Surprisingly: Marker of Surprise Readings or Intensifier?

Anthea Schöller and Michael Franke
(anthea.schoeller@uni-tuebingen.de, mchfranke@gmail.com)
Department of Linguistics, Wilhelmstraße 19
72074 Tübingen, Germany

Abstract

We investigate the influence of the adverb surprisingly on the meaning of the quantity words few and many, which themselves have been associated with a reading expressing surprise. To learn about the meaning contribution of “surprise”, we compare surprisingly with the intensifier incredibly and a compared to phrase explicitly marking surprise. Based on an empirical measure of subjects’ expectations about everyday events, a Bayesian model uses data from a sentence judgment task to infer likely levels of surprise associated with the different constructions of interest.

Keywords: intensifier, surprise, computational modeling, few, many, surprisingly

Introduction

A long tradition in psychology has acknowledged the role of prior expectations in the use of vague and context-dependent expressions like tall, heavy, few and many (e.g., Clark, 1991; Sanford, Moxey, & Paterson, 1994). Fernando and Kamp (1996) spell out a semantic theory which makes the truth conditions of few and many depend on prior expectations. So-called “cardinal surprise readings” convey that a cardinality is smaller or greater than what is expected for the situation:

1. For a man from the US, Chris saw few/many movies last year. \(\sim\) Chris saw less/more movies than expected for a US male.

Such a surprise-based account raises interesting questions. First, how can expected cardinalities be distinguished from surprising ones? Fernando and Kamp (1996) stipulate that the lexical meanings of few and many comprise contextually-stable thresholds \(\theta_{\text{few}}\) and \(\theta_{\text{many}}\) which operate on a contextually-variable representation of a priori expectations. Second, if sentences with few and many express that a cardinality is surprising anyway, are they different from sentences in which the surprise element is overtly marked? The surprise reading can be made salient by a compared to phrase (2) or by modifying few and many with an adverb like surprisingly (3).

2. Compared to what you would expect for a man from the US, Chris saw few / many movies last year.
3. For a man from the US, Chris saw surprisingly few / many movies last year.

If surprise were the single factor which determines truth conditions of the cardinal surprise reading, we should not find a meaning difference between (1) and the overtly marked surprise reading in (2) and (3). Alternatively, it could be hypothesized that surprisingly in (3) acts not as a marker of surprise but as an intensifier, yielding a higher \(\theta_{\text{surpr} _ \text{many}}\) than \(\theta_{\text{many}}\) and a lower \(\theta_{\text{surpr} _ \text{few}}\) than \(\theta_{\text{few}}\). The pragmatic theory of intensifiers by Bennett and Goodman (2015) would predict that surprisingly has very similar effects to incredibly (see below).

We set out to experimentally test the influence of the modifiers surprisingly, incredibly and compared to on the threshold values predicted for Fernando and Kamp (1996)’s surprise readings of few and many. We employ linear mixed effects regression to compare judgment data and a computational model to infer said thresholds from our data.

A Surprise-based Semantics for few and many

Partee (1989) characterized cardinal many as describing cardinalities which are at least \(x_{\text{min}}\), where \(x_{\text{min}}\) is a large number, and few as describing cardinalities which are at most \(x_{\text{max}}\), where \(x_{\text{max}}\) is a small number, see (4).

4. **Cardinal reading of “Few/Many As are B”**

\[
\text{Few: } |A \cap B| \leq x_{\text{max}} \quad \text{Many: } |A \cap B| \geq x_{\text{min}}
\]

One concrete proposal of how \(x_{\text{min}}\) and \(x_{\text{max}}\) might be identified is presented by Fernando and Kamp (1996). The “cardinal surprise reading” of few and many in sentences like (1) is an intentional comparison between the actual number of movies Chris saw last year and a probabilistic belief \(P_k\) about the expected number of watched movies in some contextually provided comparison class. The for-phrase in (1) triggers a comparison class of US males. The prior expectation \(P_k\) is highly context-dependent. In contrast, \(\theta_{\text{few}}\) and \(\theta_{\text{many}}\) are context-independent. They are fixed thresholds on the cumulative distribution of \(P_k\). Truth conditions of the surprise reading of sentences like (1) are given in (5).

5. **a. [Few As are B] \equiv 1 \text{ iff } |A \cap B| \leq x_{\text{max}} \text{ where } x_{\text{max}} = \max \{n \in \mathbb{N} \mid P_k(|A \cap B| \leq n) < \theta_{\text{few}}\}**
 b. [Many As are B] \equiv 1 \text{ iff } |A \cap B| \geq x_{\text{min}} \text{ where } x_{\text{min}} = \min \{n \in \mathbb{N} \mid P_k(|A \cap B| \leq n) > \theta_{\text{many}}\}

From (5b), entities which have properties \(A\) and \(B\) can be described as “many” if their cardinality is at least \(x_{\text{min}}\). \(x_{\text{min}}\) is the lowest number for which the cumulative density mass of prior expectation \(P_k\) about the number of \(A\) with property \(B\) is higher than the threshold \(\theta_{\text{many}}\). In other words, “Many As are B” is a true description of cardinalities which are surprisingly high with respect to the contextually given \(P_k\) and the context-independent threshold \(\theta_{\text{many}}\) on \(P_k\).

To illustrate, consider the example in Figure 1 for the many-sentence in (1). Prior expectations \(P_k\) could look like in Figure 1a: they would assign a probability to any natural number \(n\), indicating how likely we think it is that Chris saw \(n\)
experimental data and test them with a computational model which infers these thresholds on the basis of experimental data.

Surprisingly: Intensifier or Marker of Surprise?

Two views are prima facie plausible for the meaning contribution of the adverb surprisingly. On the one hand, surprisingly can be taken to intensify the meaning of few and many just like other intensifiers like incredibly or very do. As a result, surprisingly many might be associated with a threshold $\theta_{\text{surpr. many}}$ higher than θ_{many}. The contrasting view is to classify surprisingly as a marker of the surprise reading, which overtly marks that truth-conditions must draw on a threshold on a measure of surprise. This view is supported by the semantic literature which suggests that “being surprisingly tall comes to mean taller than expected” (Nouwen, 2011, 154).

Note that our hypotheses for surprisingly apply to sentences with a salient cardinal surprise reading and a restricted comparison class. To discriminate between the two views on surprisingly, we deduce two experimentally testable hypotheses. Another two auxiliary hypotheses are tested alongside to complement our understanding of modified few and many, see Table 1. In what follows, we spell out these general hypotheses in terms of their predictions about the threshold values θ_{few} and θ_{many} as assumed by Fernando and Kamp (1996) and test them with a computational model which infers these threshold values on the basis of experimental data.

Salient surprise reading. We cannot exclude that few and many may also denote a small or large cardinality, independent of prior expectations. To test the auxiliary assumption that the most salient readings of our experimental test sentences (see Appendix) are cardinal surprise readings given the comparison class for which we measure subjects’ prior expectations (see below), we contrast sentences with bare few and many with sentences modified by the compared to phrase in (2) which makes the relevant expectations overt. It is necessary to test this because if few and many did not have the intended surprise reading, differences between few/many and surprisingly few/many could be due to different readings and possibly different threshold values associated with them. Alongside few and many’s intrinsic surprise reading, we test another related assumption: the for- phrase used to mark the comparison class triggers the same prior expectations P_E as the compared to phrase which openly addresses expectations, see (7).

Marker of surprise. If the function of surprisingly is to mark a cardinal surprise reading, thresholds are the same as for unmodified few/many, where these cardinal surprise readings are most salient anyway (see above). Furthermore, sentences with surprisingly should not be different from sentences with compared to, as in (2).

Intensifier. Modification by surprisingly raises the threshold of many and makes it applicable to a smaller range of cardinalities, resulting in a stronger statement than the alternative with bare many. Few’s threshold decreases.

Bennett & Goodman. The intensifier hypothesis is in line with work by Bennett and Goodman (2015) who explain the
strength of an intensifying degree adverb as “pragmatic inference based on differing cost [(their length and frequency)] rather than differing semantics” (p. 1). However, they do not test surprisingly. From the adverbs tested by Bennett and Goodman (2015), incredibly comes closest to surprisingly, as they have the same number of syllables and the most similar frequency in an updated version of the corpus Bennett and Goodman (2015) used, the Google Web 1 T 5grams corpus (4,987,059 occurrences as compared to 4,373,670 occurrences of surprisingly). Following Bennett and Goodman (2015), we hypothesize that the thresholds of surprisingly few/many are roughly the same as for incredibly few/many.

Experiments

To test the hypotheses in Table 1, two experiments were conducted to gather acceptability ratings of sentences with (modified) few and many and to measure participants’ prior expectations. Prior expectations will be input to the computational model, which is presented in the next section.

Experiment 1: Prior elicitation

Design. To get an empirical estimate of participants’ prior expectations, we used a binned histogram task. Participants saw descriptions of a context as in (6a) and a question as in (6b). Subjects were presented with 15 intervals, whose ranges were determined by a pre-test (in which we asked for the most likely, lowest and highest possible cardinality). Subjects rated the likelihood that the true value lies in each of the intervals, by adjusting a slider labeled from “extremely unlikely” to “extremely likely.” For example, they would adjust a slider each for the probability that Chris saw 0–2, 3–5, . . . , 39–41 or more than 42 movies last year.

(6) Prior elicitation example

a. BACKGROUND: Chris is a man from the US.

b. How many movies do you think he saw last year?

Participants. 80 subjects were recruited via Amazon’s Mechanical Turk with US-IP addresses.

Materials & Procedure. After reading instructions, each subject saw all of the 14 experimental items (see Appendix), one after another. For each item, the 15 intervals were presented horizontally on the screen and paired with a vertical slider. Participants had to adjust or at least click on each slider before being able to proceed.

Results. Two participants were excluded for not being native speakers of English. For each item, each participant’s ratings were normalized and these normalized ratings were then averaged across participants. We understand these probability distributions P_F, see Figure 2, as approximations of the beliefs held in the population (Franke et al., 2016).

Experiment 2: Judgment task

Design. In a binary judgment task we measured acceptance of sentences with few and many with and without modifiers (surprisingly, incredibly or compared to). Participants were presented with a context which introduced a situation and an interval as in (7a). The interval was randomly chosen from 8 of the 15 intervals from the prior elicitation task (see Appendix). We presented only four low intervals for few and four high intervals for many to avoid a large number of combinations. The context was described by a statement as in (7b) which contained either few or many. We elicited data of four groups of participants which each saw a different modifier.

(7) Production study example

a. CONTEXT: Chris is a man from the US who saw [0–2 | 6–8 | . . . | 42 or more] movies last year.

b. STATEMENT: [For | Compared to what you would expect for] a man from the US, Chris saw [–| surprisingly | incredibly] |few | many] movies last year.

Materials & Procedure. Each participant was randomly assigned to one modifier condition (unmodified, compared to construction, surprisingly, incredibly). After reading a short explanation of the task, each subject saw all of the 14 contexts from the Appendix one after another in random order. Sentences with unmodified few and many or incredibly or surprisingly were introduced by a for-phrase which made the intended comparison class overt. The fourth group saw a compared to phrase which additionally made expectations salient. For each context, a quantity word and one of its four associated intervals were assigned randomly. Participants had to click on one of two radio buttons labeled with TRUE or FALSE before being able to proceed to the next item.

Participants. We recruited 787 participants with US-IP addresses via Amazon’s Mechanical Turk, among them 301 participants in the unmodified condition and 162 participants.
each in the other three conditions. The unmodified condition had more participants because it was part of a previous experiment in which we presented 8 of 15 intervals for both few and many. For the analysis only data from those intervals presented in the other three conditions was used.

Results. Data was excluded of 25 participants who reported not to be native speakers of English or to not having understood the task. Figure 3 shows the proportion of true answers.

For each of the quantity words few and many we specified a linear mixed effects regression model predicting the proportional acceptance of statements as in (7b). During a guided search through the model space, we started out with a model containing only the random effect item and added fixed effects if this significantly increased the model’s fit to the data (measured by AIC).

For *many*, the final model includes the fixed effects interval and modifier and their interaction. Significantly more participants accepted the statements for higher intervals ($\beta = 0.02, SE = 0.007, p < 0.01$). The modification of *many* by *surprisingly* leads to a lower acceptance ($\beta = -0.59, SE = 0.12, p < 0.001$) than of sentences with unmodified *many*. This suggests that *surprisingly* intensifies the meaning of *many*. The same is the case for sentences with *incredibly*, which were also rated lower than unmodified *many* ($\beta = -0.53, SE = 0.12, p < 0.001$). There is no difference between sentences with *compared to* phrase and unmodified *many* ($\beta = -0.17, SE = 0.12, p < 0.15$), which suggests that *many* receives a surprise reading in both cases. *Surprisingly* and *compared to* are rated significantly different
This is a degenerate probabilistic rule because it maps the ap-
where parallel. Straightforwardly, (5) translates into a probabilis-
focus on data. We estimate the a posteriori credible threshold values
of threshold values P values, given the likelihood function and a prior:
probability of seeing a particular experimental observation.
parameters, whose values will be estimated to fit experimental data.
The model specifies a likelihood function $P($Observation | $\theta_{i[many]}$, $\theta_{i[few]}$) which assigns to values of latent parameters a probability of seeing a particular experimental observation. Bayesian inference is one way to infer plausible threshold values, given the likelihood function and a prior:

$$P(\theta_{i[many]} | \theta_{i[few]} | O) \propto P(\theta_{i[many]}, \theta_{i[few]} | O)P(O | \theta_{i[many]}, \theta_{i[few]})$$

Our goal, then, is to see for each modifier which pairs of threshold values $\theta_{i[many]}$ and $\theta_{i[few]}$ are likely given the data. We estimate the a posteriori credible threshold values and compare how similar they are across conditions. We focus on many in the exposition, but the case for few is parallel. Straightforwardly, (5) translates into a probabilistic rule $P(\text{"[modifier] } i \text{ many" } | n, P_b ; \theta_{i[many]} , \sigma_j) = \delta_{n\geq\text{ xmin,i}},$
where xmin,i is derived from P_b, as in (5), based on $\theta_{i[many]}$. This is a degenerate probabilistic rule because it maps the applicability of "many" to 0 and 1 only. To allow for noise, we look at a parameterized, smoothed-out version.

$$P(\text{"[i] many" } | n, P_b ; \theta_{i[many]}, \sigma_j) = \sum_{k=0}^{n} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \mathcal{N}(y; \text{ xmin,i}, \sigma_j)dy$$

For few, the final model, obtained by the same procedure, includes the fixed effects INTERVAL and MODIFIER. The proportion of participants accepting the statement is significantly lower for higher numbers ($\beta = -0.12, SE = 0.004, p < 0.001$). Among the modifiers only incredibly is significantly different from bare few ($\beta = -0.05, SE = 0.02, p < 0.05$); for surprisingly and compared to this is not the case. No significant difference between surprisingly and compared to is found, but incredibly is rated significantly lower than surprisingly ($\beta = -0.05, SE = 0.02, p < 0.05$).

These results are expected under the “salient surprise reading” hypothesis. While surprisingly seems to behave like an intensifier for many, for few it seems to redundantly mark surpr.

Computational Model

The regression models reported above include a random effect for items but do not constrain these to reflect prior expectations. Moreover, regression models do not predict judgments as a function of thresholds on expectations. It is therefore insightful to complement regression modeling with an explicit theory-driven model of a possible data-generating process. The model makes empirical measurements prior expectations as input and treats $\theta_{i[many]}$ and $\theta_{i[few]}$ for each modifier condition i (unmodified, surprisingly, incredibly, compared to) as latent parameters, whose values will be estimated to fit experimental data.

The model specifies a likelihood function $P($Observation | $\theta_{i[many]}$, $\theta_{i[few]}$) which assigns to values of latent parameters a probability of seeing a particular experimental observation. Bayesian inference is one way to infer plausible threshold values, given the likelihood function and a prior:

$$P(\theta_{i[many]} | \theta_{i[few]} | O) \propto P(\theta_{i[many]}, \theta_{i[few]} | O)P(O | \theta_{i[many]}, \theta_{i[few]})$$

Our goal, then, is to see for each modifier which pairs of threshold values $\theta_{i[many]}$ and $\theta_{i[few]}$ are likely given the data. We estimate the a posteriori credible threshold values and compare how similar they are across conditions. We focus on many in the exposition, but the case for few is parallel. Straightforwardly, (5) translates into a probabilistic rule $P(\text{"[modifier] } i \text{ many" } | n, P_b ; \theta_{i[many]} , \sigma_j) = \delta_{n\geq\text{ xmin,i}},$
where xmin,i is derived from P_b, as in (5), based on $\theta_{i[many]}$. This is a degenerate probabilistic rule because it maps the applicability of "many" to 0 and 1 only. To allow for noise, we look at a parameterized, smoothed-out version.

$$P(\text{"[i] many" } | n, P_b ; \theta_{i[many]}, \sigma_j) = \sum_{k=0}^{n} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \mathcal{N}(y; \text{ xmin,i}, \sigma_j)dy$$

Here, σ_j is another free model parameter that regulates the steepness of the curve, and $\mathcal{N}(y; \text{ xmin,i}, \sigma_j)$ is the probability density of y under a normal distribution with mean xmin,i and standard deviation σ_j. This rule predicts noisy acceptability ratings under a surprise-based semantics where the amount of noise is controlled by σ_j, see Figure 1c. Noise can be caused by uncertainty about the exact shape of P_b and the amount of uncertainty differs across contexts. This is why we allow an individual value of σ_j for each context j. Furthermore, we assume that the parameter values $\theta_{i[many]}$, $\theta_{i[few]}$ and σ_j are independent of each other and that they have uniform priors over an interval that is large enough to accommodate a range of plausible values without weighting them.

$$P(\theta_{i[many]}, \theta_{i[few]} | \sigma_j) = \text{Uniform}[0.1](\theta_{i[many]}); \text{Uniform}[0,10](\theta_{i[few]}); \text{Uniform}[0,1](\sigma_j)$$

To approximate the joint posterior distribution, we used MCMC sampling, as implemented in JAGS (Plummer, 2003). We collected 10,000 samples from 2 MCMC chains after a burn-in of 10,000. This ensured convergence, as measured by \hat{R} (Gelman & Rubin, 1992). Figure 4 shows the estimated 95% credible intervals for the marginalized posteriors over thresholds per modifier. Where intervals (clearly) do not overlap, there is reason to believe that thresholds differ. For example, $\theta_{\text{surpr.many}} \in [0.863, 0.903]$ tells us that surprisingly many describes cardinals which are higher than at least 86% of the cumulative density mass of P_b. This threshold is higher than bare many’s, $\theta_{\text{many}} \in [0.657, 0.701]$. Taken together, the model predicts that surprisingly many is restricted to describe higher cardinalities than unmodified many.

Discussion and Conclusions

Table 1 summarizes the results from regression and theory-driven modeling. The data supports the “salient surprise reading” hypothesis assumed by Fernando and Kamp (1996) and suggests that an expectation-based reading is the canonical interpretation of cardinal few and many in our test sentences. There is no difference between unmodified sentences and sentences in which expectations are made salient by a compared to phrase.

Figure 4: Estimated 95% credible intervals for $\theta_{\text{few,i}}$ & $\theta_{\text{many,i}}$.
For intriguingly, the picture is less clear. Sentences with many provide support for the "intensifier" hypothesis. Speakers prefer it for higher cardinalities than those which render unmodified many or sentences with a compared to construction true. Furthermore, we do not find a difference with incredibly. When combined with few, however, surprisingly does not appear to be an intensifier. Sentences with few, surprisingly few and compared to are rated equally, speaking in favor of a "marker of surprise" hypothesis. For the comparison between surprisingly and incredibly, we get conflicting results from the regression and the theory-driven model. The regression analysis finds that incredibly few is rated lower than surprisingly few, but the computational model identifies an overlap in the estimated credible intervals. However, we want to once more stress that we are here comparing conclusions based on models which are decidedly different. Whereas the computational model is theory-driven and includes experimentally measured prior expectations, the regression model only looks at numerical differences in the ratings. Ultimately, we believe in the computational model. Keeping in mind that few only applies to small cardinalities, the lack of a difference could also be due to a floor effect. This is where future research should tie in. Few should be presented in contexts like book or facebook, in which large cardinalities are plausible and few can operate away from 0. Additionally, the presented intervals should be more fine-grained. A follow-up study as well as further discussion of the semantic differences between few and many are presented in Schöller (2017).

Acknowledgments

MF and AS’s work was supported by the Priority Program XPrag.de (DFG Schwerpunktprogramm 1727). MF’s work was supported by the Institutional Strategy of the University of Tübingen (DFG, ZUK 63).

Experimental material

1. book — A friend’s favorite book has been published only recently and has [0-40, 81-120, 161-200, 241-280, 321-360, 401-440, 481-520, 560 or more] pages.
2. bus — Vehicle No. 102 is a school bus (which has seats for [0-4, 10-14, 20-24, 30-34, 40-44, 50-54, 60-64, 70 or more] passengers).
3. calls — Lisa is a woman from the US (who made [0-4, 10-14, 20-24, 30-34, 40-44, 50-54, 60-64, 70 or more] phone calls last week).
4. class — Erin is a first grade student in primary school. (There are [0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] children in Erin’s class.)
5. coffee — Andy is man from the US (who drank [0-1, 4-5, 8-9, 12-13, 16-17, 20-21, 24-25, 28 or more] cups of coffee last week).
6. cook — Tony is a man from the US (who cooked himself [0-3, 8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] meals at home last month).
7. facebook — Judith is a woman from the US (who has [0-69, 140-209, 280-349, 420-489, 560-629, 700-769, 840-909, 980 or more] Facebook friends).
8. friends — Lelia is a woman from the US (who has [0-1, 4-5, 8-9, 12-13, 16-17, 20-21, 24-25, 28 or more] friends).
9. hair — Betty is a woman from the US (who washed her hair [0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] times last month).
10. movie — Chris is a man from the US (who saw [0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] movies last year).
11. poem — A friend wants to read you her favorite poem (which has [0-3, 8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] lines).
12. restaurants — Sarah is a woman from the US (who went to [0-3, 8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] restaurants last year).
13. shoes — Melanie is a woman from the US (who owns [0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] pairs of shoes).
14. t-shirts — Liam is a man from the US (who has [0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] T-shirts).

References