Math 9052B/4152B - Algebraic Topology Winter 2015 Homology with coefficients

Martin Frankland

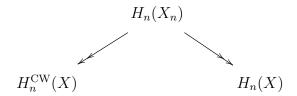
April 7, 2015

Given a CW-complex X, we know that its cellular chain complex $C_*^{\text{CW}}(X)$ and singular chain complex $C_*(X)$ have isomorphic homology $H_*^{\text{CW}}(X) \simeq H_*(X)$. We want to generalize this statement to homology with coefficients. Along the way, we discuss some related material from homological algebra.

1 Direct approach

Proposition 1.1. Let X be a CW-complex and G an abelian group. Then there is an isomorphism of homology with coefficients $H_*^{\text{CW}}(X;G) \simeq H_*(X;G)$. Moreover, this isomorphism is natural with respect to cellular maps $X \to Y$ and with respect to G (and all group homomorphisms).

Proof. Recall that the isomorphism $H_n^{\text{CW}}(X) \simeq H_n(X)$ was obtained by showing that the two surjections illustrated in the diagram



have the same kernel. This was a consequence of the long exact sequences of the pairs (X_k, X_{k-1}) , and the fact that the relative homology $H_*(X_k, X_{k-1})$ is concentrated in degree k. Homology with coefficients also has a (natural) long exact sequence associated to any

pair, and the relative homology groups

$$H_{i}(X_{k}, X_{k-1}; G) \cong \widetilde{H}_{i}(X_{k}/X_{k-1}; G)$$

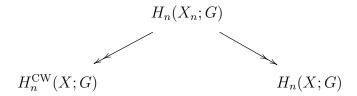
$$\cong \widetilde{H}_{i}(\bigvee_{k\text{-cells}} S^{k}; G)$$

$$\cong \bigoplus_{k\text{-cells}} \widetilde{H}_{i}(S^{k}; G)$$

$$\cong \begin{cases} \bigoplus_{k\text{-cells}} G & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$$

are also concentrated in degree k. Therefore, the proof for the case $G = \mathbb{Z}$ works here as well.

The naturality statements follow from naturality of the diagram



with respect to cellular maps $X \to Y$, and with respect to group homomorphisms $G \to G'$.

2 Approach using chain homotopy

Proposition 2.1. Let C_* be a (possibly unbounded) chain complex of free abelian groups. Then C_* is quasi-isomorphic to its homology, in fact via a quasi-isomorphism $C_* \xrightarrow{\sim} H_*(C_*)$ (as opposed to a zig-zag).

Proof. Consider¹ the short exact sequence

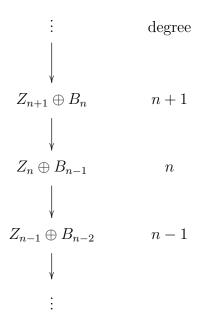
$$0 \longrightarrow Z_n \longrightarrow C_n \stackrel{d}{\longrightarrow} B_{n-1} \longrightarrow 0$$

which is split, since B_{n_1} is a free abelian group, being a subgroup of the free abelian group C_{n-1} . Choosing a splitting $C_n \simeq Z_n \oplus B_{n-1}$ for each $n \in \mathbb{Z}$, the chain complex C_* is

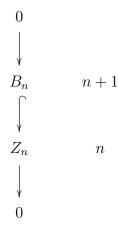
http://mathoverflow.net/questions/10974/does-homology-detect-chain-homotopy-equivalence

¹Credit to Tyler Lawson for this explanation:

isomorphic (though not naturally) to the chain complex illustrated here:



where the differential d_n is given by the inclusion $B_{n-1} \hookrightarrow Z_{n-1}$. Hence, there is an isomorphicm of chain complexes $C_* \cong \bigoplus_{n \in \mathbb{Z}} C_*^{(n)}$ where $C_*^{(n)}$ denotes the tiny chain complex



concentrated in degrees n and n+1. Consider $H_n(C_*)$ as a chain complex concentrated in degree n. The map $\varphi_n \colon C_*^{(n)} \to H_n(C_*)$ given by the quotient map $Z_n \twoheadrightarrow H_n(C_*) = Z_n/B_n$ in degree n is a chain map which is moreover a quasi-isomorphism. These maps assemble into a quasi-isomorphism

$$\bigoplus_{n\in\mathbb{Z}} \varphi_n \colon \bigoplus_{n\in\mathbb{Z}} C_*^{(n)} \xrightarrow{\sim} \bigoplus_{n\in\mathbb{Z}} H_n(C_*) = H_*(C_*).$$

as claimed. \Box

Recall the following fact from homological algebra.

Theorem 2.2 (Comparison theorem for projective resolutions). Let \mathcal{A} be an abelian category, and let M be an object of \mathcal{A} , viewed as a chain complex concentrated in degree 0. Let P_* be a (non-negatively graded) chain complex of projective objects, with a chain map $f: P_* \to M$, and let D_* a (non-negatively graded) chain complex with a quasi-isomorphism $w: D_* \xrightarrow{\sim} M$. Then f admits a lift as in the diagram

$$\begin{array}{ccc} & D_* \\ & \tilde{f} & \uparrow \\ & \sim & \downarrow w \end{array}$$

$$P_* \xrightarrow{f} M$$

which is unique up to chain homotopy.

Proof. [1, Theorem 2.2.6].

Example 2.3. In the category A = Ab of abelian groups, an object is projective if and only if it is a free abelian group.

Proposition 2.4. Let C_* and D_* be (possibly unbounded) chain complexes of free abelian groups.

- 1. If C_* and D_* have isomorphic homology $H_*(C_*) \simeq H_*(D_*)$, then they are chain homotopy equivalent: $C_* \simeq D_*$.
- 2. If $f: C_* \xrightarrow{\sim} D_*$ is a quasi-isomorphism, then f is a chain homotopy equivalence.

Proof. 1. Consider decompositions $C_* \cong \bigoplus_{n \in \mathbb{Z}} C_*^{(n)}$ and $D_* \cong \bigoplus_{n \in \mathbb{Z}} D_*^{(n)}$ as in the proof of 2.1. For each $n \in \mathbb{Z}$, consider the diagram of chain complexes

$$C_*^{(n)} \xrightarrow{\widetilde{\varphi_n}} H_n(C_*) \simeq H_n(D_*)$$

where a lift $\widetilde{\varphi_n} \colon C_*^{(n)} \to D_*^{(n)}$ exists, by Theorem 2.2. Reversing the roles of C_* and D_* , there also exists a lift $\widetilde{\psi_n} \colon D_*^{(n)} \to C_*^{(n)}$. Uniqueness of lifts up to chain homotopy shows that $\widetilde{\psi_n}$ is chain homotopy inverse to $\widetilde{\varphi_n}$. Therefore, the chain map

$$\bigoplus_{n\in\mathbb{Z}}\widetilde{\varphi_n}\colon \bigoplus_{n\in\mathbb{Z}}C_*^{(n)}\xrightarrow{\simeq} \bigoplus_{n\in\mathbb{Z}}D_*^{(n)}$$

is a chain homotopy equivalence, which chain homotopy inverse $\bigoplus_{n\in\mathbb{Z}}\widetilde{\psi_n}$.

2. For each $n \in \mathbb{Z}$, consider the diagram of chain complexes

$$D_*^{(n)} - - - \rightarrow C_*^{(n)}$$

$$\downarrow \qquad \qquad \downarrow \sim$$

$$H_n(D_*) \xrightarrow{H_n(f)^{-1}} H_n(C_*)$$

where there exists a lift $\psi_n \colon D_*^{(n)} \to C_*^{(n)}$ (unique up to chain homotopy), by Theorem 2.2. These chain maps define a chain map $\psi \colon D_* \to C_*$ via the diagram

$$\bigoplus_{n \in \mathbb{Z}} D_*^{(n)} \xrightarrow{\bigoplus_{n \in \mathbb{Z}} \psi_n} \bigoplus_{n \in \mathbb{Z}} C_*^{(n)}$$

$$\cong \Big| \qquad \qquad \Big| \cong$$

$$D_* \xrightarrow{\psi} C_*.$$

One readily checks that the restriction $f|_{C_*^{(n)}}: C_*^{(n)} \to D_*$ is chain homotopic to the composite

$$C_*^{(n)} \xrightarrow{f|_{C_*^{(n)}}} D_* \xrightarrow{\operatorname{proj}} D_*^{(n)} \xrightarrow{\operatorname{inc}} D_*$$

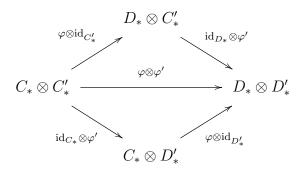
and that $\psi: D_* \to C_*$ is chain homotopy inverse to $f: C_* \to D_*$.

Proposition 2.5. The relation of chain homotopy is compatible with the tensor product of chain complexes. In other words, if the chain maps $\varphi, \psi \colon C_* \to D_*$ are chain homotopic and $\varphi', \psi' \colon C'_* \to D'_*$ are chain homotopic, then the chain maps

$$\varphi \otimes \varphi', \psi \otimes \psi' \colon C_* \otimes C'_* \to D_* \to D'_*$$

are chain homotopic.

Proof. Using the factorizations illustrated in the diagram



it suffices to show that $\varphi \otimes \mathrm{id}_{C'_*}$ is chain homotopic to $\psi \otimes \mathrm{id}_{C'_*}$. Let $h: C_n \to D_{n+1}$ be a chain homotopy from φ to ψ , i.e., such that the equation $\psi - \varphi = dh + hd$ holds.

Let us check that $h \otimes \operatorname{id}_{C'_*}: (C_* \otimes C'_*)_n \to (D_* \otimes C'_*)_{n+1}$ is a chain homotopy from $\varphi \otimes \operatorname{id}_{C'_*}$ to $\psi \otimes \operatorname{id}_{C'_*}$. For any $x_i \in C_i$ and $x'_i \in C'_i$, with i+j=n, we have

$$d(h \otimes \mathrm{id}_{C'_*})(x_i \otimes x'_j) + (h \otimes \mathrm{id}_{C'_*})d(x_i \otimes x'_j)$$

$$= d\left(hx_i \otimes x'_j\right) + (h \otimes \mathrm{id}_{C'_*})\left(dx_i \otimes x'_j + (-1)^{|x_i|}x_i \otimes dx'_j\right)$$

$$= dhx_i \otimes x'_j + (-1)^{|hx_i|}hx_i \otimes dx'_j + hdx_i \otimes x'_j + (-1)^{|x_i|}hx_i \otimes dx'_j$$

$$= dhx_i \otimes x'_j + (-1)^{i+1}hx_i \otimes dx'_j + hdx_i \otimes x'_j + (-1)^{i}hx_i \otimes dx'_j$$

$$= dhx_i \otimes x'_j + hdx_i \otimes x'_j$$

$$= (dh + hd)x_i \otimes x'_j$$

$$= (\psi - \varphi)x_i \otimes x'_j$$

$$= \psi x_i \otimes x'_j - \varphi x_i \otimes x'_j.$$

Therefore the equation

$$d(h \otimes \mathrm{id}_{C'_*}) + (h \otimes \mathrm{id}_{C'_*})d = \psi \otimes \mathrm{id}_{C'_*} - \varphi \otimes \mathrm{id}_{C'_*}$$

holds. \Box

Corollary 2.6. If $\varphi \colon C_* \xrightarrow{\simeq} D_*$ and $\varphi' \colon C'_* \xrightarrow{\simeq} D'_*$ are chain homotopy equivalences, then their tensor product

$$\varphi \otimes \varphi' \colon C_* \otimes C'_* \xrightarrow{\simeq} D_* \otimes D'_*$$

is a chain homotopy equivalence.

Proof. Let $\alpha: D_* \to C_*$ and $\alpha': D'_* \to C'_*$ be chain homotopy inverses of φ and φ' respectively. Then

$$\alpha \otimes \alpha' \colon D_* \otimes D'_* \to C_* \otimes C'_*$$

is a chain homotopy inverse of $\varphi \otimes \varphi'$.

The following proposition says that "any chain complex of free abelian groups will do", as long as it has the correct homology (with coefficients in \mathbb{Z}).

Proposition 2.7. Let X be a space and C_* a chain complex of free abelian groups whose homology is isomorphic to the singular homology of X, i.e., $H_n(C_*) \simeq H_n(X)$ holds for all n. Then for any abelian group G and any n, there are isomorphisms $H_n(C_* \otimes G) \simeq H_n(X; G)$.

Proof. The assumption is that the homology C_* is isomorphic to the homology of the singular chain complex $C_*(X)$. By Proposition 2.4, there is a chain homotopy equivalence $\varphi \colon C_* \xrightarrow{\simeq} C_*(X)$. By Corollary 2.6, the chain map

$$\varphi \otimes \mathrm{id}_G \colon C_* \otimes G \xrightarrow{\simeq} C_*(X) \otimes G$$

is a chain homotopy equivalence, in particular a quasi-isomorphism.

Example 2.8. Let X be a Δ -complex, and $C_*^{\Delta}(X)$ the associated simplicial chain complex. Then there are isomorphisms $H_n^{\Delta}(X;G) \simeq H_n(X;G)$. Naturality with respect to Δ -maps $X \to Y$ does not follow directly from the first part of Proposition 2.7.

However, recall that the isomorphism $H_n^{\Delta}(X) \simeq H_n(X)$ is induced at the chain level by a quasi-isomorphism $\theta \colon C_*^{\Delta}(X) \xrightarrow{\sim} C_*(X)$, which is natural with respect to Δ -maps $X \to Y$. By the second part of Proposition 2.4, θ is in fact a chain homotopy equivalence. By Corollary 2.6, the chain map $\theta \otimes \operatorname{id}_G \colon C_*^{\Delta}(X) \otimes G \xrightarrow{\simeq} C_*(X) \otimes G$ is also a chain homotopy equivalence, and in particular induces isomorphisms $H_n^{\Delta}(X;G) \simeq H_n(X;G)$. These isomorphisms are natural with respect to Δ -maps $X \to Y$, since the chain map θ is.

Example 2.9. Let X be a CW-complex, and $C_*^{\text{CW}}(X)$ the associated cellular chain complex. Then there are isomorphisms $H_n^{\text{CW}}(X;G) \simeq H_n(X;G)$. Naturality with respect to cellular maps $X \to Y$ does not follow from Proposition 2.7.

3 Approach using the universal coefficient theorem

Recall the following fact.

Theorem 3.1 (Universal coefficient theorem). Let C_* be a chain complex of free abelian groups, and G an abelian group. Then for each $n \in \mathbb{Z}$, there is a short exact sequence

$$0 \longrightarrow H_n(C_*) \otimes G \stackrel{\times}{\longrightarrow} H_n(C_* \otimes G) \longrightarrow \operatorname{Tor}(H_{n-1}(C_*), G) \longrightarrow 0$$

which is natural in C_* and G. Moreover, the sequence is split, though the splitting is not natural.

Here, the map \times : $H_n(C_*) \otimes G \to H_n(C_* \otimes G)$ sends $[\alpha] \otimes g$ to the homology class $[\alpha \otimes g]$. The functor Tor denotes $\text{Tor}_1^{\mathbb{Z}}$, just like our tensor product \otimes denotes the tensor product $\otimes_{\mathbb{Z}}$ over the integers.

Corollary 3.2. If $f: C_* \xrightarrow{\sim} D_*$ is a quasi-isomorphism between chain complexes of free abelian groups, then the map $f \otimes \operatorname{id}_G: C_* \otimes G \to D_* \otimes G$ is a quasi-isomorphism.

Proof. By the universal coefficient theorem, for each $n \in \mathbb{Z}$, f induces a commutative diagram

$$0 \longrightarrow H_n(C_*) \otimes G \stackrel{\times}{\longrightarrow} H_n(C_* \otimes G) \longrightarrow \operatorname{Tor}(H_{n-1}(C_*), G) \longrightarrow 0$$

$$H_n(f) \otimes G \downarrow \simeq H_n(f \otimes \operatorname{id}_G) \downarrow ::\simeq \operatorname{Tor}(H_{n-1}(f), \operatorname{id}_G) \downarrow \simeq$$

$$0 \longrightarrow H_n(D_*) \otimes G \stackrel{\times}{\longrightarrow} H_n(D_* \otimes G) \longrightarrow \operatorname{Tor}(H_{n-1}(D_*), G) \longrightarrow 0$$

where the rows are exact. By assumption, $H_n(f)$ and $H_{n-1}(f)$ are isomorphisms, thus so are the downward maps $H_n(f) \otimes G$ and Tor $(H_{n-1}(f), \mathrm{id}_G)$. By the 5-lemma, the downward map in the middle $H_n(f \otimes \mathrm{id}_G)$ is also an isomorphism.

Example 3.3. Corollary 3.2 provides an alternate proof that the chain map

$$\theta \otimes \mathrm{id}_G \colon C_*^{\Delta}(X) \otimes G \xrightarrow{\sim} C_*(X) \otimes G$$

is a quasi-isomorphism, as discussed in Example 2.8.

What if an isomorphism in homology does not come from a chain map, as in the cellular homology theorem? Then we can still argue as follows.

Proposition 3.4. If two (possibly unbounded) chain complexes of free abelian groups C_* and D_* have isomorphic homology $H_*(C_*) \simeq H_*(D_*)$, then the chain complexes $C_* \otimes G$ and $D_* \otimes G$ have isomorphic homology.

Proof. Using the splitting in the universal coefficient theorem, we have (non-natural) isomorphisms:

$$H_n(C_* \otimes G) \simeq H_n(C_*) \otimes G \oplus \text{Tor} (H_{n-1}(C_*), G)$$

 $\simeq H_n(D_*) \otimes G \oplus \text{Tor} (H_{n-1}(D_*), G)$
 $\simeq H_n(D_* \otimes G).$

Alternate proof. By Proposition 2.4, there exists a quasi-isomorphism $\varphi \colon C_* \xrightarrow{\sim} D_*$ (which is in fact a chain homotopy equivalence). By Corollary 3.2, the chain map $\varphi \otimes \mathrm{id}_G \colon C_* \otimes G \xrightarrow{\sim} D_* \otimes G$ is also a quasi-isomorphism.

Remark 3.5. Section 3 is essentially doing the same thing as Section 2, from a more computational perspective. A key step for proving the universal coefficient theorem is to choose splittings of the short exact sequences

$$0 \longrightarrow Z_n \longrightarrow C_n \stackrel{d}{\longrightarrow} B_{n-1} \longrightarrow 0$$

like we did in the proof of Proposition 2.1.

References

[1] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR1269324 (95f:18001)