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Semantic values as latent parameters: surprising few & many∗
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Abstract Based on a concrete proposal for the semantics of vague quantifiers few
and many suggests unspecified parameters which are hard to assess by introspection,
we argue for the potential value of data-oriented computational modeling. We
demonstrate how semantic values can be estimated from experimental data and a
probabilistic model of language use.
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1 Introduction

A man described as having “many children” is probably thought of as having four
to seven kids, whereas a basketball team in the NBA that scored "many points”
is much more likely to have scored 100 points or more. The same variability in
use and interpretation can be found in the word few as well. It is a challenge to
linguistic theory to explain how speakers and listeners successfully communicate
with quantifiers such as few and many even though their meaning is so vague and
context-dependent. To explain this, it is desirable to maintain that there exists a stable
core meaning of these words, perhaps as a complex function that takes contextual
parameters as input. The case of few and many is particularly interesting, because
their hypothetical contextually-stable meaning escapes even trained introspection.

In this paper, we focus on the methodological problems entailed in testing a
concrete lexical semantics for few and many and advocate use of computational
models and empirical data. We introduce the semantic background of few and many
in Section 2, elaborate on our goal and methods in Section 3, explain how we can
turn a semantic theory into a computational model of language use in Section 4 and
present the experiments we conducted to test the target semantics/computational
model in Section 5. Section 6 applies our model to the experimental data, before
Section 7 concludes with a methodological reflection.
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2 Semantic Background

Partee (1988) argued that few and many can be read in two ways:

(1) a. Ben had many girlfriends before he got married. cardinal
b. Melanie owns few pairs of shoes. cardinal
c. Chris ate many (of the) 12 muffins on the table. proportional
d. Few (of the) US citizens went to the polls in the last elections. prop.

Partee (1988) suggests that the quantifiers’ cardinal reading (1a,b) has a meaning
"like that of the cardinal numbers, at least xmin, with the vagueness located in
the unspecified choice of xmin . . . The cardinal reading of few is similar except
that it means at most xmax, and xmax is generally understood to be small” (Partee
1988: 1)1. For (1a) this means that the number of girlfriends Ben had is large, whereas
the number of pairs of shoes that Linda owns (1b) is small. An interpretation of
“Few/Many A are B” under a cardinal reading is given in (2):

(2) a. Few: |A ∩ B| ≤ xmax b. Many: |A ∩ B| ≥ xmin

For the proportional reading, on the other hand, sentence (1c) is true if Chris ate a
large proportion of the muffins; at least k. “We may think of k either as a fraction
between 0 and 1 or as a percentage” (Partee 1988: 2). For few, sentence (1d) is true
if a small proportion of US citizens went to the polls, at least k. An interpretation of
“Few/Many A are B” under a proportional reading is given in (3):

(3) a. Few: |A∩B|
|A| ≤ kmax b. Many: |A∩B|

|A| ≥ kmin

The semantics in (2) and (3) leave open how thresholds xmin/max and kmin/max are
to be fixed in any given context. Another interesting question is whether the same
procedure of fixing xmin/max for cardinal readings could also apply to fixing kmin/max
for proportional readings. We will leave much of these issues unaddressed here, but,
to make a start at least, focus our attention on cardinal readings and the question
how to fix xmin/max for them.

A particular proposal for fixing xmin/max in cardinal readings assumes that thresh-
olds derive from comparisons with prior expectations, giving us what we could call
“cardinal surprise readings” as in (4). (It is another open question, which we will
return to in Section 7, whether all cardinal readings are cardinal surprise readings in
this sense.)

1 Partee (1988) labels both variables with n. For consistency with the theory proposed in section 2 we
use xmax and xmin instead.
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(4) Joe eats few / many burgers.
 Joe eats less / more burgers than expected (for someone from the relevant
comparison class).

An intuitive semantics for (4) was first suggested tentatively by Clark (1991).
Clark, citing Hörmann (1983), argues that it is impossible to provide a dictionary
account for few and many. A dictionary theory assumes that the meaning of a word
can be listed as a “a brief, partial description of some aspect of the world” (Clark
1991: 264). For the meanings of few and many, Clark argues, it is impossible to
come up with a short or even a finite list of denotations, since conditions of use
and interpretations vary highly between different situations. As an alternative to a
dictionary account, Clark suggests that, e.g., few could rather be taken to denote “the
25th percentile (range: 10th to 40th percentile) on the distribution of items inferred
possible in [the current] situation” (Clark 1991: 271).

This idea was formally spelled out by Fernando & Kamp (1996). We will call it
the Clark-Fernando-Kamp (CFK) semantics. It explains the target reading of few
and many in (4) as intensional, comparing the actual number of burgers that Joe eats
(say, per month) to a probabilistic belief P about the expected number of consumed
burgers in some contextually provided comparison class (say, American males of
his age and lifestyle). While the prior expectation P is highly context-dependent,
the context-independent lexical meaning of few and many is a fixed threshold on the
cumulative distribution of P. We will label these thresholds θfew and θmany. Truth
conditions of the CFK semantics for sentences as in (4) are then:

(5) CFK Semantics
a. [[Few A are B]] = 1 iff |A∩B | ≤ xmax

where xmax = max{n ∈ N | P(|A∩B | ≤ n)< θfew}

b. [[Many A are B]] iff |A∩B | ≥ xmin

where xmin = min
{

n ∈ N | P(|A∩B | ≤ n)> θmany
}

In words, given (5b), the sentence “Many A are B” is true if the number n = |A∩B |
of A that are also B, is greater than xmin. In turn, xmin is specified as the lowest
number for which the cumulative density mass of the prior expectation over A that
are also B is higher than the semantically fixed threshold θmany.

To illustrate this with an example, have a look at the left side of Figure 1. Prior
expectation P assigns a probability to each possible n = |A∩B |. For example, this
could represent how many burgers we expect an American man to eat per month.
Let’s focus on the top row of Figure 1. Here, the context makes us expect that about
20 burgers are consumed. We take the context-independent lexical meaning of many
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Figure 1: Applying many’s threshold θmany to the prior expectation P determines
xmin, fixes truth conditions. Upper and lower row show how two different contextu-
ally given P can lead to different xmin under a constant θmany. The right hand side of
the diagram shows how production predictions for many are derived from xmin (to
be explained in Section 4). We use continuous functions and smooth curves for ease
of presentation here.

to be a fixed threshold on the cumulative density mass of P - the area under the curve
colored in blue in the graph in the middle of Figure 1. In other words, θmany takes
the prior expectation P of the respective context as input and cuts off the cumulative
density mass of P when it has reached a percentage which is fixed in the semantics
of many. From this cut-off we can derive xmin, the lowest number that is higher than
the cut-off. For the context presented in the top row, “Joe eats many burgers” is true
iff Joe eats more than 27 burgers. If this sentence is uttered in a different context, we
will have a different prior expectation like the one in the bottom row of Figure 1, but
the threshold function does exactly the same. In this case, the sentence would be
true iff Joe eats more than 12 burgers.

In sum, the CFK semantics in (5) aims to explain the contextually variable
thresholds xmin and xmax from the truth-conditions in (2) as a function of prior
expectations P and a pair of fixed thresholds θmany and θfew on the cumulative
distribution derived from P. Thresholds θmany and θfew can then be conceived of
as the contextually-stable semantic core meaning of many and few that would help
explain how vague quantifiers can be meaningfully used and faithfully acquired.
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3 Goal & Method

To assess whether the CFK semantics in (5) is on the right track is a challenge to
classical methods from theoretical linguistics insofar as they rely on intuitions about
truth, entailment and the like. This is because, in almost all cases, a precise enough
determination of prior expectations about P seems to elude solitary introspection.
Still, it could be the case that (5) captures speakers’ non-introspective use of many
and few well enough. What can we do? Certainly, we can probe intuitions (be it
our own, or those of informants in a controlled experiment) about applicability and
interpretation of relevant sentences in laboratory conditions that provide perfect or
near-perfect information about P. This approach poses practical problems that may
or may not be solvable by clever design.

But there is also an alternative that is worth exploring: data-oriented compu-
tational modeling. Focusing on few and many and the CFK semantics for their
cardinal surprise uses, our main goal here is to give one constructive example of how
data-oriented computational modeling could be useful for formal semantic theory.
For one, we show how recent experimental methodology (e.g. Kao, Wu, Bergen &
Goodman 2014) can help obtain approximate empirical measures of introspectively
inaccessible “prior expectations.” For another, we show how the core semantics
in (5) can be turned into probabilistic models of speaker production and listener
interpretation behavior. Finally, feeding empirically measured prior expectations into
production and interpretation models, we show that production and interpretation
data from suitable experimental tasks can be used to infer plausible values of θmany
and θfew.

This approach effectively considers the contextually stable semantic contribution
of many and few in terms of θmany and θfew as a latent variable in a computational
model that generates predictions about language use. Concretely, hypothetically
fixed values for θmany and θfew would let us derive predictions about production and
comprehension of relevant sentences. How exactly these predictions are derived
from fixed latent threshold values is what a computational model has to specify.
We will propose a relatively simple computational model in the next section. Other
models are conceivable and may or may not give rise to similar conclusions about
the tenability of a CFK semantics. We believe that this is normal: testing an abstract
hypothesis (like the CFK semantics) alongside empirical data will require auxiliary
assumptions about how the hypothesis relates to data observations (e.g. Quine
1951). Yet, given data and a model about how latent variables generate possible
observations, we can then draw inferences about the unobservable latent variables
of interest. Our goal, then, is to see whether the idea that a single pair of threshold
values θmany and θfew explains empirical data from production and comprehension
within a model of how the data is generated as a function of θmany and θfew.
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4 Computational model

Drawing conclusions from empirical data about values of latent variables in a
computational model is relatively straightforward for probabilistic models in concert
with a Bayesian analysis. This is the path we trod here, as well. This section
introduces probabilistic production and comprehension rules. Section 6 explains
how these relate to the data from our experiments introduced in Section 5. In the
following, our emphasis is on ideas, not technical detail. We focus on many in the
exposition, but the case for few is parallel.

In general, a probabilistic production rule is a function that assigns a probability
distribution over expressions or utterances to any given meaning (possibly subject
to other parameters of interest): how likely is it that speakers would use a given
expression when they want to convey a particular, fixed meaning. A probabilistic
comprehension rule is the same in reverse, assigning a probability distribution over
meanings or interpretations for each possible utterance that needs to be interpreted.

In our present case, a production rule should give us the probability PS(“many” |
n,P) with which a speaker, or speakers in general, would find the sentence “Many
A are B” applicable, for any possible number n = |A∩B |, given expectation P
over the relevant comparison class. A suitable comprehension rule gives us the
probability PL(n | “many”,P) with which a listener, or listeners in general, would
choose interpretation n when they hear the relevant statement with many in a context
where P captures the relevant statistical properties of the assumed comparison class.

A production rule that implements the CFK semantics in (5) is straightforward:
PS(“many” | n,P ; θmany) = 1 if n ≥ xmin and otherwise 0, where xmin is derived
from P, as in (5), based on θmany, which is a free parameter for this rule (indicated
by writing it after a semicolon). This probabilistic production rule is (given as the
black line on the right in Figure 1) is only a degenerate probabilistic rule: it only
assigns the extreme values 0 and 1; it does not allow for slack, mistakes or other
trembles. As such, it would not be plausibly applicable to noisy empirical data. So,
instead of a step-function we look at a parameterized, smoothed-out version (e.g.,
the colored lines on the right in Figure 1):

PS(“many” | n,P ; θmany,σ) =
n

∑
k=0

∫ k+0.5

k−0.5
N (y;xmin,σ)dy .(6)

Here, σ is another free model parameter that regulates the steepness of the curve, and
N (y;xmin,σ) is the probability density of y under a normal distribution with mean
xmin and standard deviation σ . Essentially, this gives us a noisy implementation of
speaker behavior under a CFK semantics where the amount of noise is controlled by
σ , as a function of latent parameter θmany.

The idea behind (6) is this. Assume that a hypothetically true value of θmany
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exists. Then, given a prior expectation P over the contextually relevant domain, the
CFK semantics in (5) gives a clear cutoff for the minimum number xmin of, say,
burgers that some particular Joe must minimally eat to license applicability of many
in a sentence like (4). We should assume that speakers do not know for sure the actual
xmin that is entailed by θmany and P, most likely because they do not know P for
certain, but that speakers nonetheless approximate it. More concretely, we assume
that when a speaker decides whether some n licenses many, she “samples”, so to
speak, a noise-perturbed “subjective threshold” x′min from a Gaussian distribution
whose mean is xmin and whose standard deviation σ is a free model parameter
that captures speaker uncertainty (about θmany, P, and perhaps other things). If
the sampled value is below n, the speaker finds many applicable to cardinality n;
otherwise, he does not. This gives us a probabilistic prediction of how likely a
speaker would, on occasion, find many applicable to n as a probabilistic function of
θmany, P and noise parameter σ .

A derivation of a suitable probabilistic comprehension rule follows the exact
same logic. The CFK semantics in (5) translates straightforwardly into a degenerate
probabilistic comprehension rule: PL(n | “many”,P ; θmany) ∝ P(n) · I(n≥ xmin).2,3

Under this non-noisy rule, the listener would simply update his prior belief about
the number n, given by contextually specified P(n), with the information that n is
no smaller than xmin, which he learns from assumed truth of the relevant many-
statement. If, however, the listener is equally uncertain about the truth-conditions
for many, e.g., due to uncertainty about comparison class distribution P, we should
assume a smoothed out and parameterized comprehension rule, in analogy to the
production rule in (6):

PL(n | “many”,P ; θmany,σ) ∝ P(n) ·PS(“many” | n,P ; θmany,σ) .(7)

This rule can be motivated in two conceptually distinct ways that yield the same
mathematical result. For one, we can think of (7) as an application of Bayes’ rule.
Under this interpretation, the listener tries to infer likely world states based on a
model of reverse production: taking into account how likely each world state is
and how likely the speaker would use the observed many-statement in these states.
But since the production rule in (6) is just encoding “noisy truth-conditions” (rather
than a genuine pragmatic choice of which out of several alternatives to use), the
formulation in (7) also follows from the same considerations that motivated the
production rule in (6): the formula in (7) captures interpretation based on the CFK
semantics given (Gaussian) uncertainty about threshold xmin.

2 The notation “∝” for “proportional to” says that the expression on the right must yet be normalized.
So, P(x) ∝ f (x) for some function f is short for P(x) = f (x)

∑x′ f (x′) .
3 Here, I(·) is the indicator function which takes a Boolean expression and returns its truth-value as 1

or 0 in the usual way (1 for truth).
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The upshot of this is important to stress: the probabilistic production and com-
prehension rules that we defined here encode simple production and comprehension
behavior that only take into account the semantics and noise; they are not, against
superficial likeness, rules for more elaborate pragmatic production and compre-
hension such as variously entertained in many recent contributions (e.g. Frank &
Goodman 2012; Goodman & Stuhlmüller 2013). This is where other, more complex
computational models could be substituted, as suggested in Section 3. In a sense,
we start with what is perhaps the simplest possible computational model. Whether
adding more “pragmatics” to our model of language use changes anything about
the conclusions concerning the tenability of the CFK semantics must remain to be
seen. But this is orthogonal to our goal of introducing data-oriented computational
modeling for estimation of semantic values.

5 Behavioral Experiments

We ran three experiments on Amazon’s Mechanical Turk to assess prior expectations,
production and comprehension behavior. We elicited prior expectations because they
are necessary input to the model. Data measuring production and comprehension
of few and many will be used to infer threshold values through the lens of our
probabilistic models.

We accepted only participants with IP addresses in the United States and excluded
non-native speakers of English. Each task used the same 15 contexts about everyday
events, objects or people which all involved a quantity of some sort. A sample item
is given below (see Appendix A for the full list of test items).

(8) a. Joe is a man from the US. prior
b. Joe is a man from the US who eats few/many burgers. few/many
How many burgers do you think Joe eats per month?

5.1 Experiment 1: Prior elicitation

80 Participants saw descriptions of a context as in (8a) and a question as in (8). To
measure the participants’ prior expectation of the contexts, we used the methodology
of Kao et al. (2014). Participants were presented with 15 slider-interval pairs (the
intervals we used depended on the respective item, determined by the pre-test) and
rated the likelihood of each interval range, by adjusting a slider.

Results. Participant’s ratings per item were normalized by subject-item-condition
and subsequently averaged over item-condition. This gave us an empirical measure
for P which will be input to the model. Figure 4 shows the probability distribution
of the prior expectations which we measured for the 15 items.
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Figure 2: Prior expectation of the quantities in the 15 contexts

5.2 Experiment 2: Judgment task as a production study

We used a binary judgment task to test production of quantifiers. We asked partici-
pants how good a statement with a quantifier describes a given context. On Amazon’s
Mechanical Turk 350 participants read context sentences labeled as facts, which
describe the context and introduced a quantity range (one of the item’s intervals was
randomly chosen). Participants rated whether a statement containing few or many is
an adequate description of the fact. Note that in the prior elicitation task we presented
participants with 15 intervals. This task presented participants with quantity ranges
from only 7 of the 15 intervals to avoid too large a number of combinations. We
chose the intervals with even numbers. See (9) for an example.

(9) Fact: Joe is a man from the US who eats 10-12 burgers a month.
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Figure 3: Production data indicating a speaker’s likelihood to use a quantifier to
describe an interval

Statement: Compared to other men from the US, Joe eats few burgers a
month.
Is this statement a good description of the fact?

Results. For each item-quantifier-interval combination we looked at the percent-
age of yes-answers. We interpret this an indication of the likelihood that a speaker
would use the quantifier to describe a quantity in the respective interval.

5.3 Experiment 3: Comprehension task

To measure how language users interpret sentences with the quantifiers we presented
60 participants with sentences introducing the contexts and few or many to describe
the amount in question. See (8b) for an example. Participants were asked select the
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Figure 4: Chosen numerical denotation as interpretation of the quantifiers

interval (out of all 15) they thought most likely to be the one the speaker had in mind
when uttering the sentence.

Results. The histograms in Figure 4 show proportions of how often an interval
was chosen as the interpretation of few or many. Count data from this experiment
will be fed into our probabilistic comprehension rule.

6 Model Evaluation

The probabilistic production and comprehension rules from Section 4 implement
noisy versions of the CFK semantics. They take a contextually given distribution P as
input and have free parameters θmany, θfew and σ . As explained in Section 3, our goal
is to learn about θmany and θfew from the observed experimental data. To this end,
we feed the empirically measured prior expectations Pi, where i ranges over the 15
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experimental items from Section 5, into the production and comprehension models
from Section 4. This gives us likelihood functions for the data from the production
and comprehension experiments as described here. (For ease of exposition, we only
explicitly cover the case of many wherever that for few is analogous. The focus
is again on general ideas, details about the actual implementation are left in the
background.)

Let Opm
i j be the number of true answers for item i and interval j in production

experiments for many and let Ocm
i j be the number of times interval j has been selected

as the interpretation for the relevant many-statement about item i in comprehension
experiments. Let N pm

i j be the number of participants that took the production experi-
ment for many for item i and interval j. Likewise, Ncm

i be the number of participants
that took the comprehension experiment for many and item i. O

p f
i j , O

c f
i j , N

p f
i j and

N
c f
i hold the same information for conditions involving few. Finally, let Ii j be the jth

interval of numeric values for item i (as given in Appendix A). Let
∣∣ Ii j
∣∣ be the length

of interval Ii j. The probabilistic rules from Section 4 then give us (parameterized)
likelihood functions for observable data:

P(Opm
i j | θmanyi,σi) = Binomial

(
Opm

i j , N pm
i j , ∑

n∈Ii j

PS(“many” | n,Pi ; θmanyi,σi)∣∣ Ii j
∣∣

)
,

P(Ocm
i j | θmanyi,σi) = Binomial

(
Ocm

i j , Ncm
i , ∑

n∈Ii j

PL(n | “many”,Pi ; θmanyi,σi)∣∣ Ii j
∣∣

)
.

Here, Binomial(k,n, p) is the probability of observing k out of n coin tosses come
up heads when each toss has an (independent) chance p of coming up heads.

Using Bayes rule, we can therefore make inferences about credible parameter
values given the data that we observed:

P(θmanyi,θfewi,σi | Opm,Ocm ,Op f ,Oc f ) ∝ P(θmanyi,θfewi,σi) ·(10)

∏
j

P(Opm
i j | θmanyi,σi) ·P(Ocm

ji | θmanyi,σi) ·

∏
j

P(O
p f
i j | θfewi,σi) ·P(O

c f
ji | θfewi,σi) .

A few remarks about this latter formula. Firstly, we assume here that each item
has its own σi because uncertainty about the contextual distribution Pi might be
different for different items. If σi captures (mainly) uncertainty about Pi (like we
assume here), uncertainty in production and comprehension and for many and few
should be (roughly) equal. That is what (10) assumes.

Secondly, (10) also assumes that each item i has its own semantic threshold
values θmanyi and θfewi , contrary to the idea behind the CFK semantics that there is a
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uniform, fixed threshold value pair for all items. This is because we are interested in
testing whether this assumption is tenable: we would like to find out whether, given
our data and our model, it is plausible to maintain that there is a fixed pair of values
θmanyi and θfewi: estimating individual threshold values for each item, we look for
overlap in the individual estimates.

Thirdly, the formula above contains as a factor the joint prior probability
P(θmanyi,θfewi,σi) of parameter values θmanyi , θfewi and σi for each item i. Here, we
simply assume that θmanyi , θfewi and σi are independent of each other and that they
have uniform priors over a large-enough interval of a priori plausible values:

P(θmanyi,θfewi,σi) = Uniform[0;1](θmanyi) ·Uniform[0;1](θfewi) ·Uniform[0;10](σi) .

With this, we estimated posterior credible values of θmanyi , θfewi and σi with
JAGS (Plummer 2003). We collected 14,000 samples from 2 MCMC chains after a
burn-in of 3,000. This ensured convergence, as measured by R̂ (Gelman & Rubin
1992). Figure 5 shows the estimated 95% credible intervals for the marginalized
posteriors over θmanyi and θfewi for all items. A 95% credible interval is, intuitively
put, an interval of values that are sufficiently plausible to warrant belief in (cf.
Kruschke 2014). For example, a 95% credible interval for θmanyi of [0.6;0.8] for
some item i would tell us that, given our data from production and comprehension
and the assumption that our computational model is correct, we should be reasonably
certain that the true value of θmanyi is in [0.6;0.8]. (In other words, credible intervals
are what you would think they are; they are what confidence intervals are often
mistaken for.)

What we are interested in most is to compare these credible intervals across
items and to check whether we find an overlap between them. If the items’ credible
parameter values for θmanyi overlap on some interval, this interval is where a uniform
semantic threshold could be. By inspection of Figure 5, we see that there is no
interval that all credible intervals for θmanyi share; neither is there one that all credible
intervals for θfewi share. This would suggest that, when estimating the best fitting
θmanyi and θfewi for each item alone, there is no single value for either threshold that
is credible for all of our items. This would speak against the predictions of a uniform
CFK semantics.

On the other hand, it is not as if credible regions for semantic thresholds appear
to be completely scattered and entirely unsystematic either. If we allow for the
possibility that some of our items are outliers or troublemakers for some explicable
reason, a CFK semantics can still be defended. For few we find that the credible
intervals of 13 out of 15 items overlap in [0.001, 0.006] and that credible intervals of
10 items overlap substantially on a much bigger interval. For many, we find overlap
of credible intervals for 11 of 15 items in [0.74 , 0.76]. What this means is that our
model and our data suggest that a uniform CFK semantics is tenable for at least a
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Figure 5: Credible intervals for the estimated posteriors for θmanyi and θfewi .

majority of our items. We will consider possible explanations below as to why not
all items seem to support a uniform CFK semantics. From the point of view that
every model is wrong (including our computational model and the CFK semantics
itself), but some models can be tools to shed light on interesting aspects of reality,
we suggest that awareness about troublemaker cases and a reflection why they defy a
uniform CFK analysis is exactly what data-oriented computational modeling should
enable.

7 Discussion and conclusion

This paper tried to make a modest methodological contribution, exemplifying a po-
tential use of data-oriented computational modeling in formal semantics/pragmatics.
By measuring subjects’ prior expectations about real-world events experimentally,
we set out to test a proposal for a semantics of few and many that is hard to assess
introspectively. We showed how to couch the CFK semantics for few and many
in a probabilistic model for production and comprehension. With the help of this
model, we inferred semantic values from experimental data that aimed to measure
production and comprehension behavior.

From the point of view of our modeling approach, the question whether the
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CFK semantics is plausible can be answered with a definite “maybe.” We saw that
a substantial number of experimental items would lead us to believe in a range
of values for θmanyi and θfewi that would uniformly explain the production and
comprehension behavior observed for these items. This suggests that for these items
the CFK semantics makes correct predictions because we can find one common
threshold θfew and one θmany which together with the measured prior expectations
correctly predict how participants would use these quantifiers.

However, the same thresholds do not appear to be suitable for all of our items,
see Figure 5. We want to discuss two troublesome items that are conceptually
interesting. The first item (“Moving out”) deals with the age at which a man moves
out of his parents’ house, see (11).

(11) Roger is a man from the US. He lived with his parents for few/many years
before moving out.
How many years do you think Roger lived with his parents?

Figure 5 shows that the model infers thresholds that are very low in comparison
with the other items for both quantifiers. This might have been due to the fact that
participants were confused about the comparison class against which the evaluate the
meaning of the quantifiers. Because of the phrasing of item (11), at least two readings
are possible. Roger might have moved out of his parents’ house as a child or when
he had come of age. This assumption could be supported by the apparent variance in
answers in the production task (see Figure 3) as well as in the comprehension task
(see Figure 4).

These considerations point to a general problem. The CFK semantics assumes as
input a specification of P as the expectations in a suitable comparison class. There
can be severe uncertainty as to what the comparison class is. In real conversations,
comparison classes and the relevant distribution P would have to be inferred by
interpreters, alongside inferences about the quantity in question. This is not part
of our simple modeling approach, and points to extensions of our computational
model that include joint-inferences about multiple contextual unknowns (e.g. Bergen,
Levy & Goodman 2014; Kao et al. 2014). Such approaches would explain how
statements with vague few and many could carry information about a quantity of
interest and about the speaker’s expectations at the same time. An example of
conveying information about statistical expectations with a many statement is this:

(12) Joe eats 42 burgers a month on average. Wow! Even for a Texan / For a
self-proclaimed vegan, that’s a great many burgers.

Another item whose inferred threshold values appeared incompatible with that
of remaining items deals with a smoker’s cigarette consumption (“Cigarettes”).
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(13) Margaret is a woman from the US who smokes few/many cigarettes a day.
How many cigarettes do you think Margaret smokes a day?

For this item too, the model inferred threshold values that were very low, compared
to the prior expectations measured. Most people judged a sentence with few true
only for the lowest presented interval and true for a sentence with many for all of the
other intervals (see Figure 3). We see a very similar pattern in the interpretation data
in Figure 4. Maybe participants did not use the prior expectations as they did for
the other items. Since smoking has fallen in disrepute in the US, people might not
only use their plain “statistical” prior expectations when they form a judgment about
“few or many cigarettes.” They might factor in their moral expectations as well (cf.
Égré & Cova 2014). In principle, a CFK semantics is compatible with this idea. The
prior expectations P would not only have to be sensitive to statistical beliefs about,
in this case, actual number of cigarettes smoked, but also to a deontic dimension
about how many cigarettes should be smoked.

Taken together, uncertainty about how exactly to determine and measure prior
expectations P for a CFK semantics make it additionally hard to evaluate whether this
proposal is adequate. On the other hand, it would be exactly by more extensive data-
oriented computational modeling that the issues that came up here could be addressed
systematically. Models in which P is a product of several sources of information
(comparison classes, kinds of contextual expectations (statistical, deontic, absolute
cardinality, . . . )) could be formulated and tested with more careful designs aimed
to probe into the composition of P. This would enable testing whether there are
several kinds of cardinal readings, other than cardinal surprise readings, and equally,
whether proportional readings could similarly be accounted for as functions of
suitably constructed prior expectations. Allowing for such complexity, yet still
providing formally rigorous methods of accessing precise predictions, is exactly
why we believe that (probabilistic) computational modeling is a worthwhile addition
to the linguistic toolbox.

Beyond testing a CFK semantics for vague quantifiers few and many, the pre-
sented approach also opens further possibilities. Firstly, inference of latent thresholds
could naturally be applied beyond our example case of few and many. Context-
dependent threshold values are also assumed to form part of the semantics of gradable
adjectives (Kennedy & McNally 2005; Kennedy 2007) and of other vague quantifiers
like most (Hackl 2009). Computational models in combination with experimental
data put themselves forward as a promising method to investigate these phenomena
within a uniform framework.

Secondly, we can use probabilistic modeling to compare the CFK semantics
against alternatives. For example, a different account for the meaning of few and
many was proposed by Solt (2011). Here, the threshold is derived as a positive or
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negative deviation from the median of the comparison class. This theory can just as
well be couched in a probabilistic model and its predictions can then be compared
against the CFK semantics, using statistical model comparison.

Finally, it would be interesting to not only infer plausible threshold values but to
try to explain why we see the threshold values that we apparently see. Focusing on the
case of gradable adjectives, Lassiter & Goodman (2015) give a model that suggests
that threshold values are the result of pragmatic inferences; Franke (2012) and Qing
& Franke (2014) try to explain why particular threshold values are evolutionarily
optimal for successful communication. Testing these theoretical accounts with
data-driven inferences of credible thresholds would be a natural next step.
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A Experimental material

Items from the interpretation task; labels and intervals used in all three experiments.

(1) Basketball — Dave is an adult man from the US who went to see a game
of his favorite NBA basketball team and his team scored few/many points.
— How many points do you think Dave’s team made?
0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-100, 101-
110, 111-120, 121-130, 131-140, 141 or more

(2) Book pages — A friend’s favorite book has been published only recently
and has few/many pages. — How many pages do you think the book has?
0-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-
450, 451-500, 501-550, 551-600, 601-650, 651-700, 701 or more

(3) Burger — Joseph is a man from the US who eats few/many burgers. —
How many burgers do you think Joseph eats a month?
0-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36,
37-39, 40-42, 43 or more
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(4) Cigarettes — Margaret is a woman from the US who smokes few/many
cigarettes a day. — How many cigarettes do you think Margaret smokes a
day?
0-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36,
37-39, 40-42, 43 or more

(5) Eating time — Lisa is a woman from the US who spends few/many minutes
of her day eating. — How many minutes do you think Lisa spends eating
every day?
0-13, 14-26, 27-39, 40-52, 53-65, 66-78, 79-91, 92-104, 105-117, 118-130,
131-143, 144-156, 157-159, 160-172, 173 or more

(6) Education time — Sue is a woman from the US who went to school for
few/many years. — How many years do you think Sue went to school?
0-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24,
25-26, 27-28, 29 or more

(7) Girlfriends — Ben is an adult man from the US who had few/many girl-
friends before he got married. — How many girlfriends do you think Ben
had before he got married?
0-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24,
25-26, 27-28, 29 or more

(8) Hairdresser’s — Cindy is a woman from the US who goes to the hair-
dresser’s few/many times. — How many times a year do you think Cindy
goes to the hairdresser’s?
0-4, 5-8, 9-12, 13-16, 17-20, 21-24, 25-28, 29-32, 33-36, 37-40, 41-44,
45-48, 49-52, 53-56, 57 or more

(9) Children — John is a man from the US who has few/many children. —
How many children do you think John has?
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14 or more

(10) Cinema — Sally is a woman from the US who saw few/many movies in
the cinema last year. — How many movies do you think Sally saw in the
cinema last year?
0-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36,
37-39, 40-42, 43 or more

(11) Moving out — Roger is a man from the US. He lived with his parents for
few/many years before moving out. — How many years do you think Roger
lived with his parents?
0-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36,
37-39, 40-42, 43 or more

(12) Poem lines — A friend wants to read her favorite poem to you which has
few/many lines. — How many lines do you think the poem has?
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0-5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55,
56-60, 61-65, 66-70, 71 or more

(13) Shoes — Linda is a woman from the US who owns few/many pairs of shoes.
— How many pairs of shoes do you think Linda owns?
0-4, 5-8, 9-12, 13-16, 17-20, 21-24, 25-28, 29-32, 33-36, 37-40, 41-44,
45-48, 49-52, 53-56, 57 or more

(14) Commute — Tom is an adult man from the US who spends few/many
minutes a day traveling to work. — How many minutes a day do you think
Tom spends traveling to work?
0-6, 7-13, 14-20, 21-27, 28-34, 35-41, 42-48, 49-55, 56-62, 63-69, 70-76,
77-83, 84-90, 91-97, 98 or more

(15) TV — Frank is an adult man from the US who spends few/many hours a
week watching TV. — How many hours a week do you think Frank spends
watching TV?
0-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36,
37-39, 40-42, 43 or more
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