Math 241 - Calculus II1
Spring 2012, section CL1
§ 16.9. Gauss’s law

In these notes, we discuss Gauss’s law and why it is interesting not only for physics, but also
from a mathematical viewpoint.

1 Statement

The statement of Gauss’s law is as follows. The (net) charge enclosed by a closed surface S is
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where E is the electric field and €p is a constant, called the permittivity of free space.

More details can be found in the textbook, § 16.7 after Example 5 and § 16.9 after Example 2.

2 Sketch of proof

Gauss’s law follows from Coulomb’s law and the divergence theorem.
By Coulomb’s law, an electric charge @) at the origin produces the electric field
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where 7 = (z,y, 2) is the position vector. Such a vector field is sometimes called an inverse
square field, because its magnitude
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is proportional to the inverse of the square of the distance to the origin (or some other base-
point). In symbols: |E(7)| \ﬂ%
Step 1: Sphere around the origin

Let S be the sphere of radius R centered at the origin, defined by the equation 22 +1y%+ 22 = R2.
Orient S outward, so that the normal vector 77 points away from the origin. The flux of E across



S is

// E-7dS = / |E|dS because E is parallel to
s
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Step 2: Weird surface around the origin

Now let S” be some arbitrary closed surface enclosing the origin. Orient S” outward. What is
the flux of E across S’? We can find the answer using the divergence theorem.

Writing p = |F] = 1/22 + 32 + 22 consider the vector field F = % = pig(x, Yy, z), which is just

E scaled by a constant. Noting - 9 — = the divergence is
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Therefore we have
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or in words, F is incompressible.



By the divergence theorem, the flux across S’ is
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where S is a sphere around the origin (of any radius).

Let us describe the argument in more detail. Pick a giant sphere S which encompasses all of S’,
and orient S outward. Let D be the solid region between S and S’, and orient the boundary of
D so that the normal vector points out of D, yielding 0D = S — S’. Applying the divergence
theorem to the region D, we obtain
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which can be interpreted as
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In other words, the flux across S is the same as the flux across S’, as claimed above.

Note that the divergence theorem does not apply to the region enclosed by S, i.e. the punctured
solid ball defined by 0 < 2% + 3% + 22 < R?, because that region is not closed. The singularity
at the origin prevents us from using the divergence theorem.

Step 3: Weird surface not around the origin

Now what if S” is a closed surface that does not enclose the origin? Then S” is the boundary
of a solid region D" which does not contain the origin, and the divergence theorem applies:



In short, we have shown that if S is a closed surface (with outward orientation), then the flux
of the electric field E across S is

/ / Fords = {% if S encloses the origin
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0 if S does not enclose the origin.

We can rewrite this as

. // B.rds — {Q if S encloses the origin
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0 if S does not enclose the origin

which is equal to the (net) charge enclosed by S. This proves Gauss’s law in the case of a single
(pointlike) charge.

Step 4: Many electric charges
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For a finite system of charges (); at positions 7;, consider the electric field E,(f') = T

produced by each charge. The total electric field E is their superposition:
E=FE +FEy,+ ...+ En.

For any closed surface S (oriented outward), €y times the flux of the electric field E across S is
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= net charge enclosed by S.

This proves Gauss’s law in the case of finitely many (pointlike) charges.

A similar argument proves Gauss’s law in the case of a continuous distribution of electric
charges, described by a charge density function.

3 Again, which vector fields are curls?

In section § 16.8, we asked the question: How do we know if a vector field F'is the curl of some
vector field G7 We found a necessary condition: a curl is always incompressible, i.e.

div(curl G) = 0.

Then we wondered if that condition is sufficient: Given div F = 0, can we conclude that F is
the curl of some vector field? We provided the answer — NO! — without justification. Now we
can justify that negative answer.



Consider the inverse square vector field F=1lp=1 (x,y, z). It is incompressible, i.e.
p
div F =0

as computed in (1). However, F' is not the curl of a vector field. Indeed, we have found a closed
surface S (say, a sphere centered at the origin) such that the flux of F' across S is non-zero:
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Here we used Stokes’ theorem, which implies that the flux of curl G across any closed surface

must be zero:
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Therefore F is not a curl.

Remark 3.1. With a bit of topology, one can show that property (2) characterizes curls: A
vector field is a curl if and only if its flux across any closed surface is zero.

Recall that there is a partial converse. The condition of being incompressible is sometimes
sufficient for being a curl.

Proposition 3.2. Let Fbea continuously differentiable vector field on all of R3. ]fﬁ satisfies
div ' = 0, then F is the curl of some vector field. In words: a vector field on all of R? is a curl
if and only if it s incompressible.

Proof. The key point is that in R3, a closed surface S always bounds a solid region D.

Let F be a vector field satisfying div F = 0 and let .S be any closed surface. Let D be the solid
region bounded by S. Then the flux of F' across S (oriented outward) is
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By 3.1, F is the curl of some vector field. O]



