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For Peter Hilton on his 6OED birthday

Eckmann~Hilton duality has been around for quite some time and
1s something we now all take for granted. MNevertheless, 1t is a guiding
principle to "the homotopical foundations of algebralc topology" that is o
still seldom exploited as thoroughly as it ought teo be. TIn 1971, I
noticed that the two theorems commonly referred to as Whitehead's theorem
are in fact best viewed as dual to one another. I've never published the

details. (They were to appear in a book whose title is in quotes above

and wvhich I contracted to deliver to the publishers in 1974 1984, ) f
perhaps?) This seems a splendid cccasion to advertise the ideas. The
reader is referred to Hilton's bwﬁ paper [2] for a historical survey and
bibliegraphy of Eckmann-Hilton duality. We shall take up where he left
off,

The theorems in question read as follows.

Theorem A, A weak homotopy equivalence e:Y + Z between (W complexes is a

homotopy equivalence.

"3 Theorem B. An intégral homology isomorphism e:¥Y + Z between simple spaces

is a weak homo%opy equivalence.

In both, we may as well assume that Y and Z are based and
(path) connected and that e is a based map. The hypothesis of Theorem A
(and conclusion of Theorem B) asserts that 8y (Y)Y » ma(Z) 1s an

. isomorphism. The hypothesis of Theorem B asserts that egtHy(X) » H(Y) is
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an 1lsomorphism. A simple space 18 one whose fundamental group 1s Abeliﬁn
and acts trivially on the higher homotopy groups. Theorem B remains true
for nilpotent spaces, for which the fqndamental groﬁp is nilpotent and
acts nilpotently on the hilgher homotopy groups. More general versions

have alsoc been proven.

It is well understood that Theorem A is elementary. However,
the currently fashionable proof of Theorem B and its generafiéations
depends on use of the Serre spectral sequence. We shall obfain a con-
silderable generalization of Theorem B by a strict word fér.word
dualization of the simplest possible proof .of Theorem A, and our arguments

will also yleld a generalized form of Theorem A,

4

We shall work in the good category J of compactly generated
weak Hausdorff based spaces. HEssentially the same arguments can be
carried out in other good topologlcal categories, for example, in good
categorles of G-spaces, or spectra, or G-spectra. An axiomatic setting

could be developed but would probably obsaure the éimplicity of the ideas,

We shall use very little beyond fibre and cofibre sequences.
Let XAY be the smash product X x ¥/XvY and let F(X,Y) be the function

~space of based maps X + Y. The source of dﬁality is the adjunctiom

home omorphism

(1) F(XAY,Z) = F(X,F(Y,Z)).

Let CX = XAL, X = XAS!, PX = F(L,X), and @X = F(s!,X), where I has
basepoint 1 in forming CX and 0 in forming PX. For a based map f:X » ¥,
let Cf =Y LJ; CX be the cofibre of f and let Ff = X xf PY be the fibre
of f. Let w(X,Y) denote the pointed set of homotopy classes of based maps
X + Y. For spaces Jand K, we have the long exact sequences of pointed

sets (and further structure as usual)

(2) cor = u(2"CE,K) — 1 (Y, K) — u (2™, K) > 1 (27LCE K) —> eee

¥

(3) e -—!—'n(J,s'anf) —»n(J,san) —-——-"'TT(J,HHY) —-—'—O-'JT(J,Sdn_lFf) — e,

The crux of Theorem A is the following triviality; we shall

the proof since nothing else requires any work.
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r Lemma 1. Let e:¥Y + Z be a map such that n(J,Fe) = 0. If hil = gg and
hig = f1 in the following diagram, where iy, i), and 1 are the evident

| inclusions, then there exist g and h  which make the diagram commute.

i i i

; J 0. » I AT e ] J |
e !
i 7 ok Y ~ i
/V “‘E '\“%
. . Ty
i. \\ i ~ .
cJ 0 S CIAT - L c3

| Proof, Define kg:J » Fe by ko(3) = (g(3), wg(1)), where wy(Jd) ¢ PZ 1is
1 specified by
i £(j, 1-28) if s < 1/2
| we(3) (s) =
h(i, 28-1) if s » 1/2 .

Choose a homotopy k:J ATT + Fa from ky to the trivial map and define
g:w + ¥ and m:JAI+ + PZ by

k(3,t) = (g(j,t),w(j,e)).

Define R:CIAL » 2 by

h(j,8,t) = w(j,uls,t))(v(s,t)), ‘

where u(s,t) = min(s,2t) and v(s,t) = max(-%—(l + t)(1- s},2t-1). Then

g and I make the diagram commute.
We now introduce a general version of cellular theory.

Definition 2. Let c-} be any collection of spaces such that £J &,% if
Je % . Amap e¥ + Z is said to be a weak %—equivalence 1f |
g (J,Y) + TT(J,Z&) is a bijection for all IJ e%. A t'~}-—complex is a space

X together with subspaces X, and maps jo:J, + X, n 2 0, such that

Xg = {®#}, J, 1s a wedge of spaces in %I, Ko+l = Cjn»20d X is the union of

the X . The evident map from the cone on a wedge summand of J -1 into X

is called an n-cell. The restriction of j, to a wedpe summand is called
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an attaching map. A subspace A of a q—complex X is said to be a
subcomplex if A is a %—complex such that An C X, and the composite of
each n—cell CJ » Ay C A and the inclusion i:A + X is an n-cell of X.

Example 3. Consider (}= { 8% | 0> 0}, where we take S™ = £$""), A weak

% -equivélence between connected spaces is the same thing as a weak n t
homot opy equivalence. We call a %—complex X a cell comp]aex. If J, is a
wedge of n-spheres, then X 1s a CW-complex with a single vertex and based .¢-
attaching maps. It is easlly verified-that any conneéted CW complex 1s
homotopy equivalent to one of this form. In general, the cells of cell

complexes need not be attached only to cells of lower dimension.

Other examples are of interest. For instance, %- might be the
set of T-local spheres {ZnS,i,ln > 0}, where T is a set of primes. In
this case, %’—complexes lead to the ap.propriate theory of simply connected

T-local CW-complexes.

The acronym (due to Boardman) in the following theorem stands

for "homotopy extension and lifting property”.

Theorem & (HELP), Let A be a subcomplex of a %—complex X and let es¥ + 7

be a weak %r—equivalence. If hi) = eg and hisy = £i in the following

diagram, then there exist E and h which make the diagram commute,

i i

A 0 » AAL - 1 A
+
/ g
e
i Z & Yo oo i
P S 8
.y

io \‘\ + il \\

X - X AT - X

Proof. By (1) and (3) and the fact that%r 15 closed under suspension, the
hypothesis implies that w{J,Fe) = 0 for all J e%. We construct
compatible maps En X+ Y and homotopies Hn XA 2 from £lx to

eg by induction on n, starting with the trivial maps Eo andﬁo and
n :

extending given maps En-l and En—l over cells in An by use of the

given maps g and h and over cells of X, not in A, by use of the case
(CJ,J) already handled in Lemma 1.
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In particular, taking e to be the identity map of Y, we see
that the inclusion 1:A + X is a cofibration.

Theorem 5. For every Weakqf —equivalence e!Y + Z and every %.—complex X,
ey im{X,Y) +_'rr(X,Z) is a bijection.

Proof, We see that ey is a surjection by application of HELP to the palr
(X,*%). It is easy to check that Xa It is a %-complex which contains
XA.(BI)+ as a subcomplex, and we see that e, is an injection by

application of HELP to this pair.

The cellular Whitehead theorem is a formal consequence.

Theorem 6 (Whitehead). Every weak (}-equivalence between g.-complexes is

a homotopy equivalence.

By Example 2, Theorem A is an obvious special case.

Now the fun begins. We dualize everything in sight, The dual

of Lemma 1 admits a dual proof which is left as an exercise.

Lemma 1*. let e:¥Y + Z be a map such that w{Ce,K) = 0, If pih = ge and
pgh = pf in the following diagram, where Pg> Pps and p are the evident

projectlons, then there exist gand ﬁ which make the diagram commute.

p p
PR - 9 F(I+,PK) 1 -» PK
v ~
h g,."
\ P 1
f -~ % -
P Y » 7 e
N K
p p
K £ 0 ' F(I+,K) : 1 » K

We next introduce the dual “"cocellular theory,"
, ) ‘ . .
Definition 2°. Llet X be any collection of spaces such that QK ¢ X if

KeX. Amap e:¥ » 2 is said to be a weak X -equivalence if
e” i (Z,K) + w(¥,K) is a bijection for all K¢ X.. A HK~tower is a space X
together with maps X + X, and k X, » K, n 2.0, such that Xg = (¥}, K,
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is a product of spécés in K, Xp4p = Tk, and X is the inverse limit of
the X, (via the given maps). The evident map from X to the paths on a
factor of K,-1 1s ¢alled an n—cocell. The projection of kn to a factor is
called a coattaching map. A map p:X + A is said to be a projection onto a
quotient tower if A 1s a K-tower, ﬁ 1s the inverse limit of maps X, > A
and the composite of p and each n-cocell A + A, » PK 18 an n-cocell of X.

. L]
Example 3%, lLet Cl,be any collection of Abelian groups which contains
{0}, for example the collection Ak of all Abelian groups. Let Xbe
the collection of all REilenberg-Maclane spaces K(A,n) such that A e{d and
n > 0. (We require Ellenberg-Maclane spaces to have the homotopy types
of CW-complexes; thig doesn't effect closure under loops by a theorem of
)Milnor.) A ﬁxlﬁ'-tower X such that K, is a K(ﬂn+1,n+2) for m 2 0 1is

called a simple Postnikov tower and satisfies nn(X) =7 Its zoattaching

kn+2

nl

map k, 1s usually written and called a k~invariant.

Theorem & (coHELP). Let A be a quotient tower of a X -tower X and let

e:¥ » Z be a weak ,(—equivalence. If pjh = ge and poh = pf in the
following diagram, then there exist g and h which make the diagram

commute.
P P
0 + 1
X < e F(I",X) —— X
\ h -~ 23 -
-~ -
p‘ Y& & >z lp
h g
A < 0 22 et 1 > A

Proof. By (1) and (2) and the fact that X 15 closed under loops, the
hypothesis implies that w(Ce,K) = 0 for all K e . The conclusion
follows inductively by a cocell by cocell application of lemma 1.

In particular, the projection p:X + A is a fibration.
* X : X
Theorem 5 . For every weak —equivalence ¥ » Z and every -tower X,

e®wm(Z,X) » n(Y,X) is a bijection,
Proof. ‘The surjectivity and injectivity of e result by application of

coHELP to the quotient towers X + * and F(I+,X) + F(BI+,X), respectively.
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The cocellular Whitehead theorem is a formal consequence.

Theorem 6*(whitehead). Fvery weak Jf—equivalence between M-towers is a

homotopy equivalence.

To derive useful conclusions from these theorems we have to
use approximations of spaces by CW-complexes and by Postnikov towers., TFor

a space X of the homotopy type of a CW-complex, we have
o
H(X;A) = o (X,K(A,n)).

Howaver,]( ~towers hardly ever have the homotopy types of CW-complexes.
The best conceptual way around this is to pass from the homotopy category
hd to the category h J obtained from it by inverting 1its weak homotopy
equivalences. For any space X, there is a CW-complex I'¥ and a weak

homotopy equivalence y:I'X + X, The morphisms of hJ can be specified by
[X,Y) = w(IX,I'Y),

with the evident composition. By Theorem 5, we have [X,¥] = n(X,Y¥) if X
has the homotopy type of a CW-complex. Either as a matter of definition
or as a consequence of the fact that cohomology is an invariant of weak
homotopy type, we have 7

HY(X38) = [X,K(A,0) ]

for any space X.

Now return to Example 3%, Say that a map e¥ + Z is an
Cl-cohomology isomorphism if e*:H*(Z;A) > H*(Y;A) is an isomorphism for
all Ae(b. Tf Y and 7 are CW—complexes, then e 1is an,CL—cohomology

isomorphism if and only if it is a weak }CCL—equivalence.

WTheorem 5#. For every CL-cohomology isomorphism e:¥ + Z and every
Kl~tower X, e*:[2,X] + [Y,X] is a bijection.
Proof. We may as well assume that Y and 4 are CW-complexes, and the

. *
result is then a special case of Theorem 5 .

R e e e
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This leads to the c¢ohomological Whitehead Theorem.

Theorem 6# {Whitehead). The following statements are equivalent for a map

e:Y »Z in hJ between connected spaces Y and Z of the weak homotopy type
of X(-towers.
(1) e is an isomorphism in EJ_.
(2) egmg(¥) » 14(Z) is an isomorphism. v
(3> e* :H*(Z;A) > H*(Y;A) is an isomorphism for all Ae (L.
&) e*:[Z,X] » [Y,X] is a bijection for all X(L-towers X.
1f (L is the collection of modules over a commtative ring R, then the
following statement can be added to the list.
(5) ey iHe(¥;R) + He(Z;R) is an isomorphism.
-M. The previous theorem gives (3) ==> (4), (4) => (1) is formal, and
(1) <= (2) by the definition of nd ; (2) => (3) and (2) => (5) since
homology and cohomology are Iinvariants of weak homotopy type, and (5) =>

(3) by the universal coefficients spectral sequence.

when A = aa& » the 1mplication (5) => (2) is the promised
generalization of Theorem B, It is almost too general. Given a space X,
it is hard to tell whether or not X has the weak homotopy type of a
! MK Ok -t over. ]'_f X is simple, or nilpotent, the standard theory of
Postnikov towers shows that X dogs admit such an approximation. However,
in Definition 2 with ) = Xk, each K can be an arbitrary infinite
i product of K(A,q)'s for varylng q and the maps kX, * K, are completely
unrestricted. Thus Xdd-tovers are a great deal more general than

] nilpotent Postnikov towers; compare Dror [1].

‘ The applicability of Theorem 6* to general collections & is

- of considerable practical value. A space X is said to be a«-complete if
e*':[Z,X] + [XY,X] is a bijection for all a.—cohomology isomorphisms

3 e:Y » Z. Thus Theorem 5# asserts that xa«-tOWers are {@-complete. The

completion of a space X at (L is an a--—cohomology isomorphism from X to

an a.—complete space. For a set of primes T, the completion of X at the

collection of T-local or T-complete Abelian groups is the localization or
completion of X at T; in the latter case, we may equally well use the
collection of those Abelian groups which are vector spaces over Z/pZ for

some prime p ¢ T.
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These ideas give the starting point for an elementary
homotopical account of the theory of localizations and completions in
which the latter presents little more difficulty than the former; compare
Hilton, Mislin, and Roitberg [3]. Details should appear eventually in
"The homotopical foundations of algebraic topology”. The equivariant '
generalization of the basic constructions and characterizations has
already been published [4,5], and there the present focus on cohomology

rather than homology plays a mathematically essential role.
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