Math 416 - Abstract Linear Algebra
Fall 2011, section E1
Gram-Schmidt orthogonalization

Let us illustrate the fact that the Gram-Schmidt orthogonalization process works in any inner
product space, not just R (or C").

Example: Consider the real inner product space C[0,1] := {f: [0,1] — R | f is continuous }
with its usual inner product

(f,9) = /0 f(t)g(t)dt.

Apply Gram-Schmidt to the linearly independent collection {v; = 1, vy = t}.
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The resulting orthonormal basis of Span{1,t} is {1,/3(2t — 1)}.

Remark: If we only want orthogonal vectors, without caring about their norms, then the
algorithm outputs the orthogonal basis {1,¢ — $}.



