
Annals of Mathematics

Construction of Universal Bundles, I
Author(s): John Milnor
Source: Annals of Mathematics, Second Series, Vol. 63, No. 2 (Mar., 1956), pp. 272-284
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1969609 .

Accessed: 10/04/2013 13:30

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of
Mathematics.

http://www.jstor.org 

This content downloaded from 130.126.108.67 on Wed, 10 Apr 2013 13:30:21 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/1969609?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


ANNALS OF MATHEMATICS 
Vol. 63, No. 2, March, 1956 

Printed in U.S.A. 

CONSTRUCTION OF UNIVERSAL BUNDLES, I 

BY JOHN MILNOR 

(Received January 21, 1955) 

1. Introduction 

By an n-universal bundle is meant (see Steenrod [3] p. 102) a principal fibre 
bundle such that the bundle space is (n - l)-connected. We will particularly 
consider bundles for which the bundle space is contractible. 

Serre has shown ([2] p. 481) that any arc-connected base space X is covered 
by a contractible fibre space, the fibre being the space of closed loops on X with 
a fixed base point. The present paper shows that for a suitable base space X 
(namely a connected, countable simplicial complex in the weak topology) 
there exists a contractible fibre bundle over X. In particular Serre's space of 
closed loops on X, is replaced by a topological group G. 

One consequence of this is the construction of a wide variety of topological 
groups. (For example any Eilenberg-MacLane complex K(H, n) can be con- 
sidered as a topological group, assuming that the group II is countable.) 

In Section 4 this result is applied to give an axiomatic characterization of 
homotopy groups for the category of countable CW-complexes. In Section 5 it 
is shown that any principal bundle over X with any group G is induced by a 
continuous homomorphism G -* G. 

2. Lemmas concerning CTV-complexes 
LEMMA 2.1. The product of two countable CW-complexes is a CW-complex.1 
If W is a subset of A X B such that (e X e') n W is open, relative to e X e', 

for each cell e of A and e' of B, then we must prove that W is open in the prod- 
uct topology. 

Let (a, b) be any point of W, and let Ai (resp. B%) be the closure of the union 
of the first i cells of A (resp. B) numbered so that a e Al (resp. b e B1). Suppose 
by induction that relative neighborhoods Us of a in Ai and V% of b in Bi have 
been constructed so that Li X Vi c W. Choose open neighborhoods Ui+l D 
Us in Ai+1 and Viai D Vf in Bj+1 so that Uj+j X Vf+1 C W. This is certainly 
possible since A%~1 and Bj+1 are compact spaces. Continue by induction. Then 
U = U1u U2u * and V = V1 u V2 u *.* are open neighborhoods of a and b 
satisfying U X V C W. Hence W is open. This completes the proof. 

PROPOSITION 2.2. Let A be a simplicial complex and let Aij be the subset of 
A' _: A X * X A consisting of all (al, ... , an) such that as = aj . Then Aj 
is a subcomplex of the first derived complex of A'. 

(The proof is straightforward.) 
Given a (not necessarily Hausdorff) space A and a collection of maps f: ail 

1 For definitions see J. H. C. Whitehead [4]. An example due to C. H. Dowker shows that 
this lemma would be false without the assumption of countability. 
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CONSTRUCTION OF UNIVERSAL BUNDLES 273 

A, where each a(' is a closed n-cell, let e' denote the image of the interior of -t' 
and let An' denote the union of all e' with i < n. 

LEMMA 2.3. If the following three conditions are satisfied then A, together with 
the collection { en} of cells, forms a CW-complex. 

(a) The interior of each a-_ is mapped one-one onto the corresponding en. Every 
point of A belongs to exactly one set en. 

(b) The boundary of each c0_ is mapped into An'- 
(c) A subset of A n, 0 ? n < x, is closed whenever its inverse image in each 

cell ot of dimension i < n is closed. 
It is first necessary to prove that A is a Hausdorff space. It is clear that A 

is a Ti-space. But now Whitehead's proof ([4] p. 225) that every CW-complex 
is normal can be applied, without essential change, to the space A. Since A is 
normal, it is certainly Hausdorff. 

Together with conditions (a) and (b), this implies that the interior of each 
ct is mapped homeomorphically onto en. Thus { e'} is a complex in Whitehead's 
sense. Now proposition E (p. 225 of [4]) implies that this complex is a CW- 
complex. 

PROPOSITION 2.4. If A is a CW-complex and B is a subcomplex, then every 
map of B into a contractible space can be extended to A. 

(The extension is easily constructed cell by cell.) 
PROPOSITION 2.5. If A is a contractible CW-complex and B is a contractible 

subcomplex, then B is a strong deformation retract of A. 
(Proposition 2.4 is applied, first to construct a retraction, and then to deform 

this retraction into the identity map. This uses the fact that A X [0, 1] is a 
CW-complex ([4] p. 227).) 

PROPOSITION 2.6. Let A u B be a CW-complex with contractible subcomplexes 
A, B, A n B. Then A u B is contractible. 

(This follows from 2.5.) 
PROPOSITION 2.7. Let A1 u ... u Ak be a CW-complex with contractible sub- 

complexes A1 , * -, Ak. Suppose that each possible intersection Ail n ... n Ai, 
1 < r < k, is also contractible. Then A u ... u Ak is contractible. 

(This follows by induction from 2.6.) 
PROPOSITION 2.8. Let Ao c Al c A2 C ... be subcomplexes of the CW-com- 

plex A = U A i. Suppose that Ao is a point and that each A is a strong deforma- 
tion retract of A +1 . Then A is contractible. 

(Clearly each A is contractible. By 2.4 a contraction of A can be extended 
to a contraction of Ai+, . Continuing step by step, we thus construct a contrac- 
tion of A.) 

PROPOSITION 2.9. A mapping of one CW-complex onto another which maps 
cells onto cells is an identification map. 

(That is a set is closed if and only if its inverse image is closed. The proof is 
clear.) 

PROPOSITION 2.10. Let -: (A, B) -* (A', B') be a mapping of one CW-pair 
onto another which maps cells onto cells, and which maps A - B one-one onto 

This content downloaded from 130.126.108.67 on Wed, 10 Apr 2013 13:30:21 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


274 JOHN MILNOR 

A' - B'. If B is a strong deformation retract of A, then B' is a strong deformation 
retract of A'. 

(Let r: A X I -* A be the strong deformation retraction, and define -i:A X 
I -* A' X I by iI(a, t) = (r7(a), t). Then 

,qrn-- A' X I -+A' 
is a strong deformation retraction of A' onto B'. Continuity follows from the 
fact that - is an identification map.) 

3. Construction from a given base space 
THEOREM 3.1. For any countable, connected simplicial complex X in the weak 

topology, there exists an x-universal bundle with base space X, the bundle space 
and group being countable CW-complexes. 

("Countable" means that the collection of cells is to be countable. It would 
probably be possible to show that the bundle space and group are actually 
simplicial complexes, but the author has not succeeded in proving this.) 

It is well known that every reasonable base space X is covered by a contrac- 
tible fibre space. The standard construction, due to J.-P. Serre, is based on the 
space X [0 '1 of paths in X. The present construction will be based on a similar 
space S of simplicial paths in X. 

Let Sn be the space of all sequences (Xn, xn-1, **, xo) of points in X such 
that each pair xi, xi- lie in a common simplex of X. This is to be topologized 
as a subset of X'+1 = X X *.. X X. Let S be the topological sum of the SnX 
n > 1. An equivalence relation in S is generated by the relations 

(Xn X Xi 7 * ** X t) " (Xn X * * 
' 

* iX*** X t) 

whenever either xi = xi-1 or xi+, = xi1 . (The symbol "x"' denotes deletion.) 
Let S denote the identification space S/(-) with the identification topology. 
For each point (Xn, ***, XO) of S let [x,, .**, xo] denote the corresponding 
point of S. Let vo be a fixed vertex of X. 

As bundle space E we take the subset of S consisting of all [Xn, xo , ,] with 
xo = vo . The projection p:E -* X is defined by 

P([Xn , * 
- 

X1O]) = Xn. 

Thus the fibre G p1(vo) consists of all [x,, .*, xo] with Xn = XO = VO 
LEMMA 3.2. The space S can be given the structure of a CW-complex, with sub- 

complexes E and G. 
LEMMA 3.3. The projection p: E -* X is continuous. 
(Proofs will be given later.) 
A product between certain elements of S is defined as follows. If 

[Xn, . , xo] and [yi, y * , Yo] satisfy xo = yi, then define 

[Xn , * * * m Xo] *[Ym , * * * yo] = [Xn , *** X0 , Ym . Y YO]. 

It is clear that this multiplication is well defined and associative (whenever it 
is defined). 
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CONSTRUCTION OF UNIVERSAL BUNDLES 275 

LEMMA 3.4. This product operation in S is continuous. 
Every element [Xn, , xo] has an inverse [X,, **,x] = [X0, ***, xn] 

which satisfies 
[X. * Xo] * [Xn Xo] = [Xo Xo]. 

It is clear that the function [Xn, . , X] 0 [Xn, x * *, Xo]- is a homeomorphism 
of S onto itself. 

Since the product of any two elements of G is defined, Lemma 3.4 implies 
PROPOSITION 3.5. G is a topological group with identity element [vo, vo] under 

the above multiplication. 
The bundle structure is defined as follows. Let the coordinate neighborhood 

Vj be the star neighborhood of the jth vertex vj of X. For each Vj choose a fixed 
element 

ei = x1j, Xn, xI vo] 

of p-1(vj). Define the coordinate mapping 

0j:Vj X 0-+p-,(Vj) 

by 4 (x, g) = [x, vj- e- g. Lemma 3.4 implies that qj is continuous. 
Define the function pj: p-'(Vj) -*G by p i(e) = e,1 * [v;, p(e)] e. Then Lemmas 

3.3, 3.4 imply that p, is continuous. 
Define gij:Vi n Vj -+ C by gij(x) = e71-[vi, x, vj]*ej. Lemma 3.4 implies 

that gij is continuous. The necessary identities 

p4j(x, g) = x, p j4 j(x, g) = g, 

q$j(p(e), pj(e)) = e, po4j(X, g) = gij(x) * g 

are all easily verified. 
Still assuming the proofs of the lemmas, this shows that {p, E, X, G. { Vj, 

{4j} } is a principal fibre bundle. In order to complete the proof of Theorem 3.1, 
it is only necessary to prove the following. 

LEMMA 3.6. E is contractible. 
PROOF OF LEMMA 3.2. Let D be the subset of S consisting of all sequences 

(Xn, -, x0) which are degenerate in the sense that xi = xi-1 or xi+1 = x_1 for 
some i. Thus every sequence in D is equivalent to a sequence of shorter length. 

Making use of 2.1 it is easy to show that S is a cell complex in the weak to- 
pology. Passing to the first derived complex, we will consider S as a simplicial 
complex in the weak topology. 

The following three facts will be needed. 
(A) Every element of S is equivalent to a unique non-degenerate element (i.e. 

to a unique element of S - D). 
(B) D is a subcomplex of S. (This follows immediately from 2.2. It can be 

restated as follows:) If a simplex of S contains one non-degenerate point then 
every interior point of the simplex is non-degenerate. 

Such simplexes of S will be called non-degenerate. 
(C) If a is any simplex of S, then there is a unique simplicial map of ar onto a 

non-degenerate simplex a-' which maps points onto equivalent points. 
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276 JOHN MILNOR 

Assuming these assertions for the moment, the CW-structure of S is defined 
as follows. As cells of S take the images of the interiors of the non-degenerate 
simplexes of S. It is now necessary to verify conditions a, b, c of 2.3. 

(a) This is an immediate consequence of (A) and (B). 
(b) Let s be a boundary point of the non-degenerate simplex coT of S. We 

must prove that the image s of s lies in the (n - l)-skeleton of S. Let oi, i < 
n - 1, be the simplex of S which contains s as interior point; and let o-', j i, 
be the corresponding non-degenerate simplex, which is given by assertion (C). 
Then s belongs to the corresponding cell ej of S. 

(c) Let C be a subset of the n-skeleton of S such that the inverse image of 
C in each non-degenerate simplex of dimension <n is closed. We must prove 
that C is a closed set. The following assertion will first be proved, by induction 
on i: The inverse image of C in any simplex or of S is closed. Let vij be the non- 
degenerate simplex which corresponds to at by assertion (C). It is sufficient to 
show that the inverse image of C in o-j is closed. If j ? n this is true by hy- 
pothesis. If j > n then the inverse image of C in o-i can contain no interior points. 
Hence it is only necessary to consider the boundary simplexes of a-j. But these 
have dimension <i, so that we can apply the induction hypothesis. 

Since S has the weak topology, it follows that the full inverse image of C in 
S is a closed set. Since S is an identification space it follows that C is closed. 

This shows that S is a CW-complex. It is clear that E and U are subcom- 
plexes of S. Thus (still assuming (A) and (C)) this proves Lemma 3.2. 

PROOF OF (A). Define the (discontinuous) function 4:S -+ S by 

t(X., . * 0, xo) if this sequence is non-degenerate 
,U(Xn X***X S) = 

(xn, ' X", xi, * , xo) if i is the largest integer with 

xi = xi-, or xi+, = xi-, . 

Let P: S S - D be the function obtained by iterating ,u until a non-degener- 
ate point is obtained. We will prove that v(s) = i(s') whenever s - s'. This 
clearly implies assertion (A). 

It is sufficient to prove that 

(*) vP(Xn*, * ,Xo) = l . * Xj X * Xo) 

where j is any index such that xj = xjj or xj+l = x..i . The proof will be by 
induction on n. 

Note that i > j. If i = j we have 

(X X***o) = P(A(X * XO)) = P(Xn X * ; *Xo) 

which proves (*). A similar proof applies in case i = j + 1 and xi = xi-. 
If i = I + 1 and xi+, = xi-, then 

(Xn *e*XO) = A(Xn X Xi . * * *X x) 

(X n X X Xi +1 XXi X XSo ) (X n X*** X Xi, Xj . . x.o) 
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CONSTRUCTION OF UNIVERSAL BUNDLES 277 

which proves (*) If i > j + 1 then 

V (Xn p***XO) = V , *Xi X Xo) 

V=(n vX X X Xj X Xo) = (XnX Xo) X 

where the middle equality follows from the induction hypothesis. This completes 
the proof of (A). 

PROOF OF (C). Let so be some interior point of the simplex a- of S, and let 
v(so) be the corresponding non-degenerate point. Then v(so) is obtained by 
crossing out certain elements of the sequence so = (Xn, ... , xo). For any s in 
the simplex a-, let P(s) denote the point of S obtained by crossing out the corre- 
sponding elements of the sequence s. It follows from 2.2 that s v- T'(s) for every 
s in c-. But v maps a linearly onto another simplex A-' of S. Since a-' contains the 
non-degenerate point V(So) it is non-degenerate. This completes the proof of 
(C), and hence of Lemma 3.2. 

PROOF OF LEMMA 3.3. Let -: S - S be the identification map. Define p: S 
X by p([xn X ... * xo]) = xn . Since the composition p-q: S -* X is clearly con- 
tinuous, it follows from the definition of the identification topology that P is 
continuous. Therefore the restriction p of - to E is also continuous. 

PROOF OF LEMMA 3.4. Let A be the subcomplex of S X S consisting of all 
pairs ([Xn, ... , xo], [yin, -.. , yo]) such that xo and yim lie in a common simplex 
of X. (Thus A contains all pairs with xo = yn .) We will prove that the product 
map A -l S is continuous. Since S X S is a CW-complex (by 2.1) it is sufficient 
to verify that this map is continuous on each closed cell of A. 

A cell of A c S X S has the form -q(a-) X 'q(r) where a and r are non-de- 
generate simplexes of S. It is clearly sufficient to prove that the composition 

a- X Tr - X 
vA -*I S is continuous. But this composition can be broken up 

into a continuous product a X r -- S followed by 7:S S . This completes 
the proof. 

PROOF OF LEMMA 3.6. Let En C Sn be the set of sequences (xn . , xi, Vo) 

which end at vo. Let En be the image of En in E. Let Rn = En n D be the set 
of degenerate sequences in En.. (See proof of 3.2.) 

We will prove that En and Rn are both contractible. By 2.5 this will imply 
that Rn is a strong deformation retract of En. 

Now note that the map En --En carries the subcomplex Rn onto En-1 X car- 
ries En - Rn one-one onto En -En- E1 and maps simplexes of En onto cells of 
En. Therefore, by 2.10, it will follow that En-1 is a strong deformation retract 
of En. 

Now since Eo C E1 C E2 C Ad are subcomplexes of the union E (where 
Eo is defined to be the single point [vo, vo]), it will follow by 2.8 that E is con- 
tractible. 

There is an obvious contraction of En which can be described as follows. 
Let Tn be the linear graph with vertices [0], ... , [n] and edges [0, 1], *. i 
[n - 1, n]. Then En can be considered as the set of all maps (Tn , [0]) -* (X, Vo) 
which carry edges linearly into simplexes. A contraction of Tn is obtained by 
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278 JOHN MILNOR 

first deforming the edge [n - 1, n] into the vertex [n - 1]; then deforming 
[n - 2, n - 1] into [n - 2]; etc. This induces a contraction of En . 

To prove that Rn is contractible, first observe that Rn = P1 u ... u PR u 
Q, u *** u Qn,, X where the subcomplex Pi is the set of all sequences in En for 
which xi = xi-, and where Qi is the set of sequences with xi+, = xi-1 . By 2.7, 
in order to prove that Rn is contractible it is sufficient to prove that each in- 
tersection R' = Pi, n ... n Pi, n Qj n .*. n Qjk is contractible. 

Let R' be any such intersection, and let T' be a corresponding linear graph, 
obtained by identifying the two edges [Im + 1, jm] and [jm - 1, jm] of T, X for 
m = 1, ... , lk; and by identifying all points of the edges [im, im -1], for m = 
1, * * , h. Then R' can be considered as the set of all maps (T', [0]) (X, vo) 
which carry edges linearly into simplexes. 

Now observe that the graph T' is actually a tree. (This is easily proved by 
induction on the number of identifications made.) Hence T' can be contracted 
to a point by contracting one free edge after another, keeping the base point 
[0] fixed. This induces a contraction of R1. Since R' is contractible, it follows 
that R1? is contractible, and therefore that E is contractible. This completes the 
proof of Theorem 3.1. 

COROLLARY 3.7. If Y is any connected space having the same homotopy type as 
a countable simplicial complex X in the weak topology, then there exists an co-uni- 
versal bundle with base space Y. 

Let f: Y -* X be a homotopy equivalence. The universal bundle over X, 
together with f, induces a bundle 68 over Y. It is easily shown that 63 is a uni- 
versal bundle. 

In particular, this corollary applies to any connected, countable CW-complex 
Y. (For proof see [4] p. 239.) 

4. Axiomatic characterization of homotopy groups 
J.-P. Serre has pointed out that his construction of a contractible fibre space 

over any arc-connected base space can be used to give an axiomatic charac- 
terization of homotopy groups.2 The following section contains such a charac- 
terization. The construction of Section 3 makes it possible to base our axioms 
on the notion of fibre bundle. [However the alternative characterization, based 
on fibre spaces, will be given in brackets.] 

It will be convenient to ignore the group structure of the homotopy groups 
at first. 

Consider the category consisting (1) of all triples (X, A, x) where X is a 
countable CW-complex, A is a subcomplex, and x is a vertex of A; and (2) of 
all continuous maps between such triples. [Alternatively the category of all 
triples x e A c X of topological spaces, and all maps between such triples.] 

2 The possibility of such a characterization was conjectured by Steenrod and Eilenberg 
[1J p. 49. Added in proof: Much of the material of this section is contained in Kuranishi 
[51. A proof of Lemma 4.3 is given in [61. 
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CONSTRUCTION OF UNIVERSAL BUNDLES 279 

Let (X, x) stand for the triple (X, x, x). Let 7ro(X, x) denote the set of all 
[arc]-components of X. For any mapf: (X, x) -* (Y, y) let f*: 7ro(X, x) --+7ro(Y, y) 
denote the function induced by f. 

THEOREM 4.1. There exists one and, up to isomorphism, only one function which 
assigns 

(a) to each triple (X, A, x) in the category and each i _ 1 a set 7ri(X, A, x), 
(b) to each triple and each i _ 1 a function a:Iir-(X, A, x) -* iri-(A, x), and 
(c) to each map f: (X, A, x) -* (Y, B, y) and each i _ 1 a function f*:ir7(X, A, x) 

--+ir (Y, B, y), such that the following seven axioms are satisfied. 
(1) If f: (X, A, x) -* (X, A, x) is the identity map, then so is f*:rir(X, A, x) -* 

i (X, A, x). 
(2) The identity (gf)* = g*f* holds for any maps f: (X, A, x) -* (Y, B, y), 

g: (Y, B, y) -+ (Z, C, z). 
(3) The identity f 'a = af* holds in the square 

ri(X, A, x) r i(Y, B,y) 

7ri-,(A, x) J* i-+ i(B, y), 

where f' is the map induced by f, i ? 1. 
The inclusion maps (A, x) -+ (X, x) -+ (X, A, x) induce a sequence 

* -*, r(X, X) - +ri(X, A, x) -- o(A ,x) -+ ro(X, x). 

(4) The preceding sequence has the following "exactness" property. If a term 
and the third succeeding term both consist of a single point, then the function con- 
necting the two intermediate sets is one-one onto. 

(5) If f is homotopic to g then f* = g* . 
(6) If p: E -* Xo is the projection map of a fibre bundle [alternatively fibre 

space in the sense of Serre], where Xo is an arc-component of X, let q: (E, p' (A), e) 
-* (X, A, x) be induced by p. Then q*:iri(E, p-1(A), e) - 7ri(X, A, x) is one-one 
onto for i ? 1 (assuming that both triples are in the category). 

(7) iri(x, x) consists of a single point. 
PROOF. Since the existence theorem is clear, we must only prove uniqueness. 

Let {i7r, a, *} and {7i, a, I} be two such functions. Since 7ro(X, x) and ro(X, x) 
are identical by definition we have the identity map 

'o: 7o(X) x) -*0(X, x) 

which satisfies f*Oo = fOf* for any map f: (X, x) -> (Y, y). We will construct 
isomorphisms (i.e. one-one onto functions) 

bdo: 7ry(X, A, x) yiunriso(X, A, x) 

by induction on i, so as to satisfy 
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(A) the identity Hi = oi-ja holds in the square 

7ri(X, A, x) hi ri(X, A, x) 

7r-(A X) f i _l (A ) 

for any triple (X, A, x); and 
(B) the identity f*4i = Oaf* holds for any map f: (X, A, x) -* (Y, B, y). 
For each triple (X, A, x) in the category we may choose a triple (X', A', x') 

of the same homotopy type, where X' is a countable simplicial complex in the 
weak topology with subcomplex A' and vertex x'. (For a single CW-complex 
this is proved in [4] p. 239. A proof for triples can be given along the same lines.) 
Construct an xc -universal bundle p: E -X' as in Section 3. It is clear that 
p'1(A') will be a subcomplex of E. Consider the diagram 

*r * 7riE e) -- 7ri(E, p-1 (A'), ) a7ri_j(p-l (A ), e) -- rj_,(ER, e)**i 

P*1 
7ri(Xf, A', x') 7ri-i (A' x' 

9*; 

7riMX A) x) ri-,(A, x) 

together wmith the corresponding diagram for the sets ir, where the top line is 
part of the "exact" sequence of the triple (E~, p-'(A'), e), and where g is a 
homotopy equivalence. Define 0s: 7ri(X, A, x) jr(X, A, x) by 

0i = 9*M_,0-0fi_l*l9*. 

It is easily verified that each of the functions g-* p-,** g*, is an isomorphism, 
and therefore that As is an isomorphism. 

The identity (A) can be verified by considering commutativity relations in 
the above diagram. The identity (B) is somewhat harder. It is clearly sufficient 
to consider the case where X and Y are simplicial complexes. Let f': (X', A', x) + 
(Y. B. y) be a simplicial approximation to if, where X' is a subdivision of X. Let 
p: E --+ , p': El ___ X', q: F -+Y be the oo -universal bundles which were con- 
structed in Section 3. Then if induces a map f':E' -+F which satisfies qf'= 
f'p'. In fact if' is defined by f'([x,, * * * , xo]) = [f '(x,,), * * * , f'(xo) ]. Similarly 
the identity map j: X' -- X induces ~:E' E- . The identity (B) can now be 
verified bry considering commutativity relations in the following diagram: 
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a 
7ri(X, A, x) '7* rj(R, P-'(A), e) 7ri_1(p-'(A), 

e) 

I j*T.* 

if* | i(X', A', Yx) < P* E', p-(A'), e') a r~(A'-(), c' 

lo-- 7ri(Y, B. y) <- w(F q1 1(B), ell) a i-i(f-l(B) (/t 

together with the corresponding diagram for the sets ki. This completes the 
proof. [The alternative theorem, stated in brackets can be proved in much the 
same way, except that the simplicial approximation techniques are no longer 
needed.] 

THEOREM 4.2. There are exactly two ways of introducing a group structure into 
the sets 7ri(X, A, x), i _ 2, and 7ri(X, x), in such a way that the functions a and f* 
are homomorphisms. These two group structures are related by the identity (a. b)1 = 
(b*aa)2 . 

Since the existence theorem is clear we need only prove uniqueness. During 
the proof of Theorem 4.1, every group iri, i > 2, was put into one-one corre- 
spondence with some group xri(X, x) by a sequence of isomorphisms. Therefore 
it is sufficient to carry out the proof for the fundamental group iri(X, x). 

Let ab denote the customary product of a and b in 7ri(X, x) and suppose that 
a o b is some new product such that 

(1) for any space X, 7ri(X, x) is a group under this product, and 
(2) the induced function f*:7ri(X, x) -* ri(Y, y) is a homomorphism with 

respect to this product for any map f. 
Let T be the space which consists of two circles, intersecting at a single point 

t. Then 7r,(T, t) is a free group on two generators a and 3, under the usual product. 
Given any two elements a, b e 7r,(X, x) we can clearly construct a mapping 
f: (T, t) -> (X, x) so that f*(a) = a, f*(f3) = b. Then a o b = f*(a o 3). In terms 
of the usual group structure, a o d is equal to some word w(a, d) of the free 
group. Hence 

f*(a o /3) = f*(w(a, 3)) = w(f*(a), f*(03)) = w(a, b) 
and therefore 

a o b = w(a, b). 

Thus to describe the new product completely, it is sufficient to determine this 
word w(a, 3) in the free group on two generators. 

The word w(a, /) has the following two properties 

(a) w(1, d) = A, w (a, 1) = a 

(b) w (a, w((, -y)) = w(w(a, /3), y) 
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(where (b) is an identity in the free group on three generators). To prove (a) 
note that the identity element 1 e 7ri(T, t) can be defined as the image of the 
injection homomorphism i*: 7ri(t, t) --*> 7ri(T, t). It follows that the new product 
operation must have this same identity element. 

To prove (b) choose a space X for which 7ri(X, x) is a free group on three 
generators a, /3, -y. Then formula (b) is merely the associative law a o (/3 o y) = 
(a o /3) o T. To complete the proof of Theorem 4.2 it is only necessary to prove 
the following lemma. 

LEMMA 4.3. If a reduced word w(a, 03) in the free group on two generators satisfies 
conditions (a) and (b), then either w(a, 3) = aO3 or w(a, d) = Oa. 

The proof is a long but easy exercise in the manipulation of reduced words. 
Details wvill not be given. 

5. A property of the universal bundle 

The following property of an n-universal bundle with group G is well known 
([3] p. 101). If Y is an n-dimensional complex, then any bundle over Y with 
group G is induced by a map of Y into the base space of the universal bundle. 
The following theorem describes a dual property. 

If a bundle over X with group G is given, then every continuous homo- 
morphism h: - G induces a principal bundle over X with group G. In fact if 
gij: Vi n Vj - are the coordinate transformations of the given bundle, then 
hgij: V? n Vj G are those of the induced bundle. 

ThEOREM 5.1. Let p:E -+ X be the universal bundle of Section 3, with group G. 
Then any principal bundle 6s over X with any group G is induced by a continuous 
homomorphism h:G - 0G. 

The proof will be based on the construction of a certain slicing function for 
the bundle G. Let q: E -* X be any bundle with group G and coordinate functions 
0: Vi X F E. Let F, = q-1(x) be the fibre over x, and define 4ix:F -* Fx by 
fix(f) = Oi(x, f). A slicing function for this bundle is a function 

WX y: FY -> Fx 

defined for all pairs (x, y) in some symmetric subset U of X X X, which is 
continuous as a function of three variables, and such that xl x:Fx -> Fx is the 
identity map for each x e X. 

A slicing function will be called symmetric if wy, = W- for each (x, y) e U. 
It will be called a bundle slicing function if 

(1) The map coty is admissible for each (x, y) e U. That is, if x e Vi, y e Vi, 
then the map 

ix Cox yojy:F - F 

coincides with the operation of an element g = (x, y) of G. And 
(2) the associated map qij: (Vi X Vj) n U -> G is continuous. 
TiuEOiRTEM 5.2. If X is a countable simplicial complex in the weak topology and 

U C X X X is the union over all simplexes T C X of T X T, then any bundle 
over X possesses a symmetric bundle slicing function with respect to Uo. 
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Theorem 5.1 follows from 5.2 as follows. Let cozy be a symmetric bundle 
slicing function for the principle bundle 6B having projection q: E -> X and group 
G. Identify the groups G, G with the fibres q-1(vo), p-1(vo) respectively. Let 
eo e q-'(vo) be the identity element of G. Define the function h: E - E by 

h([x,,, xn-l, .. * Y X1 , vo]) = &Wnn'- . 
. . C'O2,xl WXilVO (eo). 

Then it is easily verified that h is a well defined mapping which carries C homo- 
morphically into G, and that the bundle 6B is induced by this homomorphism. 

The proof of 5.2 follows. Let A, denote the set of all admissible maps Fy -> Fx. 
Let A be the union of A, over all (x, y) e U. There is an obvious projection 
a: A -> U. It will be proved that A is a fibre bundle over U with fibre (but not 
group) G. 

As coordinate neighborhoods take Uij = (Vi X Vj) n U. The coordinate 
function 

41ij: Uij XG A 
is defined as the function which assigns to each ((x, y), g) the map 

Fy F F Fx 

These coordinate functions can be used to define a topology for A, and the rest 
of the bundle structure is easily defined. (The group of this bundle turns out to 
be G X G modulo the center of its diagonal; the action on the fibre G being 
given by (91, 92) 9 = 91992 .) Let A c U be the diagonal of X X X. 

A cross-section c: U -* A of this bundle clearly gives rise to a bundle slicing 
function C, (defined by wxy(e) = c(x, y) (e)) for the original bundle, providing 
only that c maps each (x, x) E A\ into the identity map 

I (x, x) :Fx --> Fx . 

Let T: A -> A be the map which carries f: Fy -> Fx into f1: Fx -> Fy . The 
corresponding symmetry T: U -* U of the base space is defined by T(x, y) = 
(y, x). Then the cross-section c: U A corresponds to a symmetric slicing 
function if and only if it satisfies Tc = cT. Thus our objective is now to prove: 

PROPOSITION 5.3. There exists a cross-section c: U -> A which extends the given 
cross-section I: A -- A and which satisfies Tc = cT. 

Let Go be the arc-component of the identity element in G. Observe that the 
bundle space A contains a subspace Ao which may be considered as a bundle 
over U with fibre Go . In fact for each cell r X T of U let a-o'(r X r) denote the 
arc-component of a 1(r X r) which contains the points I(x, x) for x E r. Since 
a-'(r X T) is homeomorphic to (r X r) X G it follows that a-o1(r X r) is homeo- 
morphic to (r X r) X Go. The union of these sets a0' (r X r) over all r gives 
the required space Ao . 

Since the fibre Go of the bundle ao: A0 -> U is n-simple for all n, the homotopy 
groups wrn(ao1(x, y)) form a bundle 63n of coefficients over U (that is a system 
of local coefficients). The restriction To:Ao -> Ao of T to Ao induces a homo- 
iniorphisin T*: (M,-->fln . 
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It will be necessary to consider the equivariant cohomology groups of U mod A 
with coefficients in (G,, . First note that X X X is a cell complex with subcomplex 
U. Passing to the first derived complex, U will be considered as a simplicial 
complex with subcomplex i\. The equivariant cochain group Ck(U mod A, (G3 , T) 
is now defined. (An element of Ck is a function y which assigns to each k-simplex 
a- of U an element -y(o-) of the group of cross-sections of G3Bjo-, subject to the 
conditions y(oQ) = 0 for a- C A, and (T(o)) = T*(-y(a-)) for all a-.) 

A strong deformation retraction r: U X [0, fl -> U of U into A is defined by 
r((x, y), t) = ((1 - t)x + ty, (1 - t)y + tx). Since this commutes with the 
symmetry T: U -> U, it follows that the cohomology groups Hk(U mod A, 63( , T) 
are all trivial. 

Proposition 5.3 now follows by an obstruction argument. Let U' be the n- 
skeleton of U. Suppose by induction that a cross section cn,-: (A u Un- > Ao 
has been constructed so that 

(1) cnl(x, x) = I(x, x) for all (x, x) e A, and 
(2) cn-1T = Tocn-1 

Let -y E C'(U mod A, 3n-1) be the obstruction to the extension of cn_1 to (i\ u Un). 
Clearly -y is an equivariant cocycle. Since the equivariant cohomology group 
Hn(U mod A, (Bn-1 T) is trivial, it follows that, after making a symmetric 
modification of cn-1 on the (n - 1)-simplexes of U - A, we can extend it to 
A u Un. The extension c1n can be chosen arbitrarily on half of the n-simplexes of 
U - A. It is then determined for the other half by the symmetry condition 
crT Tocn 

Continuing by induction we construct the required cross-section c. The 
continuity of c follows from the fact that U is a complex in the weak topology 
(by 2.1). This completes the proof. 

One consequence of theorem 5.1 is the following. 
COROLLARY 5.4. Let X and G be as in Section 3. If X is the base space of a 

second oo -universal bundle with group G, then there is a continuous homomorphism 
0 -* G which induces isomorphisms of the homotopy groups. In particular if G is 
a CW-complex, then it has the same homotopy type as G. 

The proof is clear. 
PRINCETON UNIVERSITY 
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