Math 535 - General Topology Additional notes

Martin Frankland

September 17, 2012

1 Nets

1.1 Definitions

Definition 1.1. A **preorder** on a set Λ is a relation \leq which is:

- 1. reflexive: $\lambda \leq \lambda$ for all $\lambda \in \Lambda$;
- 2. transitive: $\lambda_1 \leq \lambda_2$ and $\lambda_2 \leq \lambda_3$ implies $\lambda_1 \leq \lambda_3$.

Definition 1.2. A directed set (Λ, \leq) is a set Λ equipped with a preorder \leq such that for every $\lambda_1, \lambda_2 \in \Lambda$, there is some λ_3 satisfying $\lambda_1 \leq \lambda_3$ and $\lambda_2 \leq \lambda_3$.

In other words, every finite subset of Λ has an upper bound.

Example 1.3. The natural numbers \mathbb{N} with the usual order \leq form a directed set.

Example 1.4. Let X be a topological space, and $x \in X$. Then the set

 $\Lambda := \mathcal{N}_x = \{ N \subseteq X \mid N \text{ is a neighborhood of } x \}$

ordered by reverse inclusion (i.e. $N_1 \leq N_2$ if $N_2 \subseteq N_1$) is a directed set.

Definition 1.5. Let X be a topological space. A **net** in X is a function $x: \Lambda \to X$ from a directed set Λ into X.

We denote values of the net by $x_{\lambda} := x(\lambda)$ and denote the net by $(x_{\lambda})_{\lambda \in \Lambda}$.

Example 1.6. A net in X indexed by (\mathbb{N}, \leq) is a sequence in X.

Definition 1.7. A net $(x_{\lambda})_{\lambda \in \Lambda}$ in a topological space X converges to a point $y \in X$ if for all neighborhood N of y, there is an index $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in N$ for all $\lambda \geq \lambda_0$.

In words: the net is "eventually" in N.

Convergence will be denoted $x_{\lambda} \to y$.

1.2 Facts about nets

Proposition 1.8. Let X be a topological space and $A \subseteq X$ a subset. Then $x \in \overline{A}$ if and only if there is a net $(a_{\lambda})_{\lambda \in \Lambda}$ in A which converges to x, i.e. $a_{\lambda} \to x$.

In words: the closure of A consists of all limits of nets in A.

Proof. (\Leftarrow) Let N be a neighborhood of x. Since (a_{λ}) converges to x, there is an index $\lambda_0 \in \Lambda$ satisfying $a_{\lambda} \in N$ for all $\lambda \geq \lambda_0$. In particular, we have $a_{\lambda_0} \in N \cap A \neq \emptyset$. Since N was arbitrary, we conclude $x \in \overline{A}$.

 (\Rightarrow) Let $x \in \overline{A}$. Consider the directed set Λ of all neighborhoods of x, ordered by reverse inclusion. For each $V \in \Lambda$, we have $V \cap A \neq \emptyset$ so we can pick a point $a_V \in V \cap A$. This defines a net $(a_V)_{V \in \Lambda}$ in A. We claim that it converges to x.

Given $W \ge V$, we have $W \subseteq V$ so that $a_W \in W \subseteq V$. In other words, "past the index $V \in \Lambda$, the net is inside the neighborhood $V \subseteq X$ ", which proves $(a_V)_{V \in \Lambda} \to x$.

Proposition 1.9. Let $f: X \to Y$ be a map between topological spaces. Then f is continuous at $x \in X$ if and only if for every net $(x_{\lambda})_{\lambda \in \Lambda}$ in X with $x_{\lambda} \to x$, we have $f(x_{\lambda}) \to f(x)$ in Y.

Proof. (\Rightarrow) Assume $x_{\lambda} \to x$. We want to show $f(x_{\lambda}) \to f(x)$.

Let N be a neighborhood of f(x). By continuity of f at x, there is a neighborhood M of x satisfying $f(M) \subseteq N$. By convergence of (x_{λ}) , there is an index $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in M$ whenever $\lambda \geq \lambda_0$. Therefore we have $f(x_{\lambda}) \in f(M) \subseteq N$ whenever $\lambda \geq \lambda_0$, which proves $f(x_{\lambda}) \to f(x)$.

(\Leftarrow) Assume f is discontinuous at x, which means there is a neighborhood N of f(x) satisfying $f(M) \not\subseteq N$ for all neighborhoods M of x. For each such neighborhood M, pick a point x_M such that $f(x_M) \notin N$. This defines a net $(x_M)_{M \in \Lambda}$ in X indexed by the directed set Λ of all neighborhoods of x. By construction, the net satisfies $x_M \to x$. However, the net $(f(x_M))_{M \in \Lambda}$ in Y is *never* in N, so in particular $f(x_M) \neq f(x)$.

Proposition 1.10 (Uniqueness of limits of nets). A topological space X is Hausdorff if and only if every net in X has at most one limit. In other words: limits are unique, when they exist.

Proof. (\Rightarrow) Assume X is Hausdorff and $(x_{\lambda})_{\lambda \in \Lambda}$ is a net in X with $x_{\lambda} \to x$ and $x_{\lambda} \to y$. We want to show x = y.

Let U be a neighborhood of x and V a neighborhood of y.

By convergence to x, there is an index $\lambda_1 \in \Lambda$ such that $x_{\lambda} \in U$ whenever $\lambda \geq \lambda_1$.

By convergence to y, there is an index $\lambda_2 \in \Lambda$ such that $x_{\lambda} \in V$ whenever $\lambda \geq \lambda_2$.

Let $\lambda_3 \in \Lambda$ be an upper bound for the two indices, i.e. $\lambda_1 \leq \lambda_3$ and $\lambda_2 \leq \lambda_3$. Then we have $x_{\lambda_3} \in U \cap V \neq \emptyset$, so that x and y cannot be separated by neighborhoods. Since X is Hausdorff, this proves x = y.

(\Leftarrow) Assume X is not Hausdorff, which means there exist distinct points $x, y \in X$ which cannot be separated by neighborhoods. In other words, for any neighborhood U of x and neighborhood V of y, we have $U \cap V \neq \emptyset$. Pick a point in the intersection $x_{U,V} \in U \cap V$. This defines a net $(x_{U,V})_{(U,V)\in\Lambda}$ in X indexed by the directed set $\Lambda = \mathcal{N}_x \times \mathcal{N}_y$ of pairs of neighborhoods of x and y respectively. We show that this net converges to both x and y. Let N be a neighborhood of x. For every index $(U, V) \ge (N, X)$, we have

$$x_{U,V} \in U \cap V \subseteq U \subseteq N$$

which proves $x_{U,V} \to x$. Likewise, we have $x_{U,V} \to y$.

1.3 Subnets

If nets are meant to generalize sequences, what would be the generalization of subsequences to nets?

Definition 1.11. Let $(x_{\lambda})_{\lambda \in \Lambda}$ be a net in X. A subnet of $(x_{\lambda})_{\lambda \in \Lambda}$ is a net $(x_{\lambda_{\mu}})_{\mu \in M}$ for some directed set M, i.e. the composite

 $M\xrightarrow{\varphi}\Lambda\xrightarrow{x}X$

where we write $\lambda_{\mu} := \varphi(\mu)$, and the function $\varphi \colon M \to \Lambda$ is non-decreasing and cofinal.

Non-decreasing means: $\mu_1 \leq \mu_2 \Rightarrow \varphi(\mu_1) \leq \varphi(\mu_2)$.

Cofinal means that the function will eventually "pass" any index, i.e. for all $\lambda \in \Lambda$, there is some $\mu \in M$ such that $\varphi(\mu) \geq \lambda$.

Example 1.12. The function $\varphi \colon \mathbb{N} \to \mathbb{N}$ defined by $\varphi(k) = 5k$ is non-decreasing and cofinal. Given a sequence $(x_n)_{n \in \mathbb{N}}$, this function φ yields the subnet

$$(x_{n_k})_{k\in\mathbb{N}} = (x_5, x_{10}, x_{15}, \ldots)$$

where we write $n_k := \varphi(k)$. Note that this is a subsequence.

Example 1.13. The function $\varphi \colon \mathbb{N} \to \mathbb{N}$ defined by $\varphi(k) = \lceil \frac{k}{2} \rceil$ is non-decreasing and cofinal. (Here the brackets denote the ceiling function, which rounds up to the nearest integer.) Given a sequence $(x_n)_{n \in \mathbb{N}}$, this function φ yields the subnet

$$(x_{n_k})_{k\in\mathbb{N}} = (x_1, x_1, x_2, x_2, x_3, x_3, \ldots).$$

Note that this is *not* a subsequence.

Example 1.14. A function $\varphi \colon \mathbb{N} \to \mathbb{N}$ is cofinal if and only if it is unbounded. Thus a subnet $(x_{n_k})_{k \in \mathbb{N}}$ of a sequence which is still indexed by \mathbb{N} is almost a subsequence, except that indices n_k are allowed to be repeated finitely many times, as in example 1.13.

In contrast, a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ is defined as having strictly increasing indices: $k_1 < k_2$ implies $n_{k_1} < n_{k_2}$.

Note that a subnet of a sequence can also be indexed by any directed set, not just \mathbb{N} .

Example 1.15. The function $\varphi \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $\varphi(k, l) = 2k + 4l$ is non-decreasing and cofinal. Given a sequence $(x_n)_{n \in \mathbb{N}}$, this function φ yields the subnet $(x_{k,l})_{(k,l) \in \mathbb{N} \times \mathbb{N}}$ with values $x_{k,l} := x_{\varphi(k,l)} = x_{2k+4l}$.