions of two variables.

Exercise 2.1. Using the epsilon-delta definition, show that the projection functions f(x,y) =
x and g(z,y) = y are continuous everywhere.

Proposition 2.2. Polynomials are continuous everywhere.

Proof. Constant functions are continuous everywhere. We know from 2.1 that the functions
f(z,y) = x and g(z,y) = y are continuous everywhere. By the product rule, monomials
cx'y’ for some constant ¢ € R and integers 4,5 > 0 are also continuous everywhere. A
polynomial p(z,y) is a sum of such monomials, and is therefore continuous everywhere, by
the sum rule. O]

Definition 2.3. A rational function is a quotient of two polynomials.

Example 2.4. The function
Srly — vy + 1
I@y) = S —6

is a rational function.

Proposition 2.5. Rational functions are continuous on their domain.

ggizg is the region where the

Proof. The maximal domain of a rational function f(z,y) =
denominator is non-zero:

D = {(z,y) € R* | q(x,y) # 0}.

Both functions p and ¢ are polynomials, hence continuous everywhere, by 2.2. By the quotient
rule, the function f = 15” is continuous wherever ¢ is non-zero, in particular on the domain of

f. O
Example 2.6. For the rational function from Example 2.4, let us compute lim, ) (1,2) f(, ).

Note that the denominator 22 + zy — 6 is non-zero at the point (1,2):
2(1)°+ (1)(2) —6=2+2—-6=—2
and therefore f is continuous at (1,2). The limit is obtained by evaluating f at the point:

lim f(z,y) = f(1,2)

(zy)—(1,2)
_5(12%(2) - (2 +1
212+ (1)(2) -6
10-8+1




Remark 2.7. The same argument would not work to compute lim, 1.4y f(2,¥), since the
denominator 22° + zy — 6 is zero at the point (1,4):

2(1)?+ (1)(4) —6=2+4—6 = 0.
We would need to work harder to find this limit or prove that it does not exist.
Example 2.8. Consider the function

e™ cos (x3y? — 5y%)

Ty = —FZ="51

and let us find lim, ) 1,-1) f(2,¥).

Note that xy and z3y? — 5y® are polynomials, and thus continuous everywhere. By the
composition rule, ¢ is continuous everywhere and so is cos(z3y* — 53®). By the product
rule, the numerator e® cos(z3y? — 5y?) is continuous everywhere.

By the composition rule, the denominator \/2x + y + 1 is continuous wherever the radicand is
non-negative: 2z+y+1 > 0. By the quotient rule, f is continuous wherever the denominator
is (defined and) non-zero, which is precisely where 2z +y + 1 > 0.

In our case, the radicand 2z + y + 1 is positive at the point (1, —1):
2+ (-1)+1=2
and therefore f is continuous at (1, —1). The limit is obtained by evaluating f at the point:

(w,y)lgg,—l) fla,y) = f(1,-1)
_ eMED cos ((1)3(=1)% — 5(—1)3)
V2() + (-1 +1
V2
€™’ cos(6)

V2




3 Bonus Feature

The following example illustrates why using rules for limits and continuity is a good idea.

Example 3.1. Using the epsilon-delta definition, let us show that the function f(z) = 2? is

continuous everywhere, i.e., at all z € R.

We want to show that f is continuous at a, for any a € R. Let € > 0. Using the factorization
¥ —a® = (x — a)(2® + az + a*), we obtain:

|[f(z) = f(a)| = |2* — o
= |z — a||2? + az + ?|
< |z —a| (|2*| + |az| + |a*)
= |z —a| (|2 + lal|z] + |a]*)
<z —a|((la] + 1)> + |a|(Ja] + 1) + |a|*) if we take 6 < 1
< le—al ((Jal + 1) + (ol + 1)(lal + 1) + (Ja] + 1))
= |z —a|3(Ja +1)*
< §3(|a| +1)*
whenever |z — a| < ¢ holds, and we want that expression to be at most e:

§3(|lal + 1) < .

By taking § = min{1 )2}, we obtain:

|f(z) = f(a)] < 63(|lal + 1)

€
< ——3 1)2

=€

whenever |z — a| < § holds. O



