Math 416 - Abstract Linear Algebra
Fall 2011, section E1
Least squares solution

1. Curve fitting

The least squares solution can be used to fit certain functions through data points.
Example: Find the best fit line through the points (1,0), (2,1), (3, 1).
Solution: We are looking for a line with equation y = a + bz that would ideally go through

all the data points, i.e. satisfy all the equations
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but the system has no solution. Instead, we find the least squares fit, i.e. minimize the sum of
the squares of the errors

In matrix form, we want the unknown coefficients [ } to satisfy the system
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which is precisely finding the least squares solution of the system above. Writing the system as
Ac =y, the normal equation is
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and we compute
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The normal equation has the unique solution
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so that the best fit line through the data points is y = —
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Remark: If we hate the formula for the inverse of a 2 x 2 matrix, or if we need to solve a
bigger system, we can always use Gauss-Jordan:
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The unique solution to the system is indeed [ 31 .
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2. Arbitrary inner product spaces

Just like Gram-Schmidt, the least squares method works in any inner product space V', not just
R™ (or C™). Assume that the subspace E C V onto which we are projecting is finite-dimensional.

Example: Consider the real inner product space C[0,1] := {f: [0,1] — R | f is continuous }
with its usual inner product

(f,9) = /0 f(t)g(t)dt.

Find the best approximation of the function t? by a polynomial of degree at most one.

Solution using least squares: We are looking for a polynomial of degree at most one a + bt
that would ideally satisfy
a+ bt =t

which is clearly impossible, i.e. t* ¢ Span{l,t}. The best approximation is the vector in
Span{1, ¢} minimizing the error vector

a+ bt — t*

which is achieved exactly when the error vector is orthogonal to Span{1,t}. This imposes two

conditions:
(a+0bt—t*1)=0
(a+bt —t*t)=0
which we can rewrite as
a(l,1) +b(t, 1) = (t2, 1)
a(1,t) + b(t,t) = (£%,1)
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(This is the normal equation. The coefficient matrix here plays the role of AT A in the previous
example, i.e. the square matrix of all possible inner products between vectors in the basis of F,
in this case {1,t}. Likewise, the right-hand side plays the role of A4 in the previous example,
i.e. the list of all possible inner products between the basis vectors {1,¢} of E and the vector
t? not in E which we want to project down to E.)

or in matrix form:

Computing the inner products involved, the system can be written as
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which we now solve:
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The least squares solution is {Z] = { 6} so that the best approximation of ¢? by a polynomial
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of degree at most one is — 6

Remark: If we hate Gauss-Jordan, we can always use the formula for the inverse of a 2 x 2
matrix, so that the unique solution to the system is
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http://www.youtube.com/watch?v=1BdASZNPIv8
Solution using Gram-Schmidt: In a previous exercise, we obtained the orthonormal basis
{u; = 1,us = v/3(2t — 1)} of Span{1,t}. Using this, we compute the projection
Projy 1 (t%) = Projry, u (%)
= (tz, U1>U1 + (t2, UQ)UQ
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