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ANNALS OF MATHEMATIC8
Vol. 63, No. 2, March, 1956
Printed in U.S.A.

CONSTRUCTION OF UNIVERSAL BUNDLES, I

By JouNn MiLNOR
(Received January 21, 1955)
1. Introduction

By an n-universal bundle is meant (see Steenrod [3] p. 102) a principal fibre
bundle such that the bundle space is (n — 1)-connected. We will particularly
consider bundles for which the bundle space is contractible.

Serre has shown ([2] p. 481) that any arc-connected base space X is covered
by a contractible fibre space, the fibre being the space of closed loops on X with
a fixed base point. The present paper shows that for a suitable base space X
(namely a connected, countable simplicial complex in the weak topology)
there exists a contractible fibre bundle over X. In particular Serre’s space of
closed loops on X, is replaced by a topological group G.

One consequence of this is the construction of a wide variety of topological
groups. (For example any Eilenberg-MacLane complex K(II, n) can be con-
sidered as a topological group, assuming that the group II is countable.)

In Section 4 this result is applied to give an axiomatic characterization of
homotopy groups for the category of countable CW-complexes. In Section 5 it
is shown that any principal bundle over X with any group @ is induced by a
continuous homomorphism G — G.

2. Lemmas concerning CW-complexes

Lemma 2.1. The product of two countable CW-complexes is a CW-complex.'

If W is a subset of A X B such that (¢ X &) n W is open, relative to & X &,
for each cell ¢ of A and ¢’ of B, then we must prove that W is open in the prod-
uct topology.

Let (a, b) be any point of W, and let A; (resp. B.) be the closure of the union
of the first ¢ cells of A (resp. B) numbered so that a € A, (resp. b € B;). Suppose
by induction that relative neighborhoods U, of a in A; and V; of b in B; have
been constructed so that U; X V, © W. Choose open neighborhoods U,; D
U;in Ay and Vi D V,in Biyy so that U,y X Vi © W. This is certainly
possible since 4,41 and B;i; are compact spaces. Continue by induction. Then
U=U;uUsu---and V = Vyu Vyu --- are open neighborhoods of a and b
satisfying U X V < W. Hence W is open. This completes the proof.

Proposirion 2.2. Let A be a simplicial complex and let A;; be the subset of
A" = A X -+ X A consisting of all (ar, --- , a,) such that a; = a;. Then A
18 a subcomplex of the first derived complex of A™.

(The proof is straightforward.)

Given a (not necessarily Hausdorff) space A and a collection of maps f:¢" —

! For definitions see J. H. C. Whitehead [4]. An example due to C. H. Dowker shows that
this lemma would be false without the assumption of countability.
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CONSTRUCTION OF UNIVERSAL BUNDLES 273

A, where each ¢" is a closed n-cell, let ¢” denote the image of the interior of o
and let A™ denote the union of all ¢’ with 7 < n.

LeMMmA 2.3. If the following three conditions are satisfied then A, together with
the collection {e"} of cells, forms a CW-complex.

(a) The interior of each o is mapped one-one onto the corresponding e”. Every
point of A belongs to exactly one set e”.

(b) The boundary of each ¢" is mapped into A™ .

(c) A subset of A", 0 < n = o, is closed whenever ils inverse tmage in each
cell o* of dimension © < n is closed.

It is first necessary to prove that A is a Hausdorff space. It is clear that A
is a Ti-space. But now Whitehead’s proof ([4] p. 225) that every CW-complex
is normal can be applied, without essential change, to the space A. Since 4 is
normal, it is certainly Hausdorff.

Together with conditions (a) and (b), this implies that the interior of each
¢" is mapped homeomorphically onto ¢”. Thus {e"} is a complex in Whitehead’s
sense. Now proposition £ (p. 225 of [4]) implies that this complex is a CW-
complex.

ProrosiTion 2.4. If A is a CW-complex and B is a subcomplex, then every
map of B into a contractible space can be extended to A.

(The extension is easily constructed cell by cell.)

ProrositioNn 2.5. If A is a contractible CW-complex and B s a contractible
subcomplex, then B is a strong deformation retract of A.

(Proposition 2.4 is applied, first to construct a retraction, and then to deform
this retraction into the identity map. This uses the fact that 4 X [0, 1] is a
CW-complex ([4] p. 227).)

Prorosition 2.6. Let A u B be a CW-complex with contractible subcomplexes
A, B, A n B. Then A u B is contractible.

(This follows from 2.5.)

ProrositioN 2.7. Let A1 u ---u Ay be a CW-complex with contractible sub-
complexes Ay, - -+, Ar . Suppose that each possible intersection A;, n --- n A, ,
1 < r =k, 18 also contractible. Then A;u - - - u Ay is contractible.

(This follows by induction from 2.6.)

ProrositioN 2.8. Let Ay C A1 C Ay C --- be subcomplexes of the CW-com-
plex A = U;A; . Suppose that A, is a point and that each A, is a strong deforma-
tion retract of A1 . Then A s contractible.

(Clearly each A; is contractible. By 2.4 a contraction of A; can be extended
to a contraction of 4.,; . Continuing step by step, we thus construct a contrac-
tion of A.)

Prorosition 2.9. A mapping of one CW-complex onto another which maps
cells onto cells is an identification map.

(That is a set is closed if and only if its inverse image is closed. The proof is
clear.)

Prorosrrion 2.10. Let n: (A, B) — (A’, B’) be a mapping of one CW-pair
onto another which maps cells onto cells, and which maps A — B one-one onto
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274 JOHN MILNOR

A" — B'. If B is a strong deformation retract of A, then B’ is a strong deformation
retract of A’.

(Let r:A X I — A be the strong deformation retraction, and define 7:4 X
I — A" X I by 7(a, t) = (n(a), ¢). Then

nrq A" X I — A’

is a strong deformation retraction of A’ onto B’. Continuity follows from the
fact that % is an identification map.)

3. Construction from a given base space

TrarEorEM 3.1. For any countable, connected simplicial complex X in the weak
topology, there exists an «-universal bundle with base space X, the bundle space
and group being countable CW -complexes.

(“Countable’” means that the collection of cells is to be countable. It would
probably be possible to show that the bundle space and group are actually
simplicial complexes, but the author has not succeeded in proving this.)

It is well known that every reasonable base space X is covered by a contrac-
tible fibre space. The standard construction, due to J.-P. Serre, is based on the
space X" of paths in X. The present construction will be based on a similar
space S of simplicial paths in X.

Let S, be the space of all sequences (x,, ,—1, - -+, Zo) of points in X such
that each pair z;, z; lie in a common simplex of X. This is to be topologized
as a subset of X" = X X --- X X. Let S be the topological sum of the S, ,
n = 1. An equivalence relation in S is generated by the relations

(xn’...’xi’...’xo)f\,(xn’...’j;i,...,xo)

whenever either ; = z;; or #;11 = 2, . (The symbol “#” denotes deletion.)
Let S denote the identification space S/(~) with the identification topology.

For each point (z,, -+, zo) of S let [x,, -+, xo] denote the corresponding
point of S. Let vy be a fixed vertex of X.
As bundle space £ we take the subset of S consisting of all [z, , - - - , 2] with
Zo = vo. The projection p: £ — X is defined by
p([xnr e 7x1,00]) = Xn.
Thus the fibre G = p (1) consists of all [z, , -+, o) With z, = 2o = vs.

Lemma 3.2. The space S can be given the structure of a CW-complex, with sub-
complexes E and G.

LemMa 3.3. The projection p:E — X is continuous.

(Proofs will be given later.)

A product between certain elements of S is defined as follows. If
[2, -+, 2o) and [ym, *++ , Yo] satisfy 2y = y., then define

[xnr"' 7x0]'[yma"'7y0] = [(I)n,"‘ ,xO,ym,"',y0]~

It is clear that this multiplication is well defined and associative (whenever it
is defined).
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CONSTRUCTION OF UNIVERSAL BUNDLES 275

LemMA 3.4. This product operation in 8 is continuous.
Every element [z, , --- , 20] has an inverse [z,, -+« , %] ' = [zo, *** , ¥
which satisfies

[xnr ,xo]—l-[x,,, 7x0] = [.'L'o,xo].

It is clear that the function [z, , - -+ , o) = [Za, *+ , Zo] " is a homeomorphism
of S onto itself.

Since the product of any two elements of G is defined, Lemma 3.4 implies

Prorosition 3.5. G is a topological group with identity element [vo, vo] under
the above multiplication.

The bundle structure is defined as follows. Let the coordinate neighborhood
V ; be the star neighborhood of the 7™ vertex v; of X. For each V; choose a fixed
element

€j = [v.‘f)xn—la :xl,v(’]

of p'(v;). Define the coordinate mapping
$;:Vi X G@—p (V)

by ¢i(x, g) = [z, vs]-e;-g. Lemma 3.4 implies that ¢; is continuous.

Define the function p;: p(V;) — G by pi(e) = €;*-[vj, p(e)]-e. Then Lemmas
3.3, 3.4 imply that p; is continuous.

Define ¢;;:V:n V; — G by gii(x) = €' -[vi, x, vj]-e;. Lemma 3.4 implies
that g.; is continuous. The necessary identities

i@, 9) ==, P, 9) =g,
oi(pe), pi(e)) = e,  Pix, 9) = gii(x) 9
are all easily verified.

Still assuming the proofs of the lemmas, this shows that {p, &, X, @, {V;},
{¢;}} is a principal fibre bundle. In order to complete the proof of Theorem 3.1,
it is only necessary to prove the following.

Lemma 3.6. E is contractible.

Proor oF LEmma 3.2. Let D be the subset of S consisting of all sequences
(€., - -+, o) which are degenerate in the sense that x; = x; or ;41 = x, for
some 7. Thus every sequence in D is equivalent to a sequence of shorter length.

Making use of 2.1 it is easy to show that S is a cell complex in the weak to-
pology. Passing to the first derived complex, we will consider S as a simplicial
complex in the weak topology.

The following three facts will be needed.

(A) Every element of S is equivalent fo a unique non-degenerate element (i.e.
to a unique element of S — D).

(B) D is a subcomplex of S. (This follows immediately from 2.2. It can be
restated as follows:) If a simplex of S contains one non-degenerate point then
every interior point of the simplex is non-degenerate.

Such simplexes of S will be called non-degenerate.

(C) If o is any simplex of S, then there is a unique simplicial map of o onto a
non-degenerate simplex o' which maps points onto equivalent points.
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276 JOHN MILNOR

Assuming these assertions for the moment, the CW-structure of S is defined
as follows. As cells of S take the images of the interiors of the non-degenerate
simplexes of S. It is now necessary to verify conditions a, b, ¢ of 2.3.

(a) This is an immediate consequence of (A) and (B).

(b) Let s be a boundary point of the non-degenerate simplex ¢" of S. We
must prove that the image & of s lies in the (n — 1)-skeleton of 8. Let ¢, 1 <
n — 1, be the simplex of 8 which contains s as interior point; and let ¢, j < 4,
be the corresponding non-degenerate simplex, which is given by assertion (C).
Then § belongs to the corresponding cell e; of S.

(c) Let C be a subset of the n-skeleton of S such that the inverse image of
C in each non-degenerate simplex of dimension =n is closed. We must prove
that C is a closed set. The following assertion will first be proved, by induction
on i: The inverse image of C in any simplex o' of S is closed. Let ¢’ be the non-
degenerate simplex which corresponds to o' by assertion (C). It is sufficient to
show that the inverse image of C in ¢’ is closed. If § < n this is true by hy-
pothesis. If j > n then the inverse image of C in ¢’ can contain no interior points.
Hence it is only necessary to consider the boundary simplexes of ¢’. But these
have dimension <7, so that we can apply the induction hypothesis.

Since S has the weak topology, it follows that the full inverse image of C in
S is a closed set. Since S is an identification space it follows that C is closed.

This shows that S is a CW-complex. It is clear that & and G are subcom-
plexes of S. Thus (still assuming (A) and (C)) this proves Lemma 3.2.

Proor oF (A). Define the (discontinuous) function u:S — S by

(xn, -+ -, xo) if this sequence is non-degenerate

M(xny"':xo) = {

@n, v+, &, -+, x0) if 1 1s the largest integer with
Ty = i1 0 Xig1 = T4y

Let »:S — S — D be the function obtained by iterating p until a non-degener-
ate point is obtained. We will prove that »(s) = »(s") whenever s ~ s'. This
clearly implies assertion (A).

It is sufficient to prove that

(*) V(xny"'yx0)=V(xna"',j:iy"'yxo)
where j is any index such that z; = z;; or ;51 = ;-1 . The proof will be by
induction on n.
Note that + = j. If 7 = 7 we have
V(xna ,1?0) = V(ﬂ(xna yxo)) = V(.’L',., e 7j;i7 e ,.’L‘o)

which proves (*). A similar proof applies in case 7 = j + 1l and z, = x;1.
If7 = 7 + 1 and Tit1 = Ti then

#ﬂ(xny”’yxo) :/“(xnyn':‘ii:”'7x0)
= (xn"",‘ii-l"l:‘iir"')xo): (xﬂa"'aj:i7j;jy"',x0)
:M(x"’...Y:i‘;].’...’xo)7
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CONSTRUCTION OF UNIVERSAL BUNDLES 277

which proves (*). If ¢ > j + 1 then
y(xn’ o« .. ’xo) = V(xn’ Y ’xi’ Y ’xo)
= V(xn:"'::ti:"'7x‘f:"'7x0) = V(.’L',,,"',.i'j,"',xo),

where the middle equality follows from the induction hypothesis. This completes
the proof of (A).

Proor oF (C). Let s, be some interior point of the simplex ¢ of S, and let
v(so) be the corresponding non-degenerate point. Then »(s) is obtained by
crossing out certain elements of the sequence s, = (z,, -+, o). For any s in
the simplex o, let #(s) denote the point of S obtained by crossing out the corre-
sponding elements of the sequence s. It follows from 2.2 that s ~ #(s) for every
sin ¢. But » maps ¢ linearly onto another simplex ¢’ of S. Since ¢’ contains the
non-degenerate point »(sy) it is non-degenerate. This completes the proof of
(C), and hence of Lemma 3.2.

Proor oF Lemma 3.3. Let 7:S — S be the identification map. Define 5: S —
X by p([xn, -+, 2]) = .. Since the composition pn:S — X is clearly con-
tinuous, it follows from the definition of the identification topology that p is
continuous. Therefore the restriction p of p to E is also continuous.

Proor or LeEmMA 3.4. Let A be the subcomplex of S X S consisting of all
pairs ([, , -+, o), [Ym, - - , Yo)) such that zo and y,. lie in a common simplex
of X. (Thus A contains all pairs with 2o = y. .) We will prove that the product
map A — S is continuous. Since S X S is a CW-complex (by 2.1) it is sufficient
to verify that this map is continuous on each closed cell of A.

A cell of A © 8§ X S has the form 5(¢c) X 5(s) where ¢ and = are non-de-
generate simplexes of S. It is clearly sufficient to prove that the composition

o X1 X, A — 8 is continuous. But this composition can be broken up

into a continuous product ¢ X r — S followed by 7:S — S. This completes
the proof.

Proor or LEmmaA 3.6. Let E, C S, be the set of sequences (., -, 21, %)
which end at vy . Let B, be the image of E, in E. Let R, = E,. n D be the set
of degenerate sequences in E, . (See proof of 3.2.)

We will prove that E, and R, are both contractible. By 2.5 this will imply
that R, is a strong deformation retract of E, .

Now note that the map E, — E, carries the subcomplex R, onto E., car-
ries E, — R, one-one onto £, — E,_, , and maps simplexes of E, onto cells of
E, . Therefore, by 2.10, it will follow that E,_; is a strong deformation retract
of &, .

Now since B,  E, < B, c --- are subcomplexes of the union £ (where
E, is defined to be the single point [vg, vo]), it will follow by 2.8 that E is con-
tractible.

There is an obvious contraction of E, which can be described as follows.
Let T, be the linear graph with vertices [0], - -, [#] and edges [0, 1], ---,
[n — 1, n]. Then E, can be considered as the set of all maps (T, [0]) — (X, v,)
which carry edges linearly into simplexes. A contraction of 7', is obtained by

This content downloaded from 130.126.108.67 on Wed, 10 Apr 2013 13:30:21 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

278 JOHN MILNOR

first deforming the edge [n — 1, n] into the vertex [n — 1]; then deforming
[n — 2, n — 1] into [n — 2]; etc. This induces a contraction of E,, .

To prove that R, is contractible, first observe that R, = Pyu---u P, u
QU -+ u Q,;, where the subcomplex P; is the set of all sequences in E, for
which z; = z,; and where Q; is the set of sequences with z;;; = z;;. By 2.7,
in order to prove that R, is contractible it is sufficient to prove that each in-
tersection R’ = P, n---n P;, nQ;, n--- n Qj, is contractible.

Let R’ be any such intersection, and let T” be a corresponding linear graph,
obtained by identifying the two edges [jm + 1, ju] and [jm — 1, jum] of T, , for
m =1, --- | k; and by identifying all points of the edges [¢, , 7 — 1], for m =
1, -+, h. Then R’ can be considered as the set of all maps (77, [0]) — (X, »)
which carry edges linearly into simplexes.

Now observe that the graph T’ is actually a tree. (This is easily proved by
induction on the number of identifications made.) Hence T’ can be contracted
to a point by contracting one free edge after another, keeping the base point
[0] fixed. This induces a contraction of R’. Since R’ is contractible, it follows
that R, is contractible, and therefore that % is contractible. This completes the
proof of Theorem 3.1.

CoROLLARY 3.7. If Y is any connected space having the same homotopy type as
a countable simplicial complex X in the weak topology, then there exists an o -uni-
versal bundle with base space Y.

Let f:Y — X be a homotopy equivalence. The universal bundle over X,
together with f, induces a bundle & over Y. It is easily shown that ®& is a uni-
versal bundle.

In particular, this corollary applies to any connected, countable CW-complex
Y. (For proof see [4] p. 239.)

4. Axiomatic characterization of homotopy groups

J.-P. Serre has pointed out that his construction of a contractible fibre space
over any arc-connected base space can be used to give an axiomatic charac-
terization of homotopy groups.” The following section contains such a charac-
terization. The construction of Section 3 makes it possible to base our axioms
on the notion of fibre bundle. [However the alternative characterization, based
on fibre spaces, will be given in brackets.]

It will be convenient to ignore the group structure of the homotopy groups
at first.

Consider the category consisting (1) of all triples (X, 4, ) where X is a
countable CW-complex, 4 is a subcomplex, and z is a vertex of 4; and (2) of
all continuous maps between such triples. [Alternatively the category of all
triples z ¢ A C X of topological spaces, and all maps between such triples.)]

2 The possibility of such a characterization was conjectured by Steenrod and Eilenberg
[1] p. 49. Added in proof: Much of the material of this section is contained in Kuranishi
[5]. A proof of Lemma 4.3 is given in [6].
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Let (X, z) stand for the triple (X, x, z). Let m(X, x) denote the set of all
[arc]-components of X. For any map f: (X, z) — (Y, y) let fx:m(X, 2) — mo(Y, y)
denote the function induced by f.

TuEOREM 4.1. There exists one and, up to 1somorphism, only one function which
assigns

(a) to each triple (X, A, z) in the category and each © = 1 a set (X, A, z),

(b) to each triple and each i = 1 a function d:7:(X, A, x) — m._1(4, x), and

(c) toeachmap f:(X, A, z) — (Y, B,y) and each i = 1 a function fx:7(X, A, x)
— 7Y, B, y), such that the following seven axioms are satisfied.

1) If f: (X, A, ) — (X, A, z) is the identity map, then so is fx:m,(X, A, ) —
(X, A, x).

(2) The identity (gf)x = g«f« holds for any maps f:(X, A, z) — (Y, B, y),
9:(Y, B,y) = (Z, C, 2).

(3) The identity f+d = 8fx holds in the square

wilX, A, 5) - 2V, B, )

o] |

’

Wi—l(Ay .’L‘) f* > Wi—l(B, Z/),

where f' s the map induced by f, 1 = 1.
The inclusion maps (A, z) — (X, z) — (X, A, x) induce a sequence

o m(X, 7)o mX, A, 2) 0 w4, 2) — molX, 7).

(4) The preceding sequence has the following “‘exactness” property. If a term
and the third succeeding term both consist of a single point, then the function con-
necting the two intermediate sets is one-one onlo.

(5) If f is homotopic to g then fx = g« .

(6) If p:E — X, is the projection map of a fibre bundle [alternatively fibre
space in the sense of Serre], where X, is an arc-component of X, let q: (E, p—*(4), e)
— (X, A, z) be induced by p. Then gx:m(E, p(A), &) — wi(X, A, x) is one-one
onto for 1 = 1 (assuming that both triples are in the category).

(7) wi(x, x) consists of a single point.

Proor. Since the existence theorem is clear, we must only prove uniqueness.
Let {m:, 8, «} and {#:;, 8, ¥} be two such functions. Since m(X, x) and 7o(X, z)
are identical by definition we have the identity map

¢)0:1I"0(X, 512) -—)7-I'0(X, 17)

which satisfies fxpo = ¢ofs for any map f:(X, ) — (¥, y). We will construct
isomorphisms (i.e. one-one onto functions)

¢,~:7ri(X, A, IL‘) —)1_”(X, A, (12)

by induction on %, so as to satisfy
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280 JOHN MILNOR -
(A) the identity 3ap; = ¢,_1d holds in the square

7iX, A, 2) —2, 74X, 4, 2)

d |

7|'/L_1(A x) —-_" 7r7,—1(A7 x)

for any triple (X, 4, x); and

(B) the identity fxp: = éifs holds for any map f:(X, 4, z) — (Y, B, y).

For each triple (X, 4, z) in the category we may choose a triple (X', A", ')
of the same homotopy type, where X’ is a countable simplicial complex in the
weak topology with subcomplex A’ and vertex z’. (For a single CW-complex
this is proved in [4] p. 239. A proof for triples can be given along the same lines.)
Construct an <« -universal bundle p:E — X’ as in Section 3. It is clear that

~'(4”) will be a subcomplex of . Consider the diagram

- Ti(Ey (’) - Wi(E; p—l(A/)7 6) __a’_’ Wi-—l(p—l(A/); e) i 7I“i—l(‘E'7 C) -

| |

1ri(X', A4 /, x') — 7r,-_1(A ’, .’L‘/)

o-| |

(X, A, 2) — 7,_4(4, z)

together with the corresponding diagram for the sets #, where the top line is
part of the “exact” sequence of the triple (&, p~'(4’), e), and where ¢ is a
homotopy equivalence. Define ¢;:7:(X, 4, ) — 7:(X, 4, x) by

¢: = JuDx0 'Gi10Dx Gx .
It is easily verified that each of the functions g« , P« , - - - , g% is an isomorphism,
and therefore that ¢; is an isomorphism.

The identity (A) can be verified by considering commutativity relations in
the above diagram. The identity (B) is somewhat harder. It is clearly sufficient
to consider the case where X and Y are simplicial complexes. Let f': (X', 4, ) —
(Y, B, y) be a ﬂmpllclal appr0x1mat10n to f, where X" is a subdivision of X. Let
p:E— X, p:E' — X', ¢:F — Y be the »-universal bundles which were con-
structed in Section 3. Then f" induces a map J': B’ — F which satisfies ¢f’ =
f'p’. In fact f’ is defined by f'([x,, -+ , zo]) = [f'(®.), - , f'(x0)]. Similarly
the identity map 7:X’ — X induces 7: £ — E. The identity (B) can now be
verified by considering commutativity relations in the following diagram:
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(X, A, 2) BB, pA), ) — s ma(TH(A), )

i o ] ]

f* Wi(le A,, x) ‘_'p*_' Wi(E’, p’_l(A /)7 el) _9—’ Wi—l(p,_l("1 l)a ()’I)

.| 7| |

*
s n iV, B, y) <L mi(F, g7H(B), ") —s mia(g(B), ¢,

together with the corresponding diagram for the sets #. This completes the
proof. [The alternative theorem, stated in brackets can be proved in much the
same way, except that the simplicial approximation techniques are no longer
needed.]

THEOREM 4.2. There are exactly two ways of iniroducing a group structure inio
the sets m(X, A, x), 1 = 2, and m(X, x), in such a way that the functions d and fx
are homomorphisms. These two group structures are related by the identity (a-b), =
(b-a): .

Since the existence theorem is clear we need only prove uniqueness. During
the proof of Theorem 4.1, every group =;, ¢ = 2, was put into one-one corre-
spondence with some group m (X, z) by a sequence of isomorphisms. Therefore
it is sufficient to carry out the proof for the fundamental group m (X, z).

Let ab denote the customary product of @ and b in (X, z) and suppose that
a o b is some new product such that

(1) for any space X, m(X, x) is a group under this product, and

(2) the induced function fx:m(X, z) — m(Y, y) is a homomorphism with
respect to this product for any map f.

Let T be the space which consists of two circles, intersecting at a single point
t. Then m (T, t) is a free group on two generators @ and 8, under the usual product.
Given any two elements a, b € m(X, ) we can clearly construct a mapping
Fi(T, t) = (X, z) so that fx(a) = a, f«(8) = b. Then a o b = fx(a o B). In terms
of the usual group structure, a o 8 is equal to some word w(e, 8) of the free
group. Hence

fe(a o B) = fu(w(a, B) = w(fx(a), fx(8)) = wla, b)
and therefore
aob = w(a,b).

Thus to describe the new product completely, it is sufficient to determine this
word w(a, 8) in the free group on two generators.
The word w(e, 8) has the following two properties

(a) w(l, ) =8, wal) =a
(b) w(e, w(B, 7)) = ww(e, B),r)
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(where (b) is an identity in the free group on three generators). To prove (a)
note that the identity element 1 e m(T, {) can be defined as the image of the
injection homomorphism #x:m (¢, ) — m(T, ¢). It follows that the new product
operation must have this same identity element.

To prove (b) choose a space X for which 7(X, z) is a free group on three
generators «, 8, v. Then formula (b) is merely the associative law a o (3o y) =
(o © B) o v. To complete the proof of Theorem 4.2 it is only necessary to prove
the following lemma.

LremMa 4.3. If a reduced word w(a, ) in the free group on two generators satisfies
conditions (a) and (b), then either w(e, ) = af or w(a, B) = Pa.

The proof is a long but easy exercise in the manipulation of reduced words.
Details will not be given.

5. A property of the universal bundle

The following property of an n-universal bundle with group ¢ is well known
([3] p. 101). If Y is an n-dimensional complex, then any bundle over Y with
group ( is induced by a map of Y into the base space of the universal bundle.
The following theorem describes a dual property.

If a bundle over X with group G is given, then every continuous homo-
morphism A:G — G induces a principal bundle over X with group G. In fact if
¢:;;:VinV; — @ are the coordinate transformations of the given bundle, then
hgi;:V:nV; — G are those of the induced bundle.

TueoreM 5.1. Let p: B — X be the universal bundle of Section 3, with group G.
Then any principal bundle & over X with any group G s induced by a continuous
homomorphism h:G — G.

The proof will be based on the construction of a certain slicing function for
the bundle ®. Let ¢: E — X be any bundle with group G and coordinate functions
Vi X F — E. Let F, = ¢ '(z) be the fibre over z, and define ¢;,:F — F, by
0i:(f) = ¢:(x, f). A slicing function for this bundle is a function

wey Fy —F,

defined for all pairs (x, y) in some symmetric subset U of X X X, which is
continuous as a function of three variables, and such that w,.:¥, — F, is the
identity map for each x ¢ X.

A slicing function will be called symmetric if w,,, = way for each (z, y) e U.
It will be called a bundle slicing function if

(1) The map w,,, is admissible for each (z, y) e U. Thatis,ifx e Vi, y e V;,
then the map

¢7xlwz Wb —F

coincides with the operation of an element g = §.;(z, ¥) of G. And

(2) the associated map §;:(V; X V;)n U — G is continuous.

TuROREM 5.2. If X is a countable simplicial complex in the weak topology and
U c X X X s the union over all simplexes 7 C X of 7 X 7, then any bundle
over X possesses a symmetric bundle slicing function with respect to U.

This content downloaded from 130.126.108.67 on Wed, 10 Apr 2013 13:30:21 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

CONSTRUCTION OF UNIVERSAL BUNDLES 283

Theorem 5.1 follows from 5.2 as follows. Let w., be a symmetric bundle
slicing function for the principle bundle ® having projection q:E — X and group
d. Identlfy the groups G, G with the fibres ¢ (), P~ "(vo) respectlvely Let
eo € ¢ '(vg) be the identity element of G. Define the function h:E — E by

h([xn y Tn—1, *** , X1, 2)0]) = Wz, a,_y """ Wzgzy Wz (eo)-

Then it is easily verified that A is a well defined mapping which carries G homo-
morphically into @, and that the bundle ® is induced by this homomorphism.

The proof of 5.2 follows. Let 4., denote the set of all admissible maps F, — F, .
Let A be the union of A,, over all (z, y) ¢ U. There is an obvious projection
a:A — U. It will be proved that A is a fibre bundle over U with fibre (but not
group) G.

As coordinate neighborhoods take U;; = (V; X V;)nU. The coordinate
function

Yist U, i X G—A

is defined as the function which assigns to each ((z, y), ¢) the map

—1
Fy ¢jy F g- F ¢i1 Fx-

These coordinate functions can be used to define a topology for A, and the rest
of the bundle structure is easily defined. (The group of this bundle turns out to
be G X @G modulo the center of its diagonal; the action on the fibre G' being
given by (g1, g2)-9 = 199z ) Let A C U be the diagonal of X X X.

A cross-section ¢: U — A of this bundle clearly gives rise to a bundle slicing
function w,, (defined by w.,(e) = c(x, y)(e)) for the original bundle, providing
only that ¢ maps each (z, ) e A into the identity map

Iz, z):F,—F,.

Let T:A — A be the map which carries f:F, — F, into f :F, — F,. The
corresponding symmetry T:U — U of the base space is defined by T(x, y) =
(y, ). Then the cross-section ¢:U — A corresponds to a symmetric slicing
function if and only if it satisfies Tc = ¢T. Thus our objective is now to prove:

Prorosition 5.3. There exvists a cross-section ¢:U — A whach extends the given
cross-section I: A — A and which satisfies Tc = cT.

Let Gy be the arc-component of the identity element in (. Observe that the
bundle space A contains a subspace A, which may be considered as a bundle
over U with fibre Gy . In fact for each cell » X 7 of U let ag'(r X 7) denote the
arc-component of a '(r X r) which contains the points I(z, x) for x € 7. Since
a”'(+ X 7) is homeomorphic to (r X 7) X G it follows that a5’ (+ X 7) is homeo-
morphic to (r X 7) X Go. The union of these sets ag'(r X 7) over all r gives
the required space A .

Since the fibre Gy of the bundle ag: A9 — U is n-simple for all n, the homotopy
groups m,(as (z, y)) form a bundle ®, of coefficients over U (that is a system
of local coefficients). The restriction To: A4y — Ao of T to A, induces a homo-
morphism Ty:®, — ®, .
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It will be necessary to consider the equivariant cohomology groups of U mod A
with coefficients in ®, . First note that X X X is a cell complex with subcomplex
U. Passing to the first derived complex, U will be considered as a simplicial
complex with subcomplex A. The equivariant cochain group C*(U mod A, &, , T)
is now defined. (An element of C* is a function ¥ which assigns to each k-simplex
o of U an element v(s) of the group of cross-sections of ®,|s, subject to the
conditions y(¢) = 0 for ¢ C A, and v(T(s)) = Tx(y(s)) for all ¢.)

A strong deformation retraction r:U X [0, 3] — U of U into A is defined by
r((x, y), ) = (1 — Ha + ty, (1 — t)y + fx). Since this commutes with the
symmetry T: U — U, it follows that the cohomology groups H*(U mod A, ®,, , T)
are all trivial.

Proposition 5.3 now follows by an obstruction argument. Let U" be the n-
skeleton of U. Suppose by induction that a cross section ¢,_;:(Au U"™) — A,
has been constructed so that

(1) cpalz, x) = I(z, x) for all (x, z) € A, and

(2) cn—lT = ToCn .

Let vy ¢ C"(U mod A, ®,_1) be the obstruction to the extension of ¢,_; to (Au U").
Clearly v is an equivariant cocycle. Since the equivariant cohomology group
H™"(U mod A, ®,_1, T) is trivial, it follows that, after making a symmetric
modification of ¢,—; on the (n — 1)-simplexes of U — A, we can extend it to
Au U". The extension ¢, can be chosen arbitrarily on half of the n-simplexes of
U — A. It is then determined for the other half by the symmetry condition
enT = Toc, .

Continuing by induction we construct the required cross-section ¢. The
continuity of ¢ follows from the fact that U is a complex in the weak topology
(by 2.1). This completes the proof.

One consequence of theorem 5.1 is the following.

CoroLLARY 5.4. Let X and G be as in Section 3. If X is the base space of a
second o -universal bundle with group G, then there is a continuous homomorphism
G — G which induces isomorphisms of the homotopy groups. In particular if G is
a CW-complezx, then it has the same homotopy type as G.

The proof is clear.
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