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ANNALS OF MATHEMATICS 
Vol. 63, No. 3, May, 1956 

Printed in U.S.A. 

CONSTRUCTION OF UNIVERSAL BUNDLES,, H 

By JOHN MILNOR 

(Received January 21, 1955) 

1. Introduction 
It is well known that any compact Lie group can serve as the group of an 

n-universal bundle (that is a principal bundle with (n - 1)-connected bundle 
space). The main result of this paper is that a completely arbitrary topological 
group G can serve as the group of an n-universal bundle, n < oo. The con- 
struction is based on the (n + 1)-fold join G o ... o G. 

Section 2 contains some preliminary material on the topology of joins: in 
particular the result that every (n + 1)-fold join is (n - 1)-connected. Section 
3 contains the main construction. In Section 4 this construction is used to obtain 
some information about the homology of the classifying space of G. (We say 
that X is a classifying space for G if X is the base space of some oo -universal 
bundle with group G.) 

If the group G is suitably restricted (a countable CW-complex with cellular 
product map and inverse map), then it is shown in Section 5 that a countable 
CW-complex can be chosen as classifying space for G. (This construction is 
quite explicit, and could be used for homology computations.) The final theorem 
(5.2) summarizes the relationships between "countable CW-groups" and their 
classifying spaces. 

In general this paper is independent of "Construction of universal bundles I" 
which considered the construction from a given base space, rather than from 
a given group. 

2. Topology of joins 

The join A, o ... o An of n topological spaces A1 . , An can be defined as 
follows. A point of the join is specified by 

(1) n real numbers t1 , t.. , t satisfying ti _ 0, t? + + tn = 1, and 
(2) a point ai E As for each i such that ti 5 0. Such a point in A1 o ...o An 

will be denoted by the symbol ta ... tnan, where the element as may be 
chosen arbitrarily or omitted whenever the corresponding ti vanishes. 

By the strong topology in A1 o ... o An we mean the strongest topology such 
that the coordinate functions 

ti:Ai o ... o An -> [0, 1] and ai:t7l(0, 1] -> A 

are continuous. Thus a sub-basis for the open sets is given by the sets of the 
following two types 

(1) the set of all tial G 0 tnan such that a < ti < 13, 
(2) the set of all tial G G) tnan such that ti : 0 and ai E U, where U is 

an arbitrary open subset of Ai . 
The join of infinitely many topological spaces in the strong topology can be 
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CONSTRUCTION OF UNIVERSAL BUNDLES 431 

defined in exactly the same manner, with the restriction that all but a finite 
number of the ti should vanish. It is clear from the definition that the formation 
of finite or infinite joins in the strong topology is an associative, commutative 
operation. 

The strong topology is not the same as the more conventional weak topology, 
in which A, o ... o An is considered as an identification space of the product of 
A, X ... X An with an (n - 1)-simplex. However the three lemmas of this 
section will be true for either topology. 

LEMMA 2.1. The reduced singular homology groups of the join A o B with co- 
efficients in a principal ideal domain are given by 

f,+,(A ? B) - Zi+j==r Hi(A) 0 Hj(B) + Zi+j=_r-l Tor (FHi(A), Hj(B)). 

(The symbol Hi is supposed to stand for Hi whenever i # 0.) Consider the 
triad (A o B, A, B) where A is the set of points ta 0 (1 - t)b with t > 1, and 
B is the set of ta G (1 - t)b with t < 1. It is easily verified that this is a proper 
triad, so that its reduced Mayer-Vietoris sequence 

*F*(A o B) ??f(A) + ?fl(B) 2L f l -- H+1r(A o B)k?* 

is defined and exact. 
Identify the spaces A, B, and A X B with the subsets of A o B consisting 

of all ta 0 (1 - t)b with t = 1, t = 0, and t = 2 respectively. Then A is a de- 
formation retract of A, B is a deformation retract of B, and A X B = A n B. 
Since the inclusion maps A -> A o B and B -> A o B are homotopic to con- 
stants, it follows that the homomorphism 0 is always trivial. Thus the above 
exact sequence reduces to the following. 

0 < Hr(A) + ?R(B)J Hr(A X B) <H- +(A o B) <-0. 

According to a theorem of Eilenberg and Zilber (Amer. J. Math., 75 (1953) 
pp. 200-204) the singular complex S*(A X B) has the same homology groups 
as the complex S*(A) 0 S*(B). By the Kfinneth formulas, the latter complex 
has homology groups 

Hr(S*(A) 0 S*(B)) - Zi+j=r Hi(A) 0 Hj(B) + Ei+j=r-i Tor (Hi(A), H,(B)). 

Substituting this expression for Hr(A X B) in the above exact sequence, and 
computing the homomorphism 4/', we easily arrive at the required expression 
for kernel i' _ Hr+l(A o B). 

LEMMA 2.2. If B is arc-wise connected and A is any non-vacuous space, then 
A o B is simply connected. 

PROOF. Let S be the circle. Any map f: S - A o B can be described by the 
formula 

f(s) = t(s)a(s) 0) (1 -t(s))b(s) 
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432 JOHN MILNOR 

(where b(s) is defined whenever t(s) 54 1, and a(s) whenever t(s) = 0). Con- 
struct a map b': S -* B, defined for all s, so that b'(s) = b(s) whenever t(s) < 2- 
This is possible since B is arc-wise connected. Let ao be some point in A. A homo- 
topy 

h:S X [0,3] ->A oB 

can now be defined as follows. Let 

t(s, u) = Min (1, (1 + u)t(s)) for 0 ? u < 1 
(\2 - u)t(s, 1) 1? < ?<2. 

Define 

(t(s, u)a(s) 0 (1 - t(s, u))b(s) for 0 < u < 1 
h(s, u) = 1t(s, u)a(s) 0 (1 - t(s, u))b'(s) 1 < u < 2 

(u- 2)ao 0 (3- u)b'(s) 2 < u < 3. 

Then it is easily verified that h is a well defined homotopy satisfying h(s, 0) = 
f(s), h(s, 3) = constant. This completes the proof. 

By definition, every non-vacuous space will be called (- 1)-connected. 
LEMMA 2.3. The join of n + 1 non-vacuous spaces is always (n - 1)-connected. 

In fact if each space Ai is (c, - 1)-connected, then Ao o A1 o ... o An is 
(co + C + *--- + cn + n - 1)-connected. 

If we can prove this for the case n = 1, then the general case will clearly 
follow by induction. Since the join of any two non-vacuous spaces is connected, 
this lemma is true for the case co = c1 = 0. If Ao is (co - 1)-connected and 
A1 is (c1 - 1)-connected where either co or cl is positive, then 2.2 implies that 
Ao o A1 is simply connected and 2.1 implies that Hr(Ao o A1) = 0 for r < co + c1 . 
Therefore Ao o A1 is (co + c1)-connected. This completes the proof. 

It follows from 2.3 that the join of infinitely many non-vacuous spaces is 
always oo -connected. 

3. The construction 

For an arbitrary topological group G let En G o * o G be the join of n + 1 
copies of G in the strong topology. Define the right translation R: En X G -E 
by 

R(togo ( .. t,1gN g) = to(9og) i * * t9(g9g). 

Let X, be the identification space of En produced by identifying e with e' if 
and only if e' = R(e, g) for some g E G. Let p: En - Xn be the identification 
map. 

THEOREM 3.1. G is the group of an n-universal bundle having bundle space En, 
base space Xn, and projection p. 

The space En is (n - 1)-connected by Lemma 2.3. (In fact if G is (c - 1)- 
connected then En is ((n + 1)c + n - 1)-connected.) The bundle structure is 
defined as follows. Let the coordinate neighborhood Vj be the set of all points 

This content downloaded from 130.126.108.67 on Wed, 10 Apr 2013 13:31:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CONSTRUCTION OF UNIVERSAL BUNDLES 433 

p(togo E3 ... @ tngn) in Xn such that tj 5 0. Define the coordinate functions 

4j:Vj X Gp-p(Vj) by 

j(p(toqo i) ... * tngn), g) = to(goq9)i ) ) . tn(gqg.1g). 

It is easily verified that oy is well defined. (Continuity will be proved later.) 
Define 

pj:p-1(Vj) - G by pj(togo 0 *. * ) tng,) = gj . 
The identities ppj(x, g) = x, p,6j(x, g) = g, and 4j(p(e), pj(e)) = e show that 
(p, pj) is an inverse to 4i . 

The coordinate transformations gij: V, n Vj -* G are defined by 

qj (p(togo 0 *. 0) tag.)) = 9X971, 

and satisfy the identity pi4j(X, g) = gij(x) * g. 
It is now necessary to prove that all of these functions are continuous. Starting 

directly from the definition of the strong topology in the join, it is proved that 
R and pj are continuous. (I do not know if R would be continuous for the weak 
topology.) The identification map p is certainly continuous. 

Let E be the identity element of G. The identity 4j(p(e), e) = R(e, pj(e)-1) 
shows that 4j(p(e), e) is a continuous function of e. By the definition of the 
identification topology, this means that 4j(x, e) is a continuous function of x. 

Now the identity 

4 i(x, g) = R(4 i(x, e) g) 

implies that 4j is continuous as a function of two variables. 
Finally the identity gij(x) = p4oj(x, e) shows that gij is continuous. This 

completes the proof. 
An oo -universal bundle for G may be constructed in exactly the same way, 

using the join of infinitely many copies of G in the strong topology. This bundle 
will be denoted by p Eoo > X-* . 

4. Homology in the universal bundle 

The preceding construction can be used to study relations between the ho- 
mology groups of G and the homology groups of the classifying space XO, . 

Identify X, , En with the subspaces of XO , Er,. for which tn+1 = tn+2 = = 0 
Then we have a sequence 

XOCX1CX2C - CXc 

of spaces (where Xo is a single point, X1 is the suspension of G, etc.). 
LEMMA 4.1. The singular homology group Hk(Xn, Xn-1) is isomorphic to the 

reduced singular homology group Hkl1(Efll), for n, k > 0. 
The proof will be given later. Since En-1 is the n-fold join G(,) o ... o G(n) 

its homology (with coefficients in a principal ideal domain) may be computed 
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434 JOHN MILNOR 

by Lemma 2.1. In particular if the homology of G is torsion free (for example 
if the coefficient group is a field) then 

Hk-l(E.ll) - ? *i1++in=k-n H1i(G) 0 *. 0* Hi.(G). 
This lemma can be used to prove the following. 

THEOREM 4.2. There is a spectral sequence {En,q} whose limit term EX is the 
graded group corresponding to H*(X.) under a suitable filtration,' for which 

Elq = Hn+q(Xn , Xni1) 
_ Hn+qPI(G(l) ... G(n)), for n > 0. 

In particular if H*(G) is torsion free then 

E, q = Eil+ -+in=qHi1(G) 0 ... 0 Hi.(G). 
PROOF OF LEMMA 4.1. Consider the homomorphisms 

Hk-l(En-1) +z Hk(En-l 0 ElEn-l)X) Hk(Xn IXn-1) 

where the cone Enol is considered as a subset of En = Enlo G, and where 
the map p' is induced by the projection p En -> Xn. Since En1 o - is contract- 
ible, the boundary homomorphism a is an isomorphism. 

The map p': (En1- o E En-,) - (Xn, Xn1) is a relative homeomorphism. 
In fact an inverse map Xn - Xn-- Enol 0 - Enl is given by x -* 4n(x, E). 
Since En-l is a deformation retract of a neighborhood in En-l o E, and since 
Xn-l is a deformation retract of the corresponding neighborhood in Xn, it 
follows that p* is an isomorphism. This completes the proof. 

PROOF OF THEOREM 4.2. Consider the singular chain groups 

S*(X0) C S*(X1) C ... C S*(Xoo). 

Let S* denote the union of the S*(Xn), n < oo. Then the groups S*(Xn) form 
a filtration of S*. This filtered, graded, differential group S* gives rise to a 
spectral sequence {En,q} where E' is the graded group corresponding to H(S*) 
under the induced filtration, and where 

Elq = Hn+q(S*(Xn)/S*(Xnl)) = Hn+q(Xn, Xn-l). 

Thus to complete the proof it is only necessary to show the following. 
LEMMA 4.3. The inclusion S* c S*(X,) induces isomorphisms H(S*) > 

H*(XX) 
First observe that the inclusion Xn C X. induces isomorphisms Hk(Xn) 3 

Hk(X00) for k < n. To prove this it is sufficient to prove that the corresponding 
homomorphisms 7-k(Xn) -*> -k(X) are isomorphisms for k < n. But this follows 
easily from consideration of the homotopy sequences of the two universal bundles. 

Since Hk(S*) is the direct limit of the groups Hk(Xn) as n -> c, this completes 
the proof. 

In conclusion we remark that the homomorphism d1 El , l q can be 
1 A similar spectral sequence for an arbitrary space X has been studied by G. Whitehead, 

the group G being replaced by the space Q of loops on X. 
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explicitly computed, at least if the homology of G is torsion free. The result, 
stated without proof, is as follows. Let D be the diagonal map of G into the 
(i - 1)-fold product G X X G. Define -y:G X G -* G by -y (g, 92) = 91921. 

If zi o ... o zn is an element of Hn+qil(G o ... o G) r Elq such that D*(z,,) 
Zyi) X X Yni then 

d1(z1 o o zn) = e (-)aiY*(Z1 X Y(j)) o ... o * *(Zn-1 X Y(n!)l) 

where ai is an appropriate sign. 

5. Countable CW-groups 
A topological group G will be called a countable CW-group if G is a countable 

CW-complex such that the map g 9-l g of G into itself and the product map 
G X G -> G are both cellular (that is, carry the k-skeleton into the k-skeleton). 
For example the groups C constructed ill Part I of this paper are clearly count- 
able CW-groups. 

THEOREM 5.1. Every countable CW-group G is the group of an x -universal 
bundle for which the base space XOO is a countable CW-complex. 

Let Ea, be the join of (n + 1) copies of G in the weak topology. Then an 
n-universal bundle p En X-* can be constructed just as in Section 3. (It is 
necessary to use the fact that En is a countable CW-complex in order to prove 
the continuity of the right translation R: En X G -> En. Otherwise the proofs 
are the same as in Section 3.) 

A special CW-structure for En is constructed as follows by induction on n. 
The cells for Eo = G are just those of G. As cells for En = En-l ? G we take all 
cells of the form -r o 0, 4 o a, and (-r o 5)a, where r is a generic cell of En1 , a- 
is a generic cell of G, and 4 is the empty set. The multiplication is understood 
in the sense of right translation, so that (r o C)a is the set of all RI(te 0 (1 - t)t, g) 
with e e r, g e a, and 0 < t < 1. 

The cells of the base space X. = p(En,- o G) can now be given as (1) the 
cells r' of X,- , (2) the point p(4) o t), and (3) the cells p(Tr o ) where r is a 
cell of En,1 . It is easily verified that Xn, is a countable CW-complex with respect 
to this subdivision. The unions Eoo Xo, of the complexes En, X,, can be to- 
pologized as CW-complexes, and clearly the map p Em. -* X,,, is the projection 
map of an c -universal bundle. 

The main results of this paper can be summarized ill the following omnibus 
theorem. We will say that two countable CW-groups G1, G2 are equivalent if 
there is a third countable CW-group G3 which can be mapped homomorphically 
into both G1 and G2 in maps which are also homotopy equivalences. (This is 
clearly a reflexive, symmetric relation. Transitivity will follow from 5.2.) 

THEOREM 5.2. (1) Any countable CW-group G has a countable CW-complex X, 
as classifying space. (2) A second CW-complex X2 is also a classifying space for G 
if and only if it has the same homotopy type as X1 . 

(3) Any countable, connected CW-complex X is the classifying space for some 
countable CW-group G1. (4) A second countable CW-group G2 has the same classi- 
fying space X if and only if G2 is equivalent to G, . 
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436 JOHN MILNOR 

Part (1) is a restatement of 5.1. Part (2) is well known for finite complexes, 
and the proof for CW-complexes is identical. Part (3) follows from Corollary 
3.7 of Part I of this paper. 

PROOF OF (4). If X is a classifying space for both G1 and G2, then Corollary 
5.4 of Part I implies that G1 and G2 are equivalent. If X is a classifying space 
for G1 and if there exist continuous homomorphisms G3 -+ G1, G3 -+ G2 which 
are also homotopy equivalences, then we will construct an oo -universal bundle 
with base space X and group G3 . The homomorphism G3 -* G2 will then induce 
the required bundle over X with group G2 . 

Let the CW-complex X3 be a classifying space for G3 . Then the homomorphism 
G3 -> G1 induces an oo -universal bundle over X3 with group G1. Since X and 
X3 are both classifying spaces for G1, they have the same homotopy type. Since 
X3 is a classifying space for G3, this implies that X is also a classifying space 
for G3 . This completes the proof. 

PRINCETON UNIVERSITY 
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