Math 416 - Abstract Linear Algebra
Fall 2011, section E1
Working in coordinates

In these notes, we explain the idea of working “in coordinates” or coordinate-free, and how the
two are related.

1 Expressing vectors in coordinates

Let V be an n-dimensional vector space. Recall that a choice of basis {vy,...,v,} of V is
the same data as an isomorphism ¢: V ~ R" which sends the basis {vy,...,v,} of V to the
standard basis {ej,...,e,} of R". In other words, we have
©: VSR
Vi > €4
(&1

V=CU + ...+, —

Cn

This allows us to manipulate abstract vectors v = cyv1 + ... + ¢,v, simply as lists of numbers,
1

the coordinate vectors | : | € R™ with respect to the basis {vy,...,v,}. Note that the
CTL

coordinates of v € V depend on the choice of basis.

1

Notation: Write [v](,} := | i | € R for the coordinates of v € V' with respect to the basis
CTL

{v1,...,v,}. For shorthand notation, let us name the basis A := {vy,...,v,} and then write

[v] 4 for the coordinates of v with respect to the basis A.

Example: Using the monomial basis {1, x, 2%} of P, = {ag + a1z + asz? | a; € R}, we obtain
an isomorphism

0: Py S R3

Qo

ap + a1 x + a2x2 — |ay

a2
Qo
In the notation above, we have [ag + ayz + agxz]{xi} = |lay
a2



Example: Let us use a different basis of P,, the basis “expanded around 5” {1, z—5, (z—5)?}.
Then we have

1=1

r=(x—5)+5
=5(1) + 1(z — 5)

2? = (v — 5)* + 10z — 25
= (x—5)>+10(x —5) + 25
=25(1) + 10(x — 5) + 1(z — 5)?

so that in the notation above, the coordinates of the standard monomials are

1
@53 = |0
_O_
-
[@]{(@-5y = |1
_O_
25
[{L‘2]{(I,5)i}: 110

2 Expressing transformations in coordinates

If vector spaces can be expressed in coordinates, then linear transformations between them can
also be expressed in coordinates.

Theorem: Let V be an n-dimensional vector space, W an m-dimensional vector space, and
T:V — W alinear transformation. Let A = {vy,...,v,} beabasisof V and B = {wy, ..., wy,}
a basis of W. Then there is a unique m x n matrix A satisfying

[Tvls = Alv]a
for all v € V, given by the formula
A= [[Tv]z [Twlg ... [Tvalg]-

We denote this matrix [T]g4 and call it the matrix representing 7' with respect to the bases

A and B.



Slick proof: The choice of bases A and B defines isomorphisms ¢: V ~ R™ and ¢: W ~ R™.
There is a unique linear transformation A: R™ — R™ making the diagram

T
V — W

elx =]

Rn > Rm
A

commute, namely the transformation A = YT !. By §1.3.2, A corresponds to the m x n

matrix A whose i™® column is YT~ 1(e;) = vTv; = [Tv;]5. B
Direct proof: Since T is linear, it is determined by its values Tvy, Tvs, ..., Tv, on a basis.
More precisely, for v = cyv; + ... + ¢,v,, we have
Tv=T(c1v1+ ...+ cyvn) = 1 Tvr + ... + ¢, Toy,.
Taking coordinates with respect to the basis B of W, we obtain

[Tvlg = c1[Tvilg + ... + cu[Tvn]s

- [[TUl]B [Tvaly .. [Tvn]B]
- [[Tvl]B [Tvalp - [Tvn]g] [v]4. H

Example: Consider the differentiation operator D: P, — P; which sends p(x) to p/(x). Let
us find the matrix representing D with respect to the monomial bases {1, xz, 22} of P, and {1, z}
of P;. We have

D(1)=0
D(z) =1
D(x?) =2z
which have coordinate vectors

0
DM = |y
D) = |
T {1,93} - _0_
o
(D) 0y = |4

so that D is represented by the matrix

010
[D}{l,x}{l,z,gﬂ} - |:O O 2} .

3



Now keep the monomial basis {1, x,z?} in the source P, and take the basis expanded around
5 {1,z — 5} in the target P;. Then we have

which have coordinate vectors

D] = )

Dl = |

10
DEoen = |y |
so that D is represented by the matrix

0 1 10
[D](1,0-5}{1,2,22) = {0 0 2} :

Now take the basis expanded around 5 {1,z — 5, (z — 5)?} in the source P, and keep the
monomial basis {1,z} in the target P,. Then we have

D(1) =0
D(x—5)=1
D(x —5)* =2(x —5) = —10 + 2z

which have coordinate vectors

Dl = |g

[D(z — 5)]{1,39} =

[—10
Dle =570 = |
so that D is represented by the matrix

0 1 —10
[D]1,2}1{1,0-5,-5)2} = [0 0 92 ]

Finally, take the bases expanded around 5 {1,z — 5, (z — 5)?} in the source P, and {1,z — 5}
in the target P;. Then we have

D(1)=0
D(x—-5)=1
D(x —5)* =2(z — 5)



which have coordinate vectors

DM s) = |
Dz~ 510y =

[D(x = 5)*](1,0-5) =

so that D is represented by the matrix

[D]{l,a:—5}{1,x—5,(a:—5)2}: |:0 0 2|

3 Switching between the two

The discussion above has two important consequences — as long as we don’t mind going back
and forth between coordinate world and coordinate-free world.

Upshot 1: The study of finite-dimensional vector spaces reduces to the study of spaces of
the form R", where we can compute everything explicitly.

Upshot 2: Every statement in coordinates has a coordinate-free analogue.

Let us illustrate this principle with the following example.

Theorem: Rank-nullity theorem, in coordinates. Let A be an m x n matrix. Then we
have
dim Null A + rank A = dim Null A 4+ dim Col A = n.

Theorem: Rank-nullity theorem, coordinate-free. Let V' be an n-dimensional vector
space, W an m-dimensional vector space, and T: V — W a linear transformation. Then we
have

dimkerT' + rank T" = dimker T + dimim 7 = dim V = n.

Proof: Pick isomorphisms ¢: V ~ R" and ¢: W ~ R™, and let A be the matrix representing
T in coordinates:

T
V — W

ol= x|

R* — R™.
A

We have ker T' = ¢~ Null A which implies

dimker 7" = dim (gp‘l Null A) = dim Null A
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and also im T = 1~! Col A which implies
dimim 7" = dim (wfl Col A) = dim Col A.
Using the rank-nullity theorem in coordinates, we obtain

dimkerT +dimim7T = dimNull A + dim Col A =n. R



