\textbf{A-INFINITY STRUCTURE ON EXT-ALGEBRAS}

\textbf{Abstract.} We give an introduction to A-infinity algebras in these notes, which is a generalisation of differential graded algebras. We show that for a graded algebra A, the Ext-algebra $\text{Ext}^*_A(k_A, k_A)$ has an A-infinity structure that contains sufficient information to recover A. On the other hand, we will present an example where the usual associative algebra structure on $\text{Ext}^*_A(k_A, k_A)$ cannot recover A. We also show that the A-infinity structure is closely related to Massey products.

0.1. Differential graded algebras

We begin by reviewing the definition of a differential graded algebra. Throughout the notes, we use k to denote the ground field unless otherwise stated.

\textbf{Definition 0.1.} A differential graded algebra (in short DG algebra) A over a commutative ring k is a \mathbb{Z}-graded k-algebra $A = \bigoplus_{p \in \mathbb{Z}} A^p$ together with a differential d of degree 1 such that
\[d(ab) = (da)b + (-1)^p a(db) \]
for all $a \in A^p$ and $b \in A$. In particular, A is a complex of k-modules with differentials $d^n : A^n \to A^{n+1}$, and the cohomology ring HA of a DG k-algebra A is a graded associative ring over k with
\[HA^n = \ker(d^n)/\text{im}(d^{n+1}). \]

\textbf{Example 0.2} (Ext-algebra as the cohomology of a DG algebra). Let A be a connected graded associative algebra over k, and let k_A be the trivial A-module concentrated in degree 0. The Ext-algebra $\text{Ext}^*_A(k_A, k_A)$ is the cohomology ring of $\text{End}_A(P)$, where P is a free A-resolution of k_A. $\text{End}_A(P)$ is a DG algebra with
\[\text{End}_A(P)_p = \prod_{n \in \mathbb{Z}} \text{Hom}_A(P_n, P_{n+p}) \]
and differential d given by
\[d_p(f) = f \partial + (-1)^{p+1} \partial f, \]
with $f \in \text{End}_A(P)_p$ being a map of degree p.

0.2. Recovering the associative algebra from the Ext-algebra

For a connected graded associative algebra A over k, we have seen that the classical Ext-algebra $\text{Ext}^*_A(k_A, k_A)$ is the cohomology ring of the DG algebra $\text{End}_A(P)$. Our question is to recover the algebra A from $\text{Ext}^*_A(k_A, k_A)$. Consider the following example:

\textbf{Example 0.3.} Let $A = k\langle x_1, x_2 \rangle /(f)$, with $f = x_1 x_2 + x_2 x_1$ in degree 2. One can show that the minimal free resolution of k_A has the form
\[\cdots \to 0 \to Ar \to Ae_1 \oplus Ae_2 \to A \to k \to 0, \]
with e_i maps to x_i and r maps to the relation, and
\[\text{Ext}^*_A(k_A, k_A) = \begin{cases} k & s = 0, \\ k(-1) \oplus k(-1) & s = 1, \\ k(-2) & s = 2, \\ 0 & \text{else}. \end{cases} \]
Write \(E = \text{Ext}^*_A(k_A, k_A) \). In general, we know that \(E^1 \) is dual to \(A_1 \) and \(E^2 \) is dual to the relation \(R = \langle f \rangle = \oplus_{n \geq 2} R_n \) in \(A \). Moreover, restricting the multiplication on \(E \) to \(E^1 \otimes E^1 \), we get a map

\[
E^1 \otimes E^1 \to E^2
\]

that is dual to the inclusion \(R_2 \to A_1 \otimes A_1 \). In this sense, we can recover \(A \) from the Ext-algebra \(E \). See [1] Section 6 for more details of the example.

Before we sketch a proof of the theorem, let us review the example.

By “lifting the identity map”, we mean that there is also a projection map \(p : A \to HA \) that induces a quasi-isomorphism. We will see in the proof that we have choose the projection \(p \) as a vector space splitting. Then the section map \(HA \to A \) will respect the chosen projection \(p \). The maps are not canonically defined.

0.3. \(A \)-infinity algebras

Definition 0.4. An \(A \)-infinity algebra over a base field \(k \) is a \(\mathbb{Z} \)-graded vector space

\[
A = \bigoplus_{p \in \mathbb{Z}} A^p
\]

together with a family of graded \(k \)-linear maps

\[
m_n : A^\otimes n \to A,
\]

of degree \(2 - n \) for \(n \geq 1 \), satisfying the Stasheff identities \(\text{SI}(n) \):

\[
\sum (-1)^{r+s+t} m_u(id \otimes r \otimes m_s \otimes id \otimes t) = 0,
\]

where the sum runs over all decompositions \(n = r + s + t \), and \(u = r + 1 + t \).

For \(n \) small, the identities have the form:

\begin{itemize}
 \item \(\text{SI}(1) \) \(m_1 m_1 = 0 \);
 \item \(\text{SI}(2) \) \(m_1 m_2 = m_2 m_1 + m_1 \otimes id + id \otimes m_1 \);
 \item \(\text{SI}(3) \) \(m_2(id \otimes m_2 - m_2 \otimes id) = m_1 m_3 + m_3(m_1 \otimes id \otimes id + id \otimes m_1 \otimes id + id \otimes id \otimes m_1) \).
\end{itemize}

In particular, a DG algebra is an \(A \)-infinity algebra with \(m_1 = d \) and \(m_2 = m \) and \(m_n = 0 \) for \(n > 2 \).

We can have a grading on the spaces \(A^p \) too, with

\[
A^p = \bigoplus_{r \in G} A^p_r
\]

indexed by an abelian group \(G \). This grading \(i \) is called the Adams grading, and is denoted by a lower index. The structure maps \(m_n \) are required to respect the Adams grading.

In our examples, we always have \(G = \mathbb{Z} \). In this case, we say that the \(A \)-infinity algebra \(A \) is

Adams connected

if \(A_0 = k \), and \(A = \oplus_{n \geq 0} A_n \) or \(A = \oplus_{n \leq 0} A_n \).

A morphism of \(A \)-infinity algebras consists of a family of \(k \)-linear graded maps

\[
f_n : A^\otimes n \to B
\]

satisfying the Stasheff morphism identities. A morphism \(f \) is a quasi-isomorphism if \(f_1 \) is a quasi-isomorphism.

Theorem 0.5. Let \(A \) be an \(A \)-infinity algebra, and let \(HA \) be the cohomology ring of \(A \). Then there is an \(A \)-infinity structure on \(HA \) with \(m_1 = 0 \) and \(m_2 \) induced by the multiplication on \(A \). And there is a quasi-isomorphism \(HA \to A \) lifting the identity map of \(HA \). This \(A \)-infinity structure on \(HA \) is unique up to quasi-isomorphism.

By “lifting the identity map”, we mean that there is also a projection map \(p : A \to HA \) that induces a quasi-isomorphism. We will see in the proof that we have choose the projection \(p \) as a vector space splitting. Then the section map \(HA \to A \) will respect the chosen projection \(p \). The maps are not canonically defined.

Before we sketch a proof of the theorem, let us review the example.
Example 0.6. For $A = k[x_1, x_2]/(f)$ with $f \in A^q$. We see that the only non-zero multiplication on E is m_q. And one can show that the restriction of m_q to $(E^1)^{\otimes q}$ is dual to the inclusion $R_n \to A^{\otimes n}$. The result is made more general in [1, Theorem A] for $\sum_{s+t=n,s,t \geq 1} \lambda_2(\lambda_s \otimes \lambda_t)$, assuming that λ_s and λ_t are defined for smaller s and t. One immediately sees that there are two problems here: the cohomology plays no role in this formula, and the degrees do not match. The right formula that will fix the problems is as follows:

$$\lambda_n = \sum_{s+t=n,s,t \geq 1} \lambda_2(G \lambda_s \otimes G \lambda_t),$$

where G is a homotopy on A from the identity map id_A to the projection p onto HA. Here we identify HA with $\oplus H^n$ as a subspace of A, and choose a splitting $A^n = B^n \oplus H^n \oplus L^n$, and p is the projection onto the summand $H \subseteq A$. Since $L^{n-1} \cong B^n$, we can choose G to respect the splitting: $G|B^n \cong L^{n-1} \subseteq A^{n-1}$ and $G|H^{n} \oplus L^n = 0$. For $n = 1$, we set $G \lambda_1$ formally to be the identity map. Now one can check that the maps

$$p(\lambda_n|HA) : HA \to HA$$

endows HA with an A-infinity structure.

0.4. A-infinity algebras and Massey products

Let A be a DG algebra. Let α_1, α_2, and α_3 be classes in HA represented by a_{01}, a_{12}, and a_{23} in A. Assume that $\alpha_1 \alpha_2 = \alpha_2 \alpha_3 = 0$. Set $a_{02} = G(a_{01}a_{12})$ and $a_{13} = G(a_{12}a_{23})$. Then $\partial(a_{02}) = a_{01}a_{12}$ and $\partial(a_{13}) = a_{12}a_{23}$. Up to signs, this is what we need to define the three-fold Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle \in HA$, so $(-1)^b m_n(\alpha_1 \otimes \alpha_2 \otimes \alpha_3) \in \langle \alpha_1, \alpha_2, \alpha_3 \rangle$. In general, this fact holds for higher products too.

Theorem 0.7. Let A be a DG algebra. Let $\alpha_1, \ldots, \alpha_n$ be classes in HA such that the n-fold Massey product $\langle \alpha_1, \ldots, \alpha_n \rangle$ is defined. Then

$$(-1)^b m_n(\alpha_1 \otimes \cdots \otimes \alpha_n) \in (a_1, \ldots, a_n),$$

where $b = 1 + \deg(\alpha_{n-1}) + \deg(\alpha_{n-3}) + \deg(\alpha_{n-5}) + \cdots$.

Remark 0.8. Recall that the homotopy $G : A \to A$ depends on a splitting of A, so we can have different homotopies G that produce different classes in the Massey product, but this process does not necessarily produce all the classes in the Massey product.

Example 0.9. Let p be an odd prime, and let k be a field of characteristic p. Take $A = k[x]/(x^p)$ with x in Adams degree 2d. Then the Ext-algebra of A is

$$\text{Ext}^*_A(k_A, k_A) \cong \Lambda(y_1) \otimes k[y_2],$$

with y_1 in degree $(1, -2d)$ and y_2 in degree $(2, -2dp)$. Moreover, we have $m_p(y_1 \otimes \cdots \otimes y_1) = y_2$, and one can compute that the p-fold Massey product $\langle y_1, \ldots, y_1 \rangle = \{(-1)^{(p+1)/2}y_2\}.$

References