Math 527 - Homotopy Theory Additional notes

Martin Frankland

March 4, 2013

1 Fiber sequences

Definition 1.1. Let (X, x_0) be a pointed space. The **path space** of X is the space $PX = \{ \gamma \in X^I \mid \gamma(0) = x_0 \}$

of paths in X starting at the basepoint. This can be expressed as the pullback

$$PX \longrightarrow X^{I}$$

$$\downarrow \qquad \ \ \, \bigsqcup \qquad \qquad \downarrow^{ev_{0}}$$

$$\{x_{0}\} \longleftrightarrow \qquad X$$

Definition 1.2. The **path-loop fibration** on X is the evaluation map $ev_1: PX \to X$.

This is indeed a fibration, in fact the fibration $P(\iota)$ obtained when replacing the map $\iota \colon \{x_0\} \hookrightarrow X$ by a fibration (via the path space construction).

The (strict) fiber of ev_1 is the based loop space

$$\Omega X = \{ \gamma \in X^I \mid \gamma(0) = \gamma(1) = x_0 \},\$$

hence the name of the fibration. We often write $\Omega X \to P X \to X$.

Definition 1.3. Let $f: (X, x_0) \to (Y, y_0)$ be a pointed map between pointed spaces. The homotopy fiber of f is

$$F(f) := \{ (x, \gamma) \in X \times Y^I \mid \gamma(0) = y_0, \gamma(1) = f(x) \}.$$

This can be expressed as the pullback

$$F(f) \longrightarrow PY$$

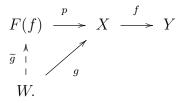
$$\downarrow \qquad \ \ \, \bigsqcup \qquad \downarrow^{ev_1}$$

$$X \longrightarrow Y$$

so that the projection $p: F(f) \to X$ given by $p(x, \gamma) = x$ is automatically a fibration.

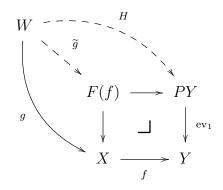
The sequence $F(f) \xrightarrow{p} X \xrightarrow{f} Y$ is called a **fiber sequence**

Proposition 1.4. Let W be a pointed space and $g: W \to X$ a pointed map. Consider the lifting problem in **Top**_{*}



Then lifts $\tilde{g}: W \to F(f)$ of g correspond bijectively to pointed null-homotopies of the composite $fg: W \to Y$. In particular, a lift exists if and only if fg is pointed null-homotopic.

Proof. Note that limits (but not colimits) in **Top** and **Top**_{*} agree, so that the pullback diagram defining F(f) can be viewed in either category. Lifts of g



correspond to (pointed) maps $H: W \to PY$ making the diagram above commute, i.e. satisfying $ev_1 \circ H = fg$. These are precisely pointed null-homotopies of fg.

The particular case of the statement can be reinterpreted as follows.

Corollary 1.5. For any pointed space W, applying the functor $[W, -]_*$: $\operatorname{Top}_* \to \operatorname{Set}_*$ to the fiber sequence $F(f) \xrightarrow{p} X \xrightarrow{f} Y$ yields

$$[W, F(f)]_* \xrightarrow{p_*} [W, X]_* \xrightarrow{f_*} [W, Y]_*$$

which is an exact sequence of pointed sets.

There is a canonical "inclusion of the strict fiber into the homotopy fiber" $\iota: f^{-1}(y_0) \to F(f)$ defined by

$$\iota(x) = (x, c_{y_0})$$

where $c_{y_0} \colon I \to Y$ is the constant path at $y_0 \in Y$.

Proposition 1.6. If $f: X \to Y$ is a fibration, then the canonical map $\iota: f^{-1}(y_0) \to F(f)$ is a homotopy equivalence.

Proof. Homework 6 Problem 2.

Remark 1.7. The homotopy fiber F(f) is rarely a kernel of f in the homotopy category $Ho(\mathbf{Top}_*)$.

Exercise 1.8. Let (X, x_0) and (Y, y_0) be pointed spaces. Consider the sequence

$$X \xrightarrow{\iota_X} X \times Y \xrightarrow{p_Y} Y$$

where ι_X is the "slice inclusion" defined by $\iota_X(x) = (x, y_0)$ and p_Y is the projection onto the second factor. Show that $\iota_X \colon X \to X \times Y$ is the kernel of p_Y in Ho(**Top**_{*}).

Exercise 1.9. Consider the real axis inside the complex plane $\mathbb{R} \subset \mathbb{C}$, and the corresponding inclusion $\mathbb{R}^{n+1} \setminus \{0\} \subset \mathbb{C}^{n+1} \setminus \{0\}$. This descends to a map $\mathbb{R}P^n \to \mathbb{C}P^n$ on the quotients by the actions of $O(1) = \{-1, 1\} \subset \mathbb{R}^{\times}$ and $U(1) = S^1 \subset \mathbb{C}^{\times}$ respectively. As *n* goes to infinity, this defines a map $f : \mathbb{R}P^{\infty} \to \mathbb{C}P^{\infty}$. Alternately, *f* can be thought of as the map classifying the complexification of the tautological real line bundle over $\mathbb{R}P^{\infty}$.

Show that the map f does not admit a kernel in Ho(**Top**_{*}).

Remark 1.10. This shows in particular that $Ho(Top_*)$ is not complete, though it does have all small products, which are given by the Cartesian product as in Top_* .

2 Homotopy invariance

Note that taking the homotopy fiber is functorial in the input $f: X \to Y$, i.e. is a functor $\operatorname{Arr}(\operatorname{Top}_*) \to \operatorname{Top}_*$ from the arrow category of Top_* , and such that the map $F(f) \to X$ is a natural transformation. Thus, a map of diagrams

$$\varphi \colon \left(X \xrightarrow{f} Y \right) \to \left(X' \xrightarrow{f'} Y' \right),$$

which is a (strictly) commutative diagram in \mathbf{Top}_*

induces a map between homotopy fibers $\varphi_F \colon F(f) \to F(f')$ making the diagram

$$F(f) \xrightarrow{p} X \xrightarrow{f} Y$$

$$\varphi_F \downarrow \qquad \varphi_X \downarrow \qquad \varphi_Y \downarrow$$

$$F(f') \xrightarrow{p'} X' \xrightarrow{f'} Y'$$

$$(2)$$

in \mathbf{Top}_* commute. Moreover, this assignment preserves compositions (as in "stacking another square" below the right-hand square).

Let us study to what extent the homotopy fiber is a homotopy invariant construction.

Proposition 2.1. If a map of diagrams

$$\varphi \colon \left(X \xrightarrow{f} Y \right) \to \left(X' \xrightarrow{f'} Y' \right)$$

is an objectwise pointed homotopy equivalence, i.e. both maps $\varphi_X \colon X \xrightarrow{\simeq} X'$ and $\varphi_Y \colon Y \xrightarrow{\simeq} Y'$ are pointed homotopy equivalences, then the induced map on homotopy fibers $\varphi_F \colon F(f) \to F(f')$ is also a pointed homotopy equivalence.

Proof. Let $\psi_X \colon X' \to X$ and $\psi_Y \colon Y' \to Y$ be homotopy inverses of φ_X and φ_Y respectively. In the diagram (2), the composite $f\psi_X p' \colon F(f') \to Y$ is (pointed) null-homotopic, in fact by the (pointed) null-homotopy

$$f\psi_X p' \simeq \psi_Y \varphi_Y f\psi_X p'$$

= $\psi_Y f' \varphi_X \psi_X p'$
 $\simeq \psi_Y f' p'$
 $\simeq \psi_Y \circ *$ via the homotopy $\psi_Y(H')$
= *

where $H': f'p' \Rightarrow *$ is the canonical null-homotopy of $f'p': F(f') \to Y'$. This choice of null-homotopy of $f\psi_X p': F(f') \to Y$ defines a (pointed) map

 $\psi_F \colon F(f') \to F(f)$

which we claim is (pointed) homotopy inverse to φ_F .

 $\varphi_F \psi_F \simeq \mathrm{id}_{F(f')}$. The map

id:
$$F(f') \to F(f')$$

corresponds to $p' \colon F(f') \to X'$ and the canonical null-homotopy $H' \colon f'p' \Rightarrow *$. The map

$$\varphi_F \psi_F \colon F(f') \to F(f')$$

corresponds to $\varphi_X \psi_X p' \colon F(f') \to X'$ and the null-homotopy

$$f'\varphi_X\psi_Xp' = \varphi_Yf\psi_Xp'$$

$$\simeq \varphi_Y\psi_Y\varphi_Yf\psi_Xp'$$

$$= \varphi_Y\psi_Yf'\varphi_X\psi_Xp'$$

$$\simeq \varphi_Y\psi_Yf'p'$$

$$\simeq \varphi_Y\psi_Y\circ * \text{ via the homotopy }\varphi_Y\psi_Y(H').$$

The two maps are (pointed) homotopic, since they are related by operations of the form: replacing $\varphi_X \psi_X$ by $id_{X'}$.

 $\psi_F \varphi_F \simeq \mathrm{id}_{F(f)}$. Similar argument.

Corollary 2.2. The pointed homotopy type of the homotopy fiber F(f) only depends on the pointed homotopy class of f.

Proof. Let $f, g: X \to Y$ be pointed-homotopic maps, and let $H: X \wedge I_+ \to Y$ be a pointed homotopy form f to g. Proposition 2.1 ensures that the two induced maps on homotopy fibers in the (strictly) commutative diagram

$$F(f) \longrightarrow X \xrightarrow{f} Y$$

$$\simeq \downarrow \qquad \iota_0 \qquad f \qquad \parallel$$

$$F(H) \longrightarrow X \land I_+ \xrightarrow{H} Y$$

$$\simeq \uparrow \qquad \iota_1 \qquad f \qquad \parallel$$

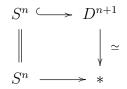
$$F(g) \longrightarrow X \xrightarrow{g} Y$$

are (pointed) homotopy equivalences.

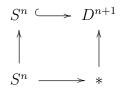
Remark 2.3. If the spaces involved X, Y, X', and Y' are well-pointed, then any pointed map which is an unpointed homotopy equivalence is automatically a pointed homotopy equivalence. In that case, the condition on φ is that it be an objectwise homotopy equivalence.

Remark 2.4. The map of diagrams $\varphi: \left(X \xrightarrow{f} Y\right) \to \left(X' \xrightarrow{f'} Y'\right)$ being an objectwise homotopy equivalence does *not* guarantee that there is a choice of homotopy inverses $\psi_X: X' \to X$ and $\psi_Y: Y' \to Y$ making the diagram in the reverse direction commute, i.e. satisfying $f \circ \psi_X = \psi_Y \circ f'$.

Example 2.5. Consider the (strictly) commutative diagram in \mathbf{Top}_*



where both downward arrows are (pointed) homotopy equivalences. Then there is no choice of "upward" homotopy inverses $S^n \to S^n$ and $* \to D^{n+1}$ making the "upward" diagram



commute strictly. Indeed, in any such strictly commutative diagram, the map $S^n \to S^n$ on the left is constant, hence not a homotopy equivalence.

Exercise 2.6. (Hatcher § 4.1 Exercise 9) Assume that a map of pairs $f: (X, A) \to (X', A')$ induces isomorphisms as in the diagram

for any basepoint $a_0 \in A$. Show that the 5-lemma holds in this situation, i.e. that the middle map $f_*: \pi_1(X, A) \to \pi_1(X', A')$ is also an isomorphism.

Recall that $\pi_1(X)$ naturally acts on $\pi_1(X, A)$, in such a way that $\partial(\alpha) = \partial(\beta)$ holds if and only if the elements $\alpha, \beta \in \pi_1(X, A)$ differ by the action, i.e. $\alpha = \gamma \cdot \beta$ for some $\gamma \in \pi_1(X)$.

Proposition 2.7. If a map of diagrams

$$\varphi \colon \left(X \xrightarrow{f} Y \right) \to \left(X' \xrightarrow{f'} Y' \right)$$

is an objectwise weak homotopy equivalence, i.e. both maps $\varphi_X \colon X \xrightarrow{\sim} X'$ and $\varphi_Y \colon Y \xrightarrow{\sim} Y'$ are weak homotopy equivalences, then the induced map on homotopy fibers $\varphi_F \colon F(f) \to F(f')$ is also a weak homotopy equivalence. *Proof.* Consider the map of long exact sequences of homotopy groups induced by the map of pairs $\varphi : (Y, X) \to (Y', X')$. The result follows from the natural isomorphism $\pi_n(Y, X) \cong \pi_{n-1}(F(f))$ and the generalized 5-lemma 2.6.

3 Iterated fiber sequence

Proposition 3.1. Consider the fiber sequence $F(f) \xrightarrow{p} X \xrightarrow{f} Y$. Then the inclusion of the strict fiber of p into its homotopy fiber F(p) is a homotopy equivalence making the following diagram commute:

$$\Omega Y \xrightarrow{\iota} F(f) \xrightarrow{p} X \xrightarrow{f} Y$$

$$\simeq \bigvee \varphi \swarrow$$

$$F(p)$$

where $\iota: \Omega Y \to F(f)$ is defined by

$$\iota(\gamma) = (x_0, \gamma) \in F(f) = X \times_Y PY.$$

Proof. The strict fiber of p is the subset of F(f)

$$p^{-1}(x_0) = \{ (x_0, \gamma) \mid \gamma(0) = y_0, \gamma(1) = f(x_0) = y_0 \} \cong \Omega Y$$

and the composite $\Omega Y \to F(p) \to F(f)$ is

 $\gamma \mapsto (\iota(\gamma), \text{ constant path at the basepoint of } F(f)) \mapsto \iota(\gamma).$

The inclusion of the strict fiber $\varphi \colon \Omega Y \xrightarrow{\simeq} F(p)$ is a homotopy equivalence, since p is a fibration (and using 1.6).

In light of the proposition, the sequence $\Omega Y \to F(f) \to X$ is sometimes also called a fiber sequence.

Proposition 3.2. The following triangle

$$\Omega X \xrightarrow{-\Omega f} \Omega Y$$

$$\swarrow \varphi$$

$$\downarrow \varphi$$

$$F(p)$$

commutes up to homotopy. Here, the map $\iota' \colon \Omega X \to F(p)$ is defined by

$$\iota'(\gamma) = (*_{F(f)}, \gamma) \in F(p) = F(f) \times_X PX.$$

See May \S 8.6 for more details.

Definition 3.3. The (long) fiber sequence generated by a pointed map $f: X \to Y$ is the sequence

$$\dots \to \Omega^2 X \xrightarrow{\Omega^2 f} \Omega^2 Y \xrightarrow{-\Omega\iota} \Omega F(f) \xrightarrow{-\Omega p} \Omega X \xrightarrow{-\Omega f} \Omega Y \xrightarrow{\iota} F(f) \xrightarrow{p} X \xrightarrow{f} Y$$
(3)

where $p \colon F(f) \to X$ and $\iota \colon \Omega Y \to F(f)$ are defined above.

Such a sequence is sometimes called a **Puppe sequence**.

Proposition 3.4. Let $f: X \to Y$ be a pointed map, and W any pointed space. Then applying the functor $[W, -]_*: \mathbf{Top}_* \to \mathbf{Set}_*$ to the fiber sequence generated by f yields

$$\dots \to [W, \Omega^2 Y]_* \to [W, \Omega F(f)]_* \to [W, \Omega X]_* \to [W, \Omega Y]_* \to [W, F(f)]_* \to [W, X]_* \to [W, Y]_*$$

which is a long exact sequence of pointed sets.

Proof. By 3.1 and 3.2, each consecutive three spots of the long fiber sequence form, up to homotopy equivalence, a fiber sequence. The result follows from 1.5. \Box

Note that $[W, \Omega X]_*$ is naturally a group and $[W, \Omega^2 X]_*$ is naturally an abelian group.

Now we recover the usual long exact sequence of homotopy groups of a pair.

Corollary 3.5. Let $i: A \to X$ be a pointed map. Then there is a long exact sequence of homotopy groups

$$\dots \to \pi_{n+1}(X,A) \xrightarrow{\partial} \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X,A) \xrightarrow{\partial} \pi_{n-1}(A) \to \dots$$

where $j: (X, a_0) \to (X, A)$ is given by the inclusion of the basepoint $\{a_0\} \hookrightarrow A$ and ∂ is the usual boundary map.

Proof. Consider the fiber sequence generated by $i: A \to X$ and apply the functor $[S^0, -]_*$ to obtain a long exact sequence

$$\dots \to [S^0, \Omega^n F(i)]_* \to [S^0, \Omega^n A]_* \to [S^0, \Omega^n X]_* \to [S^0, \Omega^{n-1} F(i)]_* \to [S^0, \Omega^{n-1} A]_* \to \dots$$

Using the natural isomorphism

$$[S^0, \Omega^n X]_* \cong [\Sigma^n S^0, X]_* \cong [S^n, X]_*$$

along with the natural isomorphism

$$\pi_n(X, A) \cong \pi_{n-1}(F(i))$$

we see that the terms of the sequence are as claimed. One readily checks that the maps also coincide up to sign, which does not affect exactness of the sequence. \Box