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1 Subspaces

Definition 1.1. Let X be a topological space and A ⊆ X any subset. The subspace topology
on A is the smallest topology T sub

A making the inclusion map i : A ↪→ X continuous.

In other words, T sub
A is generated by subsets V ⊆ A of the form

V = i−1(U) = U ∩ A

for any open U ⊆ X.

Proposition 1.2. The subspace topology on A is

T sub
A = {V ⊆ A | V = U ∩ A for some open U ⊆ X}.

In other words, the collection of subsets of the form U ∩ A already forms a topology on A.

2 Products

Before discussing the product of spaces, let us review the notion of product of sets.

2.1 Product of sets

Let X and Y be sets. The Cartesian product of X and Y is the set of pairs

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

It comes equipped with the two projection maps pX : X × Y → X and pY : X × Y → Y onto
each factor, defined by

pX(x, y) = x

pY (x, y) = y.

This explicit description of X × Y is made more meaningful by the following proposition.
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Proposition 2.1. The Cartesian product of sets satisfies the following universal property. For
any set Z along with maps fX : Z → X and fY : Z → Y , there is a unique map f : Z → X × Y
satisfying pX ◦ f = fX and pY ◦ f = fY , in other words making the diagram

Z

fX

��

∃!f
��

fY





X × Y
pX

{{

pY

""
X Y

commute.

Proof. Given fX and fY , define f : Z → X × Y by

f(z) := (fX(z), fY (z))

which clearly satisfies pX ◦ f = fX and pY ◦ f = fY .

To prove uniqueness, note that any pair (x, y) ∈ X × Y can be written as

(x, y) = (pX(x, y), pY (x, y))

i.e. the projections give us each individual component of the pair. Therefore, any function
g : Z → X × Y can be written as

g(z) = (pX(g(z)), pY (g(z)))

= ((pX ◦ g)(z), (pY ◦ g)(z))

so that g is determined by its components pX ◦ g and pY ◦ g.

In slogans: “A map into X × Y is the same data as a map into X and a map into Y ”.

Yet another slogan: “X × Y is the closest set equipped with a map to X and a map to Y .”

As usual with universal properties, this characterizes X × Y up to unique isomorphism. This
statement is made precise in the following proposition.

Proposition 2.2. Let W be a set equipped with maps πX : W → X and πY : W → Y satisfying

the universal property of the product. Then there is a unique isomorphism ϕ : W
∼=−→ X × Y

commuting with the projections, i.e. making the diagrams

W

πX ##

ϕ
// X × Y

pX
��

W

πY ##

ϕ
// X × Y

pY
��

X Y

commute.
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Proof. Starting from the data of the maps πX : W → X and πY : W → Y , the universal property
of X × Y provides a unique map ϕ : W → X × Y commuting with the projections.

Likewise, starting from the data of the maps pX : X×Y → X and pY : X×Y → Y , the universal
property of W provides a unique map ψ : X × Y → W commuting with the projections.

We claim that ϕ is an isomorphism, with inverse ψ.

The composite ψ ◦ϕ : W → W is a map into W commuting with the projections. But so is the
identity map idW : W → W . By uniqueness (guaranteed in the universal property of W ), we
obtain ψ ◦ ϕ = idW .

Likewise, the composite ϕ ◦ ψ : X × Y → X × Y is a map into X × Y commuting with the
projections. But so is the identity map idX×Y : X × Y → X × Y . By uniqueness (guaranteed
in the universal property of X × Y ), we obtain ϕ ◦ ψ = idX×Y .

2.2 Product topology

The next goal is to define the product X×Y of topological spaces X and Y such that it satisfies
the analogous universal property in the category of topological spaces.

In other words, we want to find a topology on X×Y such that the projection maps pX : X×Y →
X and pY : X × Y → Y are continuous, and such that for any topological space Z along with
continuous maps fX : Z → X and fY : Z → Y , there is a unique continuous map f : Z → X×Y
satisfying pX ◦ f = fX and pY ◦ f = fY .

Definition 2.3. Let X and Y be topological spaces. The product topology TX×Y on X ×Y
is the smallest topology on X×Y making the projections pX : X×Y → X and pY : X×Y → Y
continuous.

In other words, TX×Y is generated by “strips” of the form

p−1X (U) = U × Y

p−1Y (V ) = X × V

for some open U ⊆ X or some open V ⊆ Y .

Proposition 2.4. The collection of “rectangles”

{U × V | U ⊆ X is open and V ⊆ Y is open}

is a basis for the product topology on X × Y .

Proof. Finite intersections of strips

(U × Y ) ∩ (X × V ) = U × V

provide all rectangles. However a finite intersection of rectangles

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2)

is again a rectangle, since U1 ∩ U2 ⊆ X is open and V1 ∩ V2 ⊆ Y is open.

Proposition 2.5. The topological space (X×Y, TX×Y ) along with the projections pX : X×Y →
X and pY : X × Y → Y satisfies the universal property of a product.

3



Proof. Let Z be a topological space along with continuous maps fX : Z → X and fY : Z → Y .
In particular, these continuous maps are functions, so that there is a unique function f : Z →
X × Y satisfying pX ◦ f = fX and pY ◦ f = fY . In other words, f is given by

f(z) = (fX(z), fY (z)) .

It remains to check that f is continuous. For any rectangle U × V ⊆ X × Y where U ⊆ X is
open and V ⊆ Y is open, its preimage is

f−1(U × V ) = {z ∈ Z | f(z) ∈ U × V }

= {z ∈ Z | fX(z) ∈ U and fY (z) ∈ V }

= f−1X (U) ∩ f−1Y (V ).

Since fX and fY are continuous, the subsets f−1X (U) and f−1Y (V ) are open in Z, and so is
their intersection f−1X (U) ∩ f−1Y (V ). Since those rectangles U × V form a basis for the product
topology on X × Y , the function f : Z → X × Y is continuous.

Remark 2.6. Why did we choose the smallest topology making the projections pX and pY
continuous?

If there is a product topology TX×Y satisfying the universal property, consider any other topol-
ogy T on X × Y making the projections pX and pY continuous. Then the universal property
of TX×Y provides a unique continuous map f making the diagram

(X × Y, T )

pX

��

∃!f
��

pY

��

(X × Y, TX×Y )
pX

yy

pY

%%
X Y

commute. As a function, f : X × Y → X × Y must be the identity:

f(x, y) = (pX(x, y), pY (x, y))

= (x, y).

The identity id : (X × Y, T ) → (X × Y, TX×Y ) being continuous means precisely the inequal-
ity TX×Y ≤ T . That is why TX×Y had to be the smallest topology making the projections
continuous.

Exercise 2.7. Let (X, dX) and (Y, dY ) be metric spaces.

1. For points (x, y) and (x′, y′) in X × Y , define their distance as the sum

d ((x, y), (x′, y′)) := dX(x, x′) + dY (y, y′).

Show that d is a metric on X × Y .

2. Show that the metric d induces the product topology on X × Y .

4


