Math 535 - General Topology Additional notes

Martin Frankland

October 22, 2012

Proposition 0.1. Let $A \subseteq X$ be a connected subspace of a topological space X, and $E \subseteq X$ satisfying $A \subseteq E \subseteq \bar{A}$. Then E is connected.

1 Connected components

Definition 1.1. Consider the relation \sim on X defined by $x \sim y$ if there exists a connected subspace $A \subseteq X$ with $x, y \in A$. Then \sim is an equivalence relation, and the equivalence classes are called the connected components of X.

Proposition 1.2. 1. Let $Z \subseteq X$ be a connected subspace. Then Z lies entirely within one connected component of X.
2. Each connected component $C \subseteq X$ is connected.
3. Each connected component $C \subseteq X$ is closed in X.

Remark 1.3. In particular, the connected component C_{x} of a point $x \in X$ is the largest connected subspace of X that contains x.
Exercise 1.4. A topological space X is totally disconnected if its only connected subspaces are singletons $\{x\}$. Show that X is totally disconnected if and only if for all $x \in X$, the connected component C_{x} of x is the singleton $\{x\}$.
Exercise 1.5. Show that a topological space X is the coproduct of its connected components if and only if the space X / \sim of connected components (with the quotient topology) is discrete.

2 Path-connectedness

Definition 2.1. Let X be a topological space and let $x, y \in X$. A path in X from x to y is a continuous map $\gamma:[a, b] \rightarrow X$ satisfying $\gamma(a)=x$ and $\gamma(b)=y$. Here $a, b \in \mathbb{R}$ satisfy $a<b$.

Definition 2.2. A topological space is path-connected is for any $x, y \in X$, there is a path from x to y.

Proposition 2.3. Let X be a path-connected space. Then X is connected.
The converse does not hold in general.

Example 2.4 (Topologist's sine curve). The space

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\sin \frac{1}{x}\right\} \subset \mathbb{R}^{2}
$$

is path-connected, and therefore connected. By Proposition 0.1, its closure

$$
\bar{A}=A \cup(\{0\} \times[-1,1])
$$

is also connected. However, \bar{A} is not path-connected.
Proposition 2.5. Let $f: X \rightarrow Y$ be a continuous map, where X is path-connected. Then $f(X)$ is path-connected.

3 Path components

Definition 3.1. Consider the relation \sim on X defined by $x \sim y$ if there exists a path from x to y. Then \sim is an equivalence relation, and the equivalence classes are called the path components of X.

Note that there exists a path $\gamma:[a, b] \rightarrow X$ from x to y if and only if there exists a path $\sigma:[0,1] \rightarrow X$ from x to y, taking for example

$$
\sigma(t):=\gamma(a+t(b-a))
$$

We will often assume that the domain of parametrization is $[0,1]$.
Proof that \sim is an equivalence relation.

1. Reflexivity: The constant path $\gamma:[0,1] \rightarrow X$ defined by $\gamma(t)=x$ for all $t \in[0,1]$ is continuous. This proves $x \sim x$.
2. Symmetry: Assume $x \sim y$, i.e. there is a path $\gamma:[0,1] \rightarrow X$ with endpoints $\gamma(0)=x$ and $\gamma(1)=y$. Then $\widetilde{\gamma}:[0,1] \rightarrow X$ defined by

$$
\widetilde{\gamma}(t)=\gamma(1-t)
$$

is continuous, since the flip $t \mapsto 1-t$ is a homeomorphism of $[0,1]$ onto itself. Moreover $\widetilde{\gamma}$ has endpoints $\widetilde{\gamma}(0)=\gamma(1)=y$ and $\widetilde{\gamma}(1)=\gamma(0)=x$, which proves $y \sim x$.
3. Transitivity: Assume $x \sim y$ and $y \sim z$, i.e. there are paths $\alpha, \beta:[0,1] \rightarrow X$ from x to y and from y to z respectively. Define the concatenation of the two paths α and β as the path going through α at double speed, followed by β at double speed:

$$
(\alpha * \beta)(t)= \begin{cases}\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \beta\left(2\left(t-\frac{1}{2}\right)\right) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

This formula is well defined, because for $t=\frac{1}{2}$ we have $\alpha(1)=y=\beta(0)$.
Moreover, $\alpha * \beta$ is continuous, because its restrictions to the closed subsets [0, $\frac{1}{2}$] and $\left[\frac{1}{2}, 1\right]$ are continuous, and we have $[0,1]=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$.
Finally, $\alpha * \beta$ has endpoints $(\alpha * \beta)(0)=\alpha(0)=x$ and $(\alpha * \beta)(1)=\beta(1)=z$, which proves $x \sim z$.

Example 3.2. Recall the topologist's sine curve

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\sin \frac{1}{x}\right\} \subset \mathbb{R}^{2}
$$

and its closure

$$
\bar{A}=A \cup(\{0\} \times[-1,1])
$$

which is connected, and therefore has only one connected component.
However, \bar{A} has exactly two path components: the curve A and the segment $\{0\} \times[-1,1]$.
Note that A is not closed in \bar{A}, so that path components need NOT be closed in general, unlike connected components.

Proposition 3.3. Each path component of X is entirely contained within a connected component of X. In other words, each connected component is a (disjoint) union of path components.

Proof. If two points x and y are connected by a path $\gamma:[a, b] \rightarrow X$, then they are both contained in the connected subspace $\gamma([a, b]) \subseteq X$.

Exercise 3.4. Let $\left\{A_{i}\right\}_{i \in I}$ be a collection of path-connected subspaces of X and $A \subseteq X$ a pathconnected subspace satisfying $A \cap A_{i} \neq \emptyset$ for all $i \in I$. Show that the union $\bigcup_{i \in I} A_{i} \cup A$ is path-connected.
In particular, if A and B are two path-connected subspaces of X satisfying $A \cap B \neq \emptyset$, then their union $A \cup B$ is path-connected.

Proposition 3.5. 1. Let $Z \subseteq X$ be a path-connected subspace. Then Z lies entirely within one path component of X.
2. Each path component $C \subseteq X$ is path-connected.

Remark 3.6. In particular, the path component C_{x} of a point $x \in X$ is the largest pathconnected subspace of X that contains x.

