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1 Subspaces

Definition 1.1. Let X be a topological space and A C X any subset. The subspace topology
on A is the smallest topology T5"» making the inclusion map i: A — X continuous.

In other words, 75" is generated by subsets V C A of the form
V=i'(U)=UnA
for any open U C X.

Proposition 1.2. The subspace topology on A is
Tt ={VCA|V=UnNA for some open U C X}.

In other words, the collection of subsets of the form U N A already forms a topology on A.

2 Products

Before discussing the product of spaces, let us review the notion of product of sets.

2.1 Product of sets

Let X and Y be sets. The Cartesian product of X and Y is the set of pairs
XxY={(z,y) |lzre X,ye Y}

It comes equipped with the two projection maps px: X XY — X and py: X xY — Y onto
each factor, defined by

px(z,y) ==
py(z,y) =v.

This explicit description of X x Y is made more meaningful by the following proposition.
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Proposition 2.1. The Cartesian product of sets satisfies the following universal property. For
any set Z along with maps fx: Z — X and fy: Z — 'Y, there is a unique map f: Z —- X XY
satisfying px o f = fx and py o f = fy, in other words making the diagram

Z
I
fx =1y fy
\l
X xY
N
X Y

commute.
Proof. Given fx and fy, define f: Z — X xY by

f(2) = (fx(2), fr(2))
which clearly satisfies py o f = fx and py o f = fy.

To prove uniqueness, note that any pair (z,y) € X x Y can be written as

(ilj',y) = (px(x,y),py(:v,y))

i.e. the projections give us each individual component of the pair. Therefore, any function
g: Z — X x Y can be written as

so that g is determined by its components px o g and py o g. O

In slogans: “A map into X x Y is the same data as a map into X and a map into Y.
Yet another slogan: “X x Y is the closest set equipped with a map to X and a map to Y.”

As usual with universal properties, this characterizes X x Y up to unique isomorphism. This
statement is made precise in the following proposition.

Proposition 2.2. Let W be a set equipped with maps wx: W — X and my: W — 'Y satisfying

the unwversal property of the product. Then there is a unique isomorphism @: W — X x Y
commuting with the projections, i.e. making the diagrams

© @
W — X xY W — X xY
\jpx \l”
TX Ty
X Y

commute.



Proof. Starting from the data of the maps 7x: W — X and my: W — Y| the universal property
of X x Y provides a unique map ¢: W — X x Y commuting with the projections.

Likewise, starting from the data of the maps px: X XY — X and py: X XY — Y| the universal
property of W provides a unique map ¢: X x Y — W commuting with the projections.

We claim that ¢ is an isomorphism, with inverse .

The composite Yo p: W — W is a map into W commuting with the projections. But so is the
identity map idy : W — W. By uniqueness (guaranteed in the universal property of W), we
obtain ¥ o ¢ = idy.

Likewise, the composite po: X XY — X XY is a map into X X Y commuting with the
projections. But so is the identity map idxyy: X x Y — X x Y. By uniqueness (guaranteed
in the universal property of X x Y'), we obtain ¢ o ¢ = idxy. O]

2.2 Product topology

The next goal is to define the product X x Y of topological spaces X and Y such that it satisfies
the analogous universal property in the category of topological spaces.

In other words, we want to find a topology on X xY such that the projection maps px: X XY —
X and py: X x Y — Y are continuous, and such that for any topological space Z along with
continuous maps fx: Z — X and fy: Z — Y, there is a unique continuous map f: 7 — X XY

satisfying px o f = fx and py o f = fy.

Definition 2.3. Let X and Y be topological spaces. The product topology Txxy on X xY
is the smallest topology on X x Y making the projections px: X XY — X and py: X XY =Y
continuous.

In other words, Tx«y is generated by “strips” of the form
PRU) = U x Y
py(V)=XxV
for some open U C X or some open V C Y.
Proposition 2.4. The collection of “rectangles”
{UxV |UCX isopen and V CY is open}

1s a basis for the product topology on X x Y.

Proof. Finite intersections of strips
UxY)N(XxV)=UxV
provide all rectangles. However a finite intersection of rectangles
(U x Vi)N (U x Vo) = (U NU,) x (ViNVy)
is again a rectangle, since Uy N Uy C X is open and V; NV, C Y is open. O

Proposition 2.5. The topological space (X XY, Txxy) along with the projections px: X XY —
X and py: X XY —= Y satisfies the universal property of a product.



Proof. Let Z be a topological space along with continuous maps fx: Z — X and fy: Z =Y.
In particular, these continuous maps are functions, so that there is a unique function f: Z —
X x Y satisfying px o f = fx and py o f = fy. In other words, f is given by

f(2) = (fx(2), fr(2)).
It remains to check that f is continuous. For any rectangle U x V C X x Y where U C X is
open and V CY is open, its preimage is
U XxV)={2€Z]| f(z) eU x V}
={z€Z| fx(z) €U and fy(z) € V'}
= KON V).

Since fx and fy are continuous, the subsets fy'(U) and f;'(V) are open in Z, and so is
their intersection fi'(U) N f;-* (V). Since those rectangles U x V form a basis for the product
topology on X x Y, the function f: Z — X x Y is continuous. O]

Remark 2.6. Why did we choose the smallest topology making the projections py and py
continuous?

If there is a product topology Tx«y satisfying the universal property, consider any other topol-
ogy 7 on X x Y making the projections py and py continuous. Then the universal property
of Tx«y provides a unique continuous map f making the diagram

(X xY,T)
Px : alf by
Y
(X X Y,TXxY)
BN
X Y

commute. As a function, f: X XY — X X Y must be the identity:

f(x7y> - (pX($7y>7pY(x7y))
= (z,y).

The identity id: (X x Y, T) — (X X Y, Tx«y) being continuous means precisely the inequal-
ity Txxy < T. That is why Tx«y had to be the smallest topology making the projections
continuous.

Ezercise 2.7. Let (X,dx) and (Y, dy) be metric spaces.

1. For points (z,y) and (2/,3') in X x Y, define their distance as the sum

d ((.T, y); (l‘l, y/>) = dX(.T, I/) + dY(ya y,)
Show that d is a metric on X x Y.

2. Show that the metric d induces the product topology on X x Y.



