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1 Nets

1.1 Definitions

Definition 1.1. A preorder on a set A is a relation < which is:

1. reflexive: A < X for all A € A;
2. transitive: A\ < Ay and Ay < A3 implies A; < As.

Definition 1.2. A directed set (A, <) is a set A equipped with a preorder < such that for
every A, As € A, there is some A3 satisfying \; < A3 and Ay < As.

In other words, every finite subset of A has an upper bound.

Example 1.3. The natural numbers N with the usual order < form a directed set.

Ezxample 1.4. Let X be a topological space, and x € X. Then the set
A:=N,={N C X | N is a neighborhood of z}

ordered by reverse inclusion (i.e. Ny < Ny if Ny C Nj) is a directed set.

Definition 1.5. Let X be a topological space. A net in X is a function z: A — X from a
directed set A into X.

We denote values of the net by x) := x()) and denote the net by (z,)ea-
Ezample 1.6. A net in X indexed by (N, <) is a sequence in X.

Definition 1.7. A net (x)),ea in a topological space X converges to a point y € X if for all
neighborhood N of y, there is an index A\g € A such that z, € N for all A > ).

In words: the net is “eventually” in N.

Convergence will be denoted x) — y.



1.2 Facts about nets

Proposition 1.8. Let X be a topological space and A C X a subset. Then x € A if and only
if there is a net (a))aen in A which converges to x, i.e. ay — x.

In words: the closure of A consists of all limits of nets in A.

Proof. (<) Let N be a neighborhood of z. Since (ay) converges to x, there is an index A\g € A
satisfying a) € N for all A > A. In particular, we have a), € NNA # (). Since N was arbitrary,
we conclude z € A.

(=) Let # € A. Consider the directed set A of all neighborhoods of x, ordered by reverse
inclusion. For each V' € A, we have V' N A # () so we can pick a point a;r € V N A. This defines
a net (ay)yea in A. We claim that it converges to x.

Given W >V, we have W C V so that ayy € W C V. In other words, “past the index V € A,
the net is inside the neighborhood V' C X7 which proves (ay)yex — . O

Proposition 1.9. Let f: X — Y be a map between topological spaces. Then f is continuous
at x € X if and only if for every net (z))aen in X with xx — =, we have f(xy) — f(x) in Y.

Proof. (=) Assume x) — z. We want to show f(x)) — f(z).

Let N be a neighborhood of f(x). By continuity of f at x, there is a neighborhood M of x
satisfying f(M) C N. By convergence of (x,), there is an index Ay € A such that x, € M
whenever A > \g. Therefore we have f(z)) € f(M) C N whenever A > )y, which proves
flzx) = f(x).

(<) Assume f is discontinuous at x, which means there is a neighborhood N of f(x) satisfying
f(M) & N for all neighborhoods M of z. For each such neighborhood M, pick a point z
such that f(xy) ¢ N. This defines a net (z57)pea in X indexed by the directed set A of all
neighborhoods of z. By construction, the net satisfies xy; — x. However, the net (f(zar))area
in Y is never in N, so in particular f(xy) - f(x). O

Proposition 1.10 (Uniqueness of limits of nets). A topological space X is Hausdorff if and
only if every net in X has at most one limit. In other words: limits are unique, when they exist.

Proof. (=) Assume X is Hausdorff and (z))aea is a net in X with z, — z and ), — y. We
want to show z = y.

Let U be a neighborhood of z and V' a neighborhood of .
By convergence to x, there is an index A\; € A such that x) € U whenever A > ;.
By convergence to y, there is an index Ay € A such that ) € V whenever A > \s.

Let A3 € A be an upper bound for the two indices, i.e. A\; < A3 and Ay < A3. Then we have
Ty, € UNV # (), so that  and y cannot be separated by neighborhoods. Since X is Hausdorff,
this proves = = y.

(<) Assume X is not Hausdorff, which means there exist distinct points x,y € X which cannot
be separated by neighborhoods. In other words, for any neighborhood U of x and neighborhood
V of y, we have U NV # (). Pick a point in the intersection zy, € U N V. This defines a net
(zu,v)w,v)ea in X indexed by the directed set A = N, x N, of pairs of neighborhoods of = and
y respectively.



We show that this net converges to both z and y. Let N be a neighborhood of z. For every
index (U, V) > (N, X), we have
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which proves zyy — . Likewise, we have zyy — v. O

1.3 Swubnets

If nets are meant to generalize sequences, what would be the generalization of subsequences to
nets?

Definition 1.11. Let (x))xea be a net in X. A subnet of (z))xea is a net (xy,)uenr for some
directed set M, i.e. the composite
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where we write A\, := ¢(u), and the function ¢: M — A is non-decreasing and cofinal.
Non-decreasing means: p; < ps = o) < p(p2).
Cofinal means that the function will eventually “pass” any index, i.e. for all A\ € A, there is

some p € M such that () > .

Ezxample 1.12. The function ¢: N — N defined by (k) = 5k is non-decreasing and cofinal.
Given a sequence (Z,)nen, this function ¢ yields the subnet

(@, Jken = (25, T10, T15, - - -)

where we write ng := @(k). Note that this is a subsequence.

Ezample 1.13. The function ¢: N — N defined by ¢(k) = [g} is non-decreasing and cofinal.
(Here the brackets denote the ceiling function, which rounds up to the nearest integer.) Given
a sequence (x,)nen, this function ¢ yields the subnet

(xnk)keN = (351, L1,22,T2,X3,T3, - . )

Note that this is not a subsequence.

Example 1.14. A function ¢: N — N is cofinal if and only if it is unbounded. Thus a subnet
(@n, )ken of a sequence which is still indexed by N is almost a subsequence, except that indices
ny are allowed to be repeated finitely many times, as in example 1.13.

In contrast, a subsequence (x,, )ken is defined as having strictly increasing indices: ky < ko
implies ng, < ny,.

Note that a subnet of a sequence can also be indexed by any directed set, not just N.

Ezample 1.15. The function ¢: N x N — N defined by ¢(k, 1) = 2k + 4l is non-decreasing and
cofinal. Given a sequence (zn,)nen, this function ¢ yields the subnet (z4;))enxy With values

Tl = Tp(kl) = T2k+4l-



