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1 Nets

1.1 Definitions

Definition 1.1. A preorder on a set Λ is a relation ≤ which is:

1. reflexive: λ ≤ λ for all λ ∈ Λ;

2. transitive: λ1 ≤ λ2 and λ2 ≤ λ3 implies λ1 ≤ λ3.

Definition 1.2. A directed set (Λ,≤) is a set Λ equipped with a preorder ≤ such that for
every λ1, λ2 ∈ Λ, there is some λ3 satisfying λ1 ≤ λ3 and λ2 ≤ λ3.

In other words, every finite subset of Λ has an upper bound.

Example 1.3. The natural numbers N with the usual order ≤ form a directed set.

Example 1.4. Let X be a topological space, and x ∈ X. Then the set

Λ := Nx = {N ⊆ X | N is a neighborhood of x}

ordered by reverse inclusion (i.e. N1 ≤ N2 if N2 ⊆ N1) is a directed set.

Definition 1.5. Let X be a topological space. A net in X is a function x : Λ → X from a
directed set Λ into X.

We denote values of the net by xλ := x(λ) and denote the net by (xλ)λ∈Λ.

Example 1.6. A net in X indexed by (N,≤) is a sequence in X.

Definition 1.7. A net (xλ)λ∈Λ in a topological space X converges to a point y ∈ X if for all
neighborhood N of y, there is an index λ0 ∈ Λ such that xλ ∈ N for all λ ≥ λ0.

In words: the net is “eventually” in N .

Convergence will be denoted xλ → y.
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1.2 Facts about nets

Proposition 1.8. Let X be a topological space and A ⊆ X a subset. Then x ∈ A if and only
if there is a net (aλ)λ∈Λ in A which converges to x, i.e. aλ → x.

In words: the closure of A consists of all limits of nets in A.

Proof. (⇐) Let N be a neighborhood of x. Since (aλ) converges to x, there is an index λ0 ∈ Λ
satisfying aλ ∈ N for all λ ≥ λ0. In particular, we have aλ0 ∈ N∩A 6= ∅. Since N was arbitrary,
we conclude x ∈ A.

(⇒) Let x ∈ A. Consider the directed set Λ of all neighborhoods of x, ordered by reverse
inclusion. For each V ∈ Λ, we have V ∩A 6= ∅ so we can pick a point aV ∈ V ∩A. This defines
a net (aV )V ∈Λ in A. We claim that it converges to x.

Given W ≥ V , we have W ⊆ V so that aW ∈ W ⊆ V . In other words, “past the index V ∈ Λ,
the net is inside the neighborhood V ⊆ X”, which proves (aV )V ∈Λ → x.

Proposition 1.9. Let f : X → Y be a map between topological spaces. Then f is continuous
at x ∈ X if and only if for every net (xλ)λ∈Λ in X with xλ → x, we have f(xλ)→ f(x) in Y .

Proof. (⇒) Assume xλ → x. We want to show f(xλ)→ f(x).

Let N be a neighborhood of f(x). By continuity of f at x, there is a neighborhood M of x
satisfying f(M) ⊆ N . By convergence of (xλ), there is an index λ0 ∈ Λ such that xλ ∈ M
whenever λ ≥ λ0. Therefore we have f(xλ) ∈ f(M) ⊆ N whenever λ ≥ λ0, which proves
f(xλ)→ f(x).

(⇐) Assume f is discontinuous at x, which means there is a neighborhood N of f(x) satisfying
f(M) * N for all neighborhoods M of x. For each such neighborhood M , pick a point xM
such that f(xM) /∈ N . This defines a net (xM)M∈Λ in X indexed by the directed set Λ of all
neighborhoods of x. By construction, the net satisfies xM → x. However, the net (f(xM))M∈Λ

in Y is never in N , so in particular f(xM) 9 f(x).

Proposition 1.10 (Uniqueness of limits of nets). A topological space X is Hausdorff if and
only if every net in X has at most one limit. In other words: limits are unique, when they exist.

Proof. (⇒) Assume X is Hausdorff and (xλ)λ∈Λ is a net in X with xλ → x and xλ → y. We
want to show x = y.

Let U be a neighborhood of x and V a neighborhood of y.

By convergence to x, there is an index λ1 ∈ Λ such that xλ ∈ U whenever λ ≥ λ1.

By convergence to y, there is an index λ2 ∈ Λ such that xλ ∈ V whenever λ ≥ λ2.

Let λ3 ∈ Λ be an upper bound for the two indices, i.e. λ1 ≤ λ3 and λ2 ≤ λ3. Then we have
xλ3 ∈ U ∩V 6= ∅, so that x and y cannot be separated by neighborhoods. Since X is Hausdorff,
this proves x = y.

(⇐) Assume X is not Hausdorff, which means there exist distinct points x, y ∈ X which cannot
be separated by neighborhoods. In other words, for any neighborhood U of x and neighborhood
V of y, we have U ∩ V 6= ∅. Pick a point in the intersection xU,V ∈ U ∩ V . This defines a net
(xU,V )(U,V )∈Λ in X indexed by the directed set Λ = Nx×Ny of pairs of neighborhoods of x and
y respectively.
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We show that this net converges to both x and y. Let N be a neighborhood of x. For every
index (U, V ) ≥ (N,X), we have

xU,V ∈ U ∩ V ⊆ U ⊆ N

which proves xU,V → x. Likewise, we have xU,V → y.

1.3 Subnets

If nets are meant to generalize sequences, what would be the generalization of subsequences to
nets?

Definition 1.11. Let (xλ)λ∈Λ be a net in X. A subnet of (xλ)λ∈Λ is a net (xλµ)µ∈M for some
directed set M , i.e. the composite

M
ϕ−→ Λ

x−→ X

where we write λµ := ϕ(µ), and the function ϕ : M → Λ is non-decreasing and cofinal.

Non-decreasing means: µ1 ≤ µ2 ⇒ ϕ(µ1) ≤ ϕ(µ2).

Cofinal means that the function will eventually “pass” any index, i.e. for all λ ∈ Λ, there is
some µ ∈M such that ϕ(µ) ≥ λ.

Example 1.12. The function ϕ : N → N defined by ϕ(k) = 5k is non-decreasing and cofinal.
Given a sequence (xn)n∈N, this function ϕ yields the subnet

(xnk)k∈N = (x5, x10, x15, . . .)

where we write nk := ϕ(k). Note that this is a subsequence.

Example 1.13. The function ϕ : N → N defined by ϕ(k) = dk
2
e is non-decreasing and cofinal.

(Here the brackets denote the ceiling function, which rounds up to the nearest integer.) Given
a sequence (xn)n∈N, this function ϕ yields the subnet

(xnk)k∈N = (x1, x1, x2, x2, x3, x3, . . .).

Note that this is not a subsequence.

Example 1.14. A function ϕ : N → N is cofinal if and only if it is unbounded. Thus a subnet
(xnk)k∈N of a sequence which is still indexed by N is almost a subsequence, except that indices
nk are allowed to be repeated finitely many times, as in example 1.13.

In contrast, a subsequence (xnk)k∈N is defined as having strictly increasing indices: k1 < k2

implies nk1 < nk2 .

Note that a subnet of a sequence can also be indexed by any directed set, not just N.

Example 1.15. The function ϕ : N× N→ N defined by ϕ(k, l) = 2k + 4l is non-decreasing and
cofinal. Given a sequence (xn)n∈N, this function ϕ yields the subnet (xk,l)(k,l)∈N×N with values
xk,l := xϕ(k,l) = x2k+4l.
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