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Abstract

Possibility and probability expressions, like possibly or prob-
ably, are frequently assumed to communicate that the proba-
bility of a proposition is above a certain threshold. Most pre-
vious empirical research on these expressions has focused on
cases of known objective chance: if the true objective proba-
bility is given, would a speaker use possibly, probably or one
of their kin? Here, we investigate the use of probability expres-
sions when speakers have subjective uncertainty about objec-
tive chance, i.e., higher-order uncertainty. Experimental data
suggest that speakers’ choices of a probability expression is a
complex function of their state of higher-order uncertainty. We
formulate a computational probabilistic model of pragmatic
speaker behavior that explains the experimental data.
Keywords: uncertainty; probability; experimental pragmatics;
computational modeling

Introduction
Real-world reasoning, decision-making and communication
tasks take place almost invariably under uncertainty. From
everyday future planning and small talk about the weather
to scientific practices and financial or legal reports, we rea-
son, decide and speak about things that we do not know for
sure. It is not surprising that possibility and probability ex-
pressions are ubiquitous in communication. To mention only
a recent example, a quick search within ‘The Litvinenko In-
quiry’, delivered by Sir Robert Owen to the Home Secretary
of the United Kingdom on January 19, 2016 (329 pages),1

resulted in 84 instances of probable/probably/(un)likely and
103 instances of might/possibly/it is possible that.

Higher-order uncertainty This paper reports experimen-
tal and modeling work on the meaning and use of the English
expressions probably (not) and possibly. These expressions
(and variations thereof) have been extensively investigated
in linguistics (Kratzer, 1991; Egan & Weatherson, 2011;
Lassiter, 2011) and psychology (Beyth-Marom, 1982; Brun
& Teigen, 1988; Teigen, 1988; Windschitl & Wells, 1996,
1998). What sets our work apart from most of the literature is
that we investigate the use of probably (not) and possibly in
situations of what we call “higher-order uncertainty”.

To illustrate, imagine an urn containing 10 balls of two dif-
ferent colors (e.g. red and blue). The proportion of red balls
out of 10 expresses the objective chance that a random draw

1Available online at https://www.litvinenkoinquiry.org.

will result in a red ball. Knowing the objective chance means
knowing the exact content of the urn, and yet it is not enough
to be sure about what will happen, unless the objective chance
is equal to 0 or 1. This represents the first layer of uncertainty,
where having perfect information about how the world is like
is not enough to perfectly predict how the world will be.

A second, higher-order, level of uncertainty comes into the
picture when the true objective chance is uncertain. Imag-
ine an agent who has only imperfect information about the
urn: the agent knows that it contains 10 balls of two differ-
ent colors, but the agent is only allowed to draw (and look
at) a certain number of balls. The agent might observe that
none, some or all of the drawn balls are red and form an un-
certain belief about the content of the urn. Clearly, the lower
the number of drawn balls, the less precise the agent’s belief.

This work is about uncertainty of this higher-order kind.
In the remainder of this section we summarize some relevant
ideas from the linguistic literature on possibility and proba-
bility expressions. The following section reports on an ex-
periment that investigates choices of probability expressions
under higher-order uncertainty. Standard regression model-
ing suggests that higher-order uncertainty may affect lexical
choices in complex ways. We therefore turn to a computa-
tional model of a pragmatic speaker that aims to predict lexi-
cal choice in a natural way. We compare model variants and
scrutinize the predictions of the most credible variant.

Previous work The amount of previous linguistic research
about possibility expressions such as might, possible, possi-
bly (best known as “epistemic modals”) is gigantic.2 Here we
refer to the milestone work by Kratzer (1991), which puts for-
ward a uniform analysis of possibility and probability expres-
sions as quantifiers over possible worlds. It is a purely quali-
tative analysis, with no reference to probability measures.

Much less research has appeared in linguistics specifically
about probability expressions. However, Kratzer’s picture has
been challenged on many grounds by several authors in re-
cent years. Oversimplifying, there seems to be a consensus
about the need of a semantics which incorporates probability
measures (Yalcin, 2010; Lassiter, 2011; Moss, 2015). The
simplest implementation of this semantics postulates that the

2See (Egan & Weatherson, 2011) for an introduction to the con-
temporary debate.



meaning of a sentence of the form Probably, p is that the
probability of p exceeds a certain threshold θ.

Recent work considers complex nested cases as well
(Moss, 2015; Lassiter & Goodman, 2015):

(1) It might be probable that Alice is wearing green.

(2) Alice is definitely likely to be wearing green.

Suppose that Bob is Alice’s friend and has witnessed her
wearing green 5 times on 8 consecutive days. On the other
hand, Carol is Alice’s mum and has observed that Alice was
wearing green 500 times on 800 consecutive days. Despite
the fact that the objective proportion of green observations is
the same for both, only Carol is in the position to utter (2),
while Bob should limit himself to (1). These examples raise
the question —most often left unanswered— of what kind of
uncertainty is in play when speakers use possibility and prob-
ability expressions. If the objective proportion is not enough
to distinguish between (1) and (2), then what is needed?

This is relevant also for simple, non-nested, uses of possi-
bility and probability expressions, which are way more fre-
quent than nested cases. Consider a more extreme version of
the urn scenario. There are 100 balls in the urn, of two dif-
ferent colors. Imagine to draw 8 balls and observe that 5 of
them are red. Then (3) is a very appropriate thing to say and
(4) is not. But imagine to draw 80 balls and observe that 50
of them are red: the proportion of observed red balls is the
same, but, intuitively, (4) is more appropriate than before.

(3) A randomly drawn ball might be red.

(4) A randomly drawn ball will probably be red.

It seems that in the case of uncertainty about objective chance,
the maximum likelihood guess about the latter is not all that
matters. If 50 out of 80 observed balls are red, we can be
much more certain about the objective chance level, than
when 5 out of 8 balls are observed. This difference may give
rise to complex nested uses of probability expressions, but
does it have to? It seems that higher-order uncertainty is fre-
quent in life. If there is an objective chance of rain, we do not
know it, but still we do not hear the neighbor say that it will
definitely maybe and possibly even probably rain.

There are two options to reconcile higher-order uncertainty
with the use of simple probability expressions. One is to
assume that an agent who is uncertain about the objective
chance of a proposition p, flattens his higher-order belief into
a single probabilistic belief about p. Simple probability ex-
pressions do not communicate genuine higher-order uncer-
tainty, but simple one-dimensional uncertainty about p. An-
other possibility is that higher-order uncertainty plays a role
in our choice of probability expressions. The question, to be
addressed by a computational model below, would then be:
how exactly would different layers of uncertainty affect the
choice of probability expressions? In any case, since the map-
ping from higher-order certainty to flattened one-dimensional
beliefs is many-to-one, it should be possible to find experi-

mental evidence to decide between these rival options.

Experiment
Participants 50 (self reported) English native speakers
with US IP-addresses were recruited via Amazon’s Mechani-
cal Turk.

Material The setup of the experiment is the urn scenario
introduced above. The urn contains 10 balls of two differ-
ent colors. Observations of the content of the urn are made
by drawing a certain number of balls (referred to as “ac-
cess”) and counting how many of them are red (“observa-
tion”). Each trial showed a picture representing the urn sce-
nario with various access and observation. A sample stimulus
is shown in Figure 1. A short description that came with every
picture reminded participants that they had to imagine draw-
ing a certain number of balls, looking at them, and putting
them back in the urn; then, they would draw another ball and
make a prediction about its color.
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You draw 6 balls and observe that 3 of them are red.

Figure 1: Sample stimulus.

We selected seven proportions of observed red balls,
namely 0,0.25,0.33,0.5,0.67,0.75,1. Each proportion is ob-
tained in two different ways: one encoding what we call
“low” uncertainty (access> 5) and one what we call “high”
uncertainty (access< 5). Crossing proportions and uncer-
tainty levels resulted in 14 experimental conditions (Table 1).

Table 1: Experimental conditions.

0 0.25 0.33 0.5 0.67 0.75 1
high 0/2 1/4 1/3 2/4 2/3 3/4 2/2
low 0/10 2/8 3/9 4/8 6/9 6/8 10/10

The experiment consisted of expression and likelihood tri-
als. Expression trials probe into the lexical choice of prob-
ability expressions. We asked the participants to complete a
sentence of the form The next ball will [. . . ] be red by select-
ing the most appropriate expression from a drop-down menu
containing certainly not, probably not, possibly, probably,
certainly. In likelihod trials participants had to answer the
question How likely do you think it is that a randomly drawn
ball will be red? by adjusting a slider ranging from 0 to 100
with a step of 5. Answers from likelihood trials hint at partic-
ipants’ beliefs about the probability of the crucial proposition
The next draw will be red in each condition.



Procedure Each participant completed 12 trials, one for
each of 12 conditions randomly picked from the 14 total con-
ditions. Half of the trials were expression trials, the other half
likelihood trials. Prior to the main experimental phase, partic-
ipants completed a training phase that contained the following
introduction:

“This experiment is an interactive two player game of
chance. The players cooperate to guess the content of
an urn. Both players know that the urn always contains
10 balls of different colors (for example, red and blue).
But only one player (the sender) is allowed to draw a
certain number of balls from the urn and look at them.
The sender puts the balls back into the urn and gives
it a nice shake, then the sender draws a new ball from
it. Before looking at it, the sender sends a message to
the other player (the receiver). The receiver reads the
message and tries to guess the exact content of the urn.”

The motivation for this was to avoid potential confounds, as
much as possible, about the purpose of conversation when
choosing between probability expressions. Previous research
has established that contextual questions under discussion,
i.e., ways of classifying what counts as important to a con-
versation, may affect the use and interpretation of probability
expressions (Teigen, 1988; Windschitl & Wells, 1998; Las-
siter, 2011; Herbstritt, 2015). Moreover, by introducing the
participants to a fictive interactive game context we hoped
to suggest that they should reason about the effect of their
choices on another agent.

Results & analysis Figure 2 shows results from the expres-
sion trials, i.e., the percentages of choices for each message in
each condition, grouped by uncertainty level. Figure 3 shows
mean answers from the likelihood trials, alongside the poste-
rior beliefs that an ideal Bayesian agent should hold.

Figure 2: % of message choices.

We want to test whether choice of probability expression is
governed (i) only by participants’ probabilistic beliefs about
the prejacent The next draw will be red, or (ii) by the more
complex higher-order uncertainty state, expressed as a func-
tion of accessed and observed balls. To do so, we formu-
late and compare two kinds of multinomial logistic regres-

Figure 3: Measured and ideal beliefs.

sion models. The first and simple model seeks to predict the
five-level categorical factor answer (certainly not, probably
not, possibly, probably, certainly) with a single metric factor
belief which is the participants’ mean answers in the rele-
vant likelihood trials. The second and complex model con-
siders metric factors observation and access as predictors.
We also consider an interaction model that contains the
latter factors’ interaction as well.

Table 2: AIC scores.

simple complex ineraction
AIC 662.78 646.69 635.93

AIC scores of best-fits of these regression models are given
in Table 2. Despite added complexity, complex seems a bet-
ter model than simple, and interaction seems to be the
best. This suggests that there might be more to the use of
probability expressions than just the level of belief in the pre-
jacent; the result suggests that higher-order uncertainty may
affect choice of expressions in more subtle ways.3

How do speakers choose expressions under higher-order
uncertainty? What exactly is the role of observation and ac-
cess? Can we predict the speakers’ choices by assuming that
possibility and probability expressions have a simple seman-
tics but the speakers use them pragmatically? To answer these
questions we developed a probabilistic model based on a ver-
sion of the Rational Speech Acts model (henceforth, RSA)
proposed by Goodman and Stuhlmüller (2013) (G&S).

Computational model
Probabilistic modeling is arguably better suited for capturing
the subtleties of (pragmatic) language use than the standard
formal semantics framework. RSA has proven to be a suc-
cessful modeling tool when it comes to complex usage pat-
terns (or pragmatic effects) on the basis of simple semantics
and largely shared insights from rational choice theory and

3AIC score of the simple model using ideal beliefs instead of
measured ones as factor belief is equal to 658.98: better than
the model using measured beliefs, but still worse than the complex
model.



information theory.4 The version of RSA developed by G&S
deals with exactly the kind of uncertain beliefs that we are
interested in, although for a different purpose.

Basic model The basic setup of the model mirrors the setup
of the experiment. The urn contains 10 balls, any number of
which can be red. The set of natural numbers S = {0, . . . ,10}
represents the state space: each s ∈ S is a possible quantity
of red balls in the urn. The set A = {0, . . . ,10} contains the
possible access values. Given a state s and access value a, the
number of red balls observed by the agent is denoted o, and
upper-bounded by min(s,a).

The first level of uncertainty is determined by the state:
s/10 is the objective chance that a randomly drawn ball will
be red. Crucially, the agent does not know this value. In-
stead, the agent observes o red balls out of a. Based on this
observation the agent forms an uncertain belief over the state
space, modeled as the Bayes-inverted conditional probability
of observing o red balls out of a drawn balls in state s:

speaker.bel(s|o,a) ∝ P(o|a,s)∗prior(s) (1)

In turn, P(o|a,s) is given by the hypergeometric model of
the urn:

P(o|a,s) = hypergeometric(o;a,s,10) (2)

Equation 1 defines the beliefs of a speaker, as we aim to
model the behavior of message-sending agents. As such, a
crucial component of the model is the set of available mes-
sages together with their meaning. In the spirit of RSA, we
assume a simple literal semantics, expressed as follows in the
standard notation of formal semantics:

Jcertainly(p)Ks = 1 iff P(p) = 1 in s
Jprobably(p)Ks = 1 iff P(p)> θ in s
Jpossibly(p)Ks = 1 iff P(p)> 0 in s
Jprobably not(p)Ks = 1 iff P(p)< 1−θ in s
Jcertainly not(p)Ks = 1 iff P(p) = 0 in s

The threshold θ is a free parameter in the model (more about
this below). The variable p is to be instantiated with (some
sentence equivalent to) The next ball will be red.

An important assumption in RSA modeling —loosely
based on Paul Grice’s Maxim of Quantity, is that the com-
municative goal of the speaker is to maximize the information
transferred to the listener. There are several ways of formaliz-
ing the maximization of information. We think of it as bring-
ing the listener’s beliefs as close as possible to the speaker’s
beliefs, i.e. minimizing the (Hellinger) distance between the
probability distributions representing those beliefs.5

4See recent works by Degen, Tessler, and Goodman (2015), Kao
and Goodman (2015) and Hawkins, Stuhlmüller, Degen, and Good-
man (2015) among others.

5We depart from the informativity criterion adopted by G&S be-
cause it does not allow the speaker to send messages that are liter-
ally false; however, we want to allow some pragmatic slack to the
speaker: it is plausible to think that, for example, chances around
97% or bigger are certain enough for us to say certainly, even if this
expression is literally true only when the odds are 100%.

RSA models the behavior of (imperfectly) rational agents.
Adopting the terminology of rational choice theory, the
speaker’s behavior is to soft-maximize the expected utility of
the message in the current situation:

speaker.prob(m|o,a) ∝ exp(λ∗EU(m;o,a)) (3)

EU is multiplied by a rationality parameter λ (free in the
model) that modulates “how rational” the choice is.6 EU
is defined as negative Hellinger distance (HD) between the
speaker’s beliefs and the beliefs of a “literal listener”:

EU(m;o,a) =−HD[speaker.bel(s|o,a), literal.bel(s|m)] (4)

The literal listener is a theoretical construct needed to
ground the otherwise infinite process implied in a recursive
model of pragmatic reasoning. It is a dummy agent who does
not perform any kind of pragmatic reasoning and simply in-
terprets every message m according to the literal semantics:

literal.bel(s|m) = P(s|m is true)∗prior(s) (5)

Parameters estimation The basic version of the model, M0
has two free parameters: the threshold θ and the rationality λ.
It assumes flat prior beliefs over the state space. We also con-
sidered three more complex versions of the model: a model
where the prior beliefs are expressed by a symmetric beta-
binomial distribution with free shape parameters α = β (M1);
a model with two (possibly) different free rationality param-
eters, λlow and λhigh, one for each level of uncertainty (M2);
finally, a model combining these two variations (M3).

Each model was implemented in JAGS (Plummer, 2003)
and the posterior likelihoods of the free parameters given the
experimental data were estimated by Bayesian inference via
MCMC sampling. We remained uncommitted on the prior
distributions over the parameters, except for fixing sensible
intervals:

θ∼U(0,1) λ,λlow,λhigh ∼U(0,20) α∼U(0,20)

We gathered two chains of 5000 samples for each model
after an initial burn-in phase of 5000. Convergence was con-
firmed via R̂ (Gelman & Rubin, 1992). The results were in-
teresting for at least three reasons.

First, the mean value inferred for θ was always equal to
0.55, regardless which model we simulated. This is an im-
portant result: our data provide evidence that an objective
chance bigger than 55% is enough to consider probably as
an appropriate expression. This is in line with intuition and
previous experimental results. It speaks in favor of the model
that data-driven inference recovers this intuitive value for θ

without stipulating it from the start.
Second, the estimation of α in M1 resulted in a mean value

of 2.81 (HDI: 1.26-4.78).7 Notice that α = 1 would imply

6As λ→ ∞, the choice approaches perfect rationality.
7All HDIs (highest density intervals) reported here comprise

95% of the posterior density, such that no point outside the inter-
val has higher density than any point within.



flat prior beliefs over the state space, which can thus reason-
ably be excluded given our data (more about this below). This
can be perhaps explained by looking again at the introductory
text of the experiment: it is written that “[...] the urn always
contains 10 balls of different colors” and it is reasonable to
assume that this might have caused a number of the partici-
pants to neglect the possibility that the urn contained 0 or 10
red balls (which results in non uniform prior beliefs).

Third, the estimation of λlow and λhigh in M2 resulted
respectively in mean values of 7.36 (HDI: 6.03-8.79) and
3.49 (HDI: 2.75-4.24). The fact that the difference between
λlow and λhigh is different from zero with completely non-
overlapping HDIs suggests that our data provide evidence for
assuming different rationality parameters for different uncer-
tainty level (more about this below). An intuitive explanation
is that the more precise the participants’ belief, the easier it
was for them to behave more rationally.

Finally, the mean values for the free parameters of M3 and
their HDIs are reported in Table 3.

Table 3: Estimated parameters of M3.

θ α λlow λhigh
mean 0.55 2.81 6.11 3.16
HDI 0.50-0.59 1.04-5.42 4.75-7.45 2.39-3.95

••

•

•

M0
θ,λ

M1

θ,λ,α

M2

θ,λlow,λhigh

M3
θ,λlow,λhigh,α

Figure 4: Nesting relations between models.

Model comparison Our four models are nested. M0 is a
special case of both M1 and M2, which are special cases of
M3, as depicted in Figure 4. This allows for model compar-
isons based on Bayes factors (BF) with the Savage-Dickey
method (Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010). As expected, both M1 and M2 are more credible mod-
els given our data. The Bayes factor in favor of M1 against
M0 is substantial (approximately BF = 8.68). More strik-
ingly, the Bayes factor in favor of M0 against M2 is so low
that it cannot be computed with normal float precision levels,
which in turn means that M2 is definitely more credible than
M0. Moving to M3, we get a similarly striking result when
we compare it to M1: the Bayes factor in favor of M1 ap-
proaches zero. On the other hand, the Bayes factor in favor of
M3 against M2 is only equal to 1.40 which is barely enough
to distinguish the two models on the basis of the data. Sum-
ming up, allowing our model to use two different rationality

parameters for the two different uncertainty levels invariably
results in a definitely more credible model.

Correlation and model criticism Model comparison
based on Bayes factors tells us if/how much a model is better
than another, but does not give us an absolute measure of how
good a model is. Having picked M3 as the best model at our
disposal, we correlated the experimental observations with
the predictions made by the model fitted with the maximum-
likelihood estimated values of its free parameters. The results
of Pearson’s product-moment correlation provide us with a
measure of goodness of fit for the model as its best:

d f = 68; r = 0.927; 95% ci : 0.885-0.954; p < 0.001

By that (frequently used) measure, predictions of the model
look quite good.

Figure 5: Posterior Predictive Check.

A more stringent criterion for goodness of fit are Posterior
Predictive Checks (PPC) (Kruschke, 2014). PPCs look at hy-
pothetical data generated from a model when parameters are
randomly drawn from their posterior distribution (i.e., condi-
tional on the data). By visual means, we then check whether



any actually observed data point is “surprising” in the sense
that it lies outside of the 95% HDI of the hypothetically gen-
erated data. Figure 5 shows the mean frequencies of poste-
rior predictive message choices of M3 (in light blue), together
with their 95% HDIs. The pink dots represent observed data.

Ideally, all observations should lie within the posterior
HDIs. Visual inspection of the plots allows us to recognize
several critical points where the posterior predictions of the
model diverge from the observed data (circled in red). We
observe that most critical points are found in the high un-
certainty condition, plausibly where most noise occurred in
the data. It is also exactly at these points where participants’
mean answers in the likelihood trials diverged from idealized
Bayesian belief update (see Figure 3). This suggests that fail-
ures in PPCs might not be the fault of the pragmatic part of
the model, but the belief update part of the model.

Conclusion
We presented experimental evidence suggesting that the
speakers’ use of possibility and probability expressions de-
pends not only on the objective chance of the event in ques-
tion but also on the speakers’ state of higher-order uncer-
tainty. We formulated a computational model, based on a
conservative extension of RSA, that explains the experimen-
tal data in terms of simple semantics and standard pragmatic
reasoning.

Despite its simplicity, the predictions of the model are
quite good. Comparing AIC scores for the best-fits of the
interaction regression model and our theory-driven com-
putational model reveals a striking preference for the latter
(AIC: 635.93 vs 270.90).

A possible line of future empirical research will be to in-
vestigate speakers’ use of nested possibility and probabil-
ity expressions under higher-order uncertainty: if given the
choice, would speakers prefer a nested construction over a
simple one to communicate their uncertain beliefs? More-
over, a natural continuation of the work presented here will be
to investigate listeners’ interpretation of (simple and nested)
possibility and probability expressions.
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Forschungsgemeinschaft, ZUK 63) is gratefully acknowl-
edged.

References
Beyth-Marom, R. (1982). How probable is probable? a nu-

merical translation of verbal probability expressions. Jour-
nal of forecasting, 1(3), 257–269.

Brun, W., & Teigen, K. H. (1988). Verbal probabilities: am-
biguous, context-dependent, or both? Organizational Be-
havior and Human Decision Processes, 41(3), 390–404.

Degen, J., Tessler, M. H., & Goodman, N. D. (2015). Wonky
worlds: Listeners revise world knowledge when utterances

are odd. In D. C. Noelle et al. (Eds.), Proceedings of
CogSci37.

Egan, A., & Weatherson, B. (2011). Epistemic modality.
Oxford University Press.

Gelman, A., & Rubin, D. B. (1992). Inference from itera-
tive simulation using multiple sequences (with discussion).
Statistical Science, 7, 457–472.

Goodman, N. D., & Stuhlmüller, A. (2013). Knowledge
and implicature: Modeling language understanding as so-
cial cognition. Topics in cognitive science, 5(1), 173–184.

Hawkins, R. X. D., Stuhlmüller, A., Degen, J., & Goodman,
N. D. (2015). Why do you ask? good questions provoke
informative answers. In D. C. Noelle et al. (Eds.), Proceed-
ings of CogSci37.

Herbstritt, M. (2015). Experimental investigations of proba-
bility expressions: a first step in the (probably) right direc-
tion. In M. Kaeshammer & P. Schulz (Eds.), Proceedings
of ESSLLI 2015 student session.

Kao, J. T., & Goodman, N. D. (2015). Let’s talk (ironically)
about the weather: Modeling verbal irony. In D. C. Noelle
et al. (Eds.), Proceedings of CogSci37.

Kratzer, A. (1991). Modality. In A. von Stechow & D. Wun-
derlich (Eds.), Semantics: An international handbook of
contemporary research (pp. 639–650). de Gruyter.

Kruschke, J. (2014). Doing bayesian data analysis, 2nd edi-
tion: A tutorial with r, jags, and stan. Academic Press.

Lassiter, D. (2011). Measurement and modality: the scalar
basis of modal semantics. Unpublished doctoral disserta-
tion, NYU Linguistics.

Lassiter, D., & Goodman, N. D. (2015). Nested and infor-
mative epistemics in a graphical models framework. Talk
given at Bridging Logical and Probabilistic Approaches to
Language and Cognition, ESSLLI 2015, Barcelona.

Moss, S. (2015). On the semantics and pragmatics of epis-
temic vocabulary. Semantics and Pragmatics, 8(5), 1–81.

Plummer, M. (2003). Jags: A program for analysis
of bayesian graphical models using gibbs sampling. In
K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of
DSC3 (Vol. 124, p. 125).

Teigen, K. H. (1988). When are low-probability events
judged to be ‘probable’? effects of outcome-set character-
istics on verbal probability estimates. Acta Psychologica,
6(2), 157–174.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Gras-
man, R. (2010). Bayesian hypothesis testing for psychol-
ogists: A tutorial on the savage–dickey method. Cognitive
psychology, 60(3), 158–189.

Windschitl, P. D., & Wells, G. L. (1996). Measuring psycho-
logical uncertainty: Verbal versus numeric methods. Jour-
nal of Experimental Psychology: Applied, 2(4), 343.

Windschitl, P. D., & Wells, G. L. (1998). The alternative-
outcomes effect. Journal of Personality and Social Psy-
chology, 75(6), 1411–1423.

Yalcin, S. (2010). Probability operators. Philosophy Com-
pass, 5(11), 916–37.


