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Abstract. Vagueness is a pervasive feature of natural languages that is challeng-
ing semantic theories and theories of language evolution alike. We focus here
on the latter, addressing the challenge of how to account for the emergence of
vague meanings in signaling game models of language evolution. We suggest that
vagueness is a natural property of meaning that evolves when boundedly rational
agents repeatedly engage in cooperative signaling.
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1 Introduction

Much of what is said in natural language is vague, and members of almost any lex-
ical category can be vague. The question that naturally arises is why vagueness is so
ubiquitous in natural languages. This paper tries to give an answer to this question by
investigating under which circumstances evolutionary processes that are traditionally
consulted to explain the emergence of linguistic meaning give rise to “vague meanings”
as opposed to “crisp ones”. Before all, let us first make clear what we mean when we
speak of vagueness in natural language meaning.

Traditional truth-conditional semantics assumes a principle of bivalence: either a
given individual has a given property, or it does not. But vague predicates challenge
this appealing picture, in that so-called borderline cases seemingly necessitate a third
option. For example, even if we are competent speakers of English who know that
John’s height is precisely 180 cm, we may not know whether the sentence “John is tall”
is therefore true or false. It may either be that this sentence has no unique, objective
bivalent truth value, or it may be that it does but that we do not know it, and perhaps
cannot know it for principled reasons. Although there is no consensus in the literature
about the metaphysical status of borderline cases, it is nonetheless widely assumed
that the existence of borderline cases, while possibly being a necessary condition for
vagueness, is not a sufficient one (c.f. [33,19]): for a predicate to be truly vague it seems
that not only should it have borderline cases, but also there should be borderline cases
of borderline cases, and so on. In other words, genuine vagueness is constituted not
by first-order vagueness alone but by higher-order vagueness with completely blurred
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Fig. 1: Crisp and vague denotations, schematically

boundaries. In rough terms, if P is a one-placed predicate and if P is its negation, then
we would say that these predicates have crisp denotations if they split a domain of
individuals like shown on the left in Figure 1; existence of a borderline case would
look somewhat like in the middle; higher-order vagueness would amount to a gradual
blending of categories as depicted on the right.

This paper would like to suggest a naturalistic explanation of why and when natural
language meanings have vague meanings of this kind. Towards such an explanation, we
look at signaling games that were first defined by David Lewis [21] and that have since
found good use in modeling the evolution of language (c.f. [29,13,34]). In particular,
signaling models are usually employed to demonstrate how linguistic meaning arises
from behavioral patterns, which are in turn emerging from repeated interaction in a
population of agents. We are interested then in a set of prima facie plausible conditions
under which a population of signalers converges on a vague code. These conditions
would then constitute part of a causal explanation for vagueness: it is because of these
conditions that (otherwise standard) evolutionary processes lead to vagueness.

Interestingly, a general account of vagueness in terms of the evolution of signaling
conventions confronts us with a technical problem. Roughly put, mainstream solution
concepts predict that the emerging meaning in adequately defined signaling games will
be crisp, because this is more efficient and therefore selected for by rationality and
evolutionary optimization alike. The main technical question that this paper adresses
is therefore: under what reasonable (but conservative) changes to the signaling games
framework do vague meanings arise? We focus on models in which signaling agents
are boundedly rational to some degree, i.e., models which impose some limitations
on agents’ information processing capabilities. More concretely, we show that vague
meanings arise from signaling under two conditions: (i) when agents play rationally but
have limited memory, and (ii) when agents plays stochastically rational due to certain
imprecisions in assessing fully optimal play.

The paper is organized as follows. Section 2 introduces the signaling games ap-
proach to language evolution and discusses the above mentioned problem that opti-
mization should irrevocably lead to crisp denotations. Section 3 reflects on a number
of conceptually plausible explanations for why language might be vague despite this
apparent non-optimality. Section 4 then gives a model where the signaling agents play
rationally but have only a finite memory of past encounters. Section 5 finally gives a
model in which vague meanings arise because the agents’ perception of the signaling
situation is “noisy” (in a sense to be made clear later on).
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2 Signaling games and the Suboptimality of Vagueness

Signaling Games. A signaling game is an extensive game of imperfect information
between a sender S and a receiver R. S observes the actual state t ∈ T , but R only
knows that state t ∈ T occurs with probability Pr(t) > 0. S can send a message m ∈ M
to R, after the observation of which R needs to choose an action a ∈ A. The utilities
of players US ,R : T × M × A → R map each outcome, i.e., each triple 〈t,m, a〉 that
constitutes one round of playing the game, to a numeric payoff for both players.

We will look in particular at two kinds of signaling games in this paper. The first
one is what we call signaling games for type matching and will mainly be used to
illustrate basic concepts for better understanding. In type-matching games, players are
cooperative, signaling is costless and play is successful if and only if the receiver’s
action matches the sender’s private information. More concretely, these games have
T = A and utilities US ,R(t,m, t′) = 1 if t = t′ and 0 otherwise. We also conveniently
assume throughout that |M| = |T | and Pr(t) = Pr(t′) for all t, t′ ∈ T .

When it comes to explaining how higher-order vagueness can arise in natural lan-
guage meaning, it is not reasonable to call on signaling games for type matching with
their crude all-or-nothing utility structure. Rather we will look at what we call here
signaling games for similarity maximizing, or, for short, sim-max signaling games. In
these games, success in communication is a matter of degree, indeed, a matter of how
closely the receiver’s action matches the sender’s private information. Technically, we
again require T = A, but we now assume that the state space T comes with a suitable
objective similarity measure proportional to which utilities are defined. To keep matters
simple, we will assume within this paper that T ⊆ [0; 1] is a (usually: finite) subset of
the unit interval, and that US ,R(t,m, t′) is identified with the similarity between t and t′,
which in turn is given by a Gaussian function of their Euclidean distance:

sim(t, t′) = exp
(−(t − t′)2

2σ2

)
. (1)

Equilibrium Solutions. Agents’ behavior is captured in terms of strategies. A pure
sender strategy s is a function from T to M that specifies which messages S would
send in each state. Similarly, a pure receiver strategy r is a function from M to A that
specifies how R would react to each message. Mixed strategies, denoted by σ and ρ
respectively, are functions from choice points to probability distributions over action
choices: σ : T → ∆(M) and ρ : M → ∆(A). The expected utility for i ∈ {S ,R} of
playing mixed strategies σ and ρ against each other is defined as:

EUi(σ, ρ) =
∑
t∈T

∑
m∈M

∑
a∈A

Pr(t) × σ(m | t) × ρ(a | m) × Ui(t,m, a) .

A (mixed) Nash equilibrium (ne) of a signaling game is a pair of (mixed) strategies
〈σ∗, ρ∗〉 where neither agent would gain from unilateral deviation. Thus, 〈σ∗, ρ∗〉 is an
ne iff ¬∃σ : EUS (σ, ρ∗) > EUS (σ∗, ρ∗) and ¬∃ρ : EUR(σ∗, ρ) > EUR(σ∗, ρ∗). An ne is
strict if any unilateral deviation strictly diminishes the deviating agent’s expected utility.
Strict nes are stable resting points of gradual processes of bi-lateral optimization.
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Emergent Meaning. Lewis famously argued that strict nes of signaling games for type
matching can be seen as endowing initially meaningless signals with a behaviorally-
grounded meaning ([21]). In general, any mixed strategy profile 〈σ, ρ〉 for any given
signaling game determines how signals are used by the sender to describe states (via
σ), and how the receiver interprets these (via ρ). We therefore define the descriptive
meaning of an expression m, Fσ(m) ∈ ∆(T ), as the likelihood of states given m and σ,
and the imperative meaning of m, Fρ(m) ∈ ∆(A), as the probability of actions given m
and ρ:

Fσ(m, t) =
σ(m | t′)∑

t′∈T σ(m | t′) Fρ(m, a) = ρ(a |m) .

Of course, we are particularly interested in the (descriptive and imperative) meanings
that the strict nes of a game give rise to. So, for a concrete example, consider a simple
signaling game for type matching with two states T = {t1, t2} and two messages M =

{m1,m2}. This game has only two strict nes, which are given by the only two bijections
from T to M as the sender strategy, and the respective inverses thereof as the receiver
strategy. In both nes descriptive and imperative meaning coincide, as each message
comes to denote a unique state, both descriptively and imperatively. In other words, we
find exactly two stable “languages” here, characterized by: Fσ,ρ(mi) = tk and Fσ,ρ(mj) =

tl, where i, j, k, l ∈ {1, 2}, i , j and k , j.

Emergent Vagueness? In the previous example, evolved meanings are crisp, not vague:
there is no overlap between denotations, no borderline cases, just a clear meaning dis-
tinction between messages with disjoint denotations. This is generally the case: it is
easy to see that the strict nes of type matching games, as defined here, never give rise
to vague meanings with (partially, gradually) overlapping denotations. It is tempting to
think that this should be different for sim-max games, where the state space is contin-
uously ordered by objective similarity, and where thus continuous category transitions
seem prima facie plausible. But this is not so. Sim-max games have been studied by,
inter alia, [18], [16] and [17] where it is shown that in all strict nes of these games (a)
the imperative meanings of the signals are singular prototypes, i.e., designated singular
points of the type space that best represent a signal’s meaning, and (b) the indicative
meanings are the Voronoi tesselations that are induced by these prototypes.

These results for sim-max games are to a large extent very encouraging because they
directly correspond to several findings of cognitive semantics (cf. [8]), but it is nowhere
near an account of vagueness. For that we would like to see “blurry tesselations” with
gradual prototypicality and gradual category membership. Douven et al. ([4]) essen-
tially consider the same problem when they try to integrate vagueness into the con-
ceptual spaces framework of [8]. They do so by constructing tesselations with thick
but precise category boundaries from extended but precise prototype regions. Our ap-
proach is in a sense more ambitious. Firstly, we would also like to include gradation in
prototypicality and category membership, so as to capture higher-order vagueness. Sec-
ondly, we would also like to derive “blurry tesselations” —as opposed to mathematical
construction— from properties of linguistic interaction.
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The Suboptimality of Vagueness. There is, however, a considerable conceptual obstacle:
as the above examples already demonstrated, it holds quite in general that standard
models of optimal choice preclude vagueness. In a nutshell, the problem is this (Lipman
presents a slightly different, more precise formulation in [22]). Firstly, notice that any
pure sender strategy will always give rise to a descriptive meaning with sharp, non-
vague boundaries. So, in order to see vagueness emerge, we would minimally need a
case where a non-degenerate3 mixed sender strategy is part of a strict ne. But, secondly,
it is also easy to see that no non-degenerate mixed strategy is ever strictly better than
any of the pure strategies in its support. Phrased the other way around, strict nes will
contain only pure strategies. But that means that a vague language, captured in terms
a non-degenerate strategies, is never a stable outcome of evolutionary optimization.
As Lipman puts it: vagueness cannot have an advantage over precision and, except in
unusual cases, will be strictly worse.

3 Re-Rationalizing Vagueness

Lipman’s argument implies that we need to rethink some of the implicit assumptions
encoded in the signaling game approach to language evolution if we want to explain
how vague meanings can emerge from signaling interaction. Any changes to the model
should of course be backed up by some reasonable intuition concerning the origin and,
perhaps, the benefit of vagueness in language. Fortunately, such intuitions abound, and
we should review some relevant proposals.

To begin with, it is sometimes argued that it is useful to have vague predicates like
‘tall’ in our language, because it allows us to use language in a flexible way. Obviously,
‘tall’ means something different with respect to men than with respect to basketball
players. So, ‘tall’ has a very flexible meaning. This does not show, however, that vague-
ness is useful: vagueness is not the same as context-dependence, and the argument is
consistent with ‘tall’ having a precise meaning in each context.

Some argue that our vague, or indirect, use of language might be strategically opti-
mal given that some of our messages be diversely interpretable by cooperative and non-
cooperative participants. Indeed, using game theoretical ideas one can show (e.g. [27],
[15], [1]) that once the preferences of speaker and listener are not completely aligned,
we can sometimes communicate more with vague, imprecise, or noisy information than
with precise information. Interesting as this might be, we find it hard to believe that
speaker-hearer conflicts should have quite such deep impact on the semantic structure
of natural languages, given that communication as such requires crucially a substantial
level of cooperation.

Still, occasionally it may indeed be beneficial for both the speaker and the hearer
to sometimes describe the world at a more coarse-grained level (see for instance [12]
and [20]): for the speaker, deciding which precise term to use may be harder than using
an imprecise term; for the listener, information which is too specific may require more
effort to analyze. Another reason for not always trying to be as precise as possible is
that this would give rise to instability. As stressed by [30], for instance, in case one

3 We say that a pure strategy is degenerate if it is essentially a pure strategy, i.e., if it puts all
probability mass on one pure strategy in its support.
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measures the height of a person in all too much detail, this measure might change from
day to day, which is not very useful. Though all these observations are valid, none of
them make a strong case for vagueness. To economize processing effort, language users
could equally well resort to precise but less informative, more general terms whenever
conversational relevance allows (and if precision is relevant, processing economy would
have to be sacrificed anyway). Similar arguments would also apply to the stability of a
precise language.

It is natural to assume that the existence of vagueness in natural language is un-
avoidable. Our powers of discrimination are limited and come with a margin of error,
and it is just not always possible to draw sharp borderlines. This idea is modeled in
Williamson’s [36] epistemic treatment of vagueness, and given a less committed formu-
lation in [32] using Luce’s [23] preference theory. This suggests to explain vagueness
in terms of a theory of bounded rationality: language is vague because its users have
limited information processing capabilities. In order to fill this general idea with life,
we would like to investigate two particular hypotheses. Firstly, we conjecture that vague
meanings arise in signaling games if interlocutors have only a finite recollection of pre-
vious interactions (Section 4). Secondly, we suggest in Section 5 that vague meanings
also show in signaling game models if agents choose actions with a probability pro-
portional to its expected utility. The motivation for this approach is that there might be
systematic noise somewhere in the agents’ assessment of optimal behavior, be it either
in the agents’ perception of the game’s payoff structure, in the agents’ calculation of
expected utilities, or yet something we, as modellers, are completely unaware of.

4 Limited Memory Fictitious Play

Fictitious play in normal form games. Humans acquire the meanings of natural lan-
guage signals (and other conventional signs) by learning, i.e., by strategically exploiting
past experience when making decisions. A standard model of learning in games is ficti-
tious play (see [2]). In its simplest incarnation, two players play the same game against
each other repeatedly an unlimited number of times. Each player has a perfect recall of
the behavior of the other player in previous encounters, which makes for a loose parallel
of this dynamics with exemplar-based theories of categorization (cf. [28]). The players
operate under the assumption that the other player is stationary, i.e., he always plays
the same —possibly mixed— strategy. The entire history of the other player’s behav-
ior is thus treated as a sample of the same probability distribution over pure strategies.
Using Maximum Likelhood Estimation, the decision maker identifies probabilities with
relative frequencies and plays a best response to the estimated mixed strategy. Most of
the research on this learning dynamics has focused on normal form games, where strict
nes are provably absorbing states. This means that two players who played according
to a certain strict ne will continue to do so indefinitely. Also, any pure-strategy steady
state must be an ne. Furthermore, if the relative frequencies of the strategies played by
the agents converge, they will converge to some (possibly mixed strategy) ne. For large
classes of games (including 2x2 games, zero sum games, and games of common inter-
est) it is actually guaranteed that fictitious play converges (see [6], Chapter 2, for an
overview of the theory of fictitious play and further references).
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Limited memory. This result rests on the unrealistic assumption that the players have an
unlimited memory and an unlimited amount of time to learn the game. In a cognitively
more realistic setting, players only recall the last n rounds of the game, for some finite
number n. We call the ensuing dynamics the limited memory fictitous play (lmf) dy-
namics. For the extreme case of n = 1, lmf dynamics coincides with so-called Cournot
dynamics in strategic games (see Chapter 1 of [6]).

In strategic games lmf dynamics preserves some of the attractive features of ficti-
tious play. In particular, strict nes are absorbing states here as well. Also, if lmf con-
verges to a pure strategy profile, this is an ne. However, if a game has more than one
ne, the memories of the players need not converge at all. To see why, assume that n = 1
and the sequence starts with the two players playing different strict nes. Then they will
continue to alternate between the equilibria and never converge to the same ne. Nei-
ther is it guaranteed that the relative frequencies of the entire history converge to an ne,
even if they do converge. To illustrate this with a trivial example, consider the following
coordination game:

L R

T 1;1 0;0
B 0;0 2;2

If the dynamics starts with the profile (B, L), the players will alternate between this
profile and (T,R) indefinitely. The empirical frequencies will thus converge towards
( 1/2 ,

1/2 ), which is not an ne of this game.

LMF in Signaling games. There are various ways how to generalize lmf dynamics to
signaling games. Observing a single run of an extensive game does not give information
about the behavioral strategies of the players in information sets off the path that has
actually been played. In some versions of extensive form fictitious play, it is assumed
that players also have access to the information how the other player would have played
in such unrealized information sets (c.f. [11]). Here we pursue the other option: each
player only memorizes observed game histories. We furthermore assume that receivers
know the prior probability distribution over types and are Bayesian reasoners. Finally,
we assume that both players use the principle of insufficient reason and use a uniform
probability distribution over possible actions for those information sets that do not occur
in memory.

To make this formally precise, let s̄ ∈ (T × M)n be a sequence of type-signal pairs
of length n. This models the content of the receiver’s memory about the sender’s past
action. Likewise r̄ ∈ (M × T )n models the sender’s memory about the receiver’s past
action. We write s̄(k) and r̄(k) for the kth memory entry in s̄ or r̄. These memories define
mixed strategies as follows:

σ(m | t) =

 |{k | s̄(k)=〈t,m〉}|
|{k | ∃m′:s̄(k)=〈t,m′〉}| if divisor , 0
1
|M| otherwise

ρ(t |m) =

 |{k | r̄(k)=〈m,t〉}|
|{k | ∃t′:r̄(k)=〈m,t′〉}| if divisor , 0
1
|T | otherwise.
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When computing the posterior probability µ(t | m) of type t given signal m, the
receiver uses Bayes’ rule and the principle of insufficient reason. (As before, Pr(·) is the
prior probability distribution over types.)

µ(t |m) =

 σ(m | t) Pr(t)∑
t′ σ(m | t′) Pr(t′) if divisor , 0

1
|T | otherwise.

Best response computation is standard:

BRS (t; ρ) = arg max
m

∑
t′∈T

ρ(t′ |m) × US (t,m, t′) ,

BRR(m; µ) = arg max
t

∑
t′∈T

µ(t′ |m) × UR(t′,m, t) .

Characterization & Results. How does the lmf dynamic look like in signaling games
for type matching? Consider the basic 2-state, 2-message game, with its two strict nes.
It turns out that these equilibria are absorbing states under fictitious play with unlimited
memory. However, this does not hold any longer if memory is limited and the game has
more than two types. For illustration, assume a signaling game for type matching with
three types, t1, t2 and t3, and three forms, m1, m2 and m3. Suppose furthermore that at a
certain point in the learning process, both players have consistently played according to
the same equilibrium for the last n rounds — say, the one where ti is associated with mi
for i ∈ {1, 2, 3}. With a positive probability, nature will choose t1 n times in a row then,
which will lead to a state where s̄ contains only copies of 〈t1,m1〉, and r̄ only copies of
〈m1, t1〉. If nature then chooses t2, both m2 and m3 will have the same expected utility
for the sender, so she may as well opt for m3. Likewise, t2 and t3 have the same expected
utility for the receiver as reaction to m3, so he will choose t2 with probabilty 1/2 . If this
happens, the future course of the game dynamics will gravitate towards the equilibrium
where t2 is associated with m3, and t3 with m2.

Such transitions can occur between any two signaling systems with positive proba-
bility. Thus the relative frequencies of actions, if averaged over the entire history, will
converge towards the average of all signaling systems, which corresponds to the pooling
equilibrium. If the size of the memory is large in comparison to the number of types,
this may hardly seem relevant because the agents will spend most of the time in some
signaling system, even though they may switch this system occasionally. However, if
the number of types is large in comparison to memory size, lmf dynamics will never
lead towards the vicinity of a strict equilibrium, even if such equilibria exist.

This observation is not really surprising. In an ne of a signaling game for type match-
ing, the best response to one type does not carry information about the best response to
another type (beyond the fact that these best responses must be different). If the agents
only have information about a subset of types available in their memory, there is no way
how to extrapolate from this information to unseen types. However, if the type space
has a topological structure, as in the class of sim-max games, it is actually possible to
extrapolate from seen to unseen types to some degree. Similar types lead to similar pay-
offs. Therefore the information about a certain type is not entirely lost if it intermittently
drops out of memory. Likewise, lmf players are able to make informed guesses about
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Fig. 2: Results of lmf dynamics

the nature of types that have never been observed before. Consequently, lmf dynamics
performs far better in these games. It does not converge towards a strict equilibrium,
but somewhere into the proximity of one, thus ensuring a high degree of efficiency.

The top of Figure 2 depicts the outcome of a first simulation of the lmf dynamics.
The type space consisted of 500 types that were distributed evenly over the unit interval,
and we assumed three signals. The simulation assumed σ = 0.1 in Equation (1) and a
memory size n = 200. The graphs show the relative frequencies between the 10,000th

and the 20,000th iterations of the game, starting from an initial state where the memo-
ries of the agents contain random associations. The sender strategies, shown on the top
left of Figure 2, induce a partition of the type space into three categories, one for each
message. In the long run, these categories partition the type space into three continu-
ous intervals of about equal size. These intervals are largely stable, but the boundaries
shift back and forth somewhat over time. Averaging over a longer period thus leads to
categories with blurred boundaries. The prototypes of the categories, i.e., the receiver’s
interpretation of the three signals as shown on the top right, fall into the center of the
corresponding category. Again we observe a certain amount of indeterminacy. Over
time, the prototypes are distributed according to a bell shaped curve in the center of the
corresponding category.

Interpretation. If we look at the properties of the language that emerges under lmf
dynamics over a longer course of time, we find that the emerging categories indeed
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have non-sharp boundaries, and that they blend seamlessly into one another. On this
level of abstraction, the model derives the crucial features of higher-order vagueness
that standard signaling models preclude. But the down-side of this model seems to
be that although the time-averaged language shows the relevant vagueness properties,
the beliefs and the rational behavior of agents at each time step do not. For instance,
at a fixed time step the sender would use message mi for all states in the half-open
interval [0; x) and another message mj for any state > x. The point-value x would be an
infinitesimal borderline case.4

The problem that vagueness only shows over time, so to speak, can be overcome
by looking at a population of more than two agents playing lmf dynamics. If each of
several agents has her own private limited memory, then differences between private
memories blur meaning boundaries if we look at the averaged population behavior even
at a single moment of time. The bottom half of Figure 2 shows a population average of
60 lmf agents with a memory of 25 past interaction for a sim-max game with 51 states
and 2 messages, obtained after 2500 interaction steps. The solid lines are the population
averages and the dotted lines give the strategies of each individual agent. This is then
an example of a language whose terms are vague because their meaning is bootstrapped
from a number of slightly different individual strategies.

How good an explanation of vagueness is this? Conceptually speaking, it is certainly
plausible that properties of a language at large emerge from the (limited) power of its
users. Moreover, this account is similar in essence to Lewis’ approach to vagueness
[21], as well as to super- and subvaluation accounts ([5,14]). Here and there vagueness
is explained as the result of adding multiple slightly different precise language uses
together. But, still, the question is whether memory limitations alone are sufficient to
provide a reasonable explanation for vagueness. We do not think so. This is because,
although lmf dynamics may explain why language as such is vague, each agent’s still
commands a crisp language at each moment in time. This would leave entirely unex-
plained the hesitance and insecurity of natural language users in dealing with borderline
cases.

The residual problem here is that the notion of a rational best response to a be-
lief —be it obtained from finite observations or otherwise— will always yield sharp
boundaries and point-level borderline cases. To overcome this problem, and to derive
vague meanings also in the beliefs and behavior of individual agents we really need to
scrutinize the notion of a rational best response in more detail. The following section
consequently discusses a model in which agents play stochastic best responses.

5 Quantal Response Equilibria

Stochastic choice rules have been studied extensively in psychology, but have recently
also been integrated into models of (boundedly-rational) decision making from eco-
nomics. We start by providing a sketch of the relevant background on individual choice
from psychology, then take this to interactive choices, and finally report on simulation
data showing how equilibria of stochastic choices give rise to vague meanings.

4 This is not entirely correct parlor, since the simulation only approximates a continuous state
set. But the point should be clear nonetheless.
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Individual Stochastic Choice. When faced with a choice among several alternatives,
people often not only indecisive, but even inconsistent in that they make different
choices under seemingly identical conditions, contrary to the predictions of classical
rational choice theory. Choice behavior is therefore often modeled as a probabilistic
process. The idea is that people do make rational and consistent decisions, but that
there is something in their behavior which we cannot name and which our models do
not encode explicitly. That unknown something, however, might be rather systematic,
and we can therefore often describe empirically observed choice data as rational given
a specific probabilistic source of error.

The general idea is this.5 Suppose we force subjects to repeatedly make binary
choices between options a and b under identical conditions. This could either be a
classical behavioral choice, such as whether to buy a or b, or it could be a perceptual
choice, such as which of a or b is louder, heavier etc. Even if we knew all physical
properties of a and b, it would be ludicrous to assume that we know every single factor
that guides a subject’s current choice. In order to account for these uncertain factors,
probabilistic choice models assume that subjects do not actually treat a and b as they
are represented in the model but rather as a′ and b′ which are systematically related to a
and b but not necessarily the same. For example, if a, b ∈ [0, 1], we would assume that
a is treated as if it was a + ε where ε is a “tremble” that is drawn from some probability
distribution. It is natural to assume that small trembles are likely and large trembles
unlikely. In that case, if a and b are nearly identical, confusion is rather likely, but the
more a and b differ, the less likely a mix-up. These assumed trembles can have many
causes, also depending on the kind of choice situation we are looking at. Among other
things, it could be that we, as modelers, are not fully aware of the choice preferences of
our subjects, or it may be that subjects make mistakes in perceiving stimuli for what they
are. From the modeller’s perspective, experimental choice data can then be deemed, if
not fully rational, then at least consistent with a particular distribution of trembles.

More concretely, if we assume that “trembles” with which agents perceive the qual-
ity of their choices are drawn from an extreme-value distribution (roughly: small trem-
bles very frequent, large trembles highly unlikely), then choice behavior can be mod-
eled by a so-called logit probabilistic choice rule which states that the probability P(a)
of selecting a is an exponential function of a’s utility u(a) (see [25], [26] and [9] for
details):

P(a) =
exp(λu(a))∑
b exp(λu(b))

. (2)

Here, λ ≥ 0 captures inversely the influence of the trembles. In other words, λ mea-
sures inversely the degree of rationality of the decision maker, where what is rational
is defined by the model without the trembles. In this sense, λ = 0 corresponds to a
completely irrational agent that picks each action with equal probability regardless of
utility. As λ increases to ∞, the probability of non-optimal choices converge to 0, and
all optimal choices have equal probability.

5 We do not mean to suggest that we are faithful to the vast statistical literature on this topic, but
we merely wish to motivate our modeling approach in accessible terms. The interested reader
is referred to the classics, such as [35] or [24].
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Quantal Response Equilibrium. This much concerns a single agent’s decision. But
stochastic choice models of this kind have more recently also been applied in behavioral
game theory to model subjects’ interactive choice behavior. In that case, systematic im-
perfection in individual decision making may also systematically alter the structure of
equilibria that ensue in strategic situations where all players choose with a globally
fixed λ.6 If in a strategic setting all players use rule (2) with the same value for λ, and
all players are correct in assessing the probabilities of each other’s behavior, the mixed
strategies of the players form a so-called logit equilibrium. It can be shown that in
games with finitely many strategies, such an equilibrium (also called quantal response
equilibrium (qre) in this case) always exists [25,26,10].7

Consider as an example a 2-state, 2-message signaling game for type-matching.
We represent a mixed sender strategy as a 2 × 2 matrix P, where pi j gives the relative
probability that the sender will send signal m j if she has type ti. Likewise, a mixed
receiver strategy is represented by a 2 × 2 matrix Q, with qi j being the probability that
the receiver will choose action a j upon observing signal mi. For (P,Q) to form a qre, it
must hold that:

pi j =
exp(λq ji)∑
k exp(λqki)

and qi j =
exp(λp ji)∑
k exp(λpki)

.

Using these equations and the fact that P and Q are stochastic matrices, it can be shown
by elementary calculations that p11 + p21 = 1 and q11 + q21 = 1, and hence that p11 =

p22, p12 = p21, q11 = q22, and q12 = q21. From this it follows that p11 = fλ(q11) and
q11 = fλ(p11), where

fλ(x) =
exp(λx)

exp(λx) + exp(λ(1 − x))
. (3)

Now suppose p11 < q11. fλ is strictly monotonically increasing. Hence fλ(p11) = q11 <
p11 < fλ(q11), and vice versa. These are contradictions. It thus follows that p11 = q11,
i.e. P = Q. The entire equilibrium is thus governed by a single value α, where α =

p11 = p22 = q11 = q22. α is a fixed point of f , i.e., α = fλ(α).
For λ ∈ [0, 2], there is exactly one fixed point, namely α = 0.5. This characterizes a

babbling equilibrium where each message is sent with equal probability by each type,
and each action is taken with equal probability regardless of the message received. If
λ > 2, α = 0.5 continues to be a fixed point, but two more fixed points emerge, one
in the open interval (0, 0.5) and one in (0.5, 1). As λ grows, these fixed points converge
towards 0 and 1 respectively. They correspond to two noisy separating equilibria. Even
though each message is sent with positive probability by each type in such a qre (and
each action is induced by each signal with positive probability), there is a statistical cor-
relation between types, messages and actions. In other words, in these qres information
transmission takes place, even though it is imperfect.

Generalization. Already in this simple example there is no longer a sharp delineation
in (descriptive and imperative) meanings of signals, and it turns out that if we attend
to the more interesting case of sim-max games, logit equilibria also indeed give rise to

6 See [31] for a model that dispenses with the homogeneity of λ among players.
7 As λ goes to infinity, qres converge to some ne, the limit cases of perfect rationality.
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Fig. 3: Separating quantal response equilibrium

continuously blended category boundaries of the relevant kind. We show this by simu-
lation, based on a game with 100 states that are arranged in the unit interval with equal
distances. We considered three signals, and chose the value σ = .2. If λ is small, there
is only a (theoretically unappealing) babbling equilibrium in which the sender sends all
messages with equal probability in each state. But for values of λ above approximately
4, separating equilibria emerge. Figure 3 shows such an equilibrium for λ = 20. Here
the sender strategy roughly partitions the type space into three categories of about equal
size. Crucially, the boundaries between the categories are blurred; category member-
ship smoothly changes from (almost) 1 to (almost) 0 as one moves into a neighboring
category. The left half of the figure shows the receiver strategy, i.e., the location of the
prototypes. These are not sharply defined points within conceptual space either. Rather,
the location of the prototypes can be approximated by a normal distribution with its
mean at the center of the corresponding category. In other words, we not only find con-
tinuously blended category boundaries in the declarative meaning of signals, but also
“graded protoypes” in the imperative meaning.

Interpretation. Vague interpretations of signals emerge with necessity if the perfectly
rational choice rule of classical game theory is replace by a cognitively more realistic
probabilistic choice rule like the logit choice rule. Unlike for the finite memory model
from Section 4, this holds true, also for any momentary belief and behavior of indi-
vidual agents and even if there are only two agents in a population. The more general
reason why this model gives rise to vague meanings is also natural: the sender may
only imperfectly observe the state that she wants to communicate, she may make mis-
takes in determining her best choice, or there may be choice-relevant factors that are
not included in the model; similarly for the receiver.

Conceptually, the qre account of vagueness relates most directly to epistemic ac-
counts of vagueness (e.g. [36]). Since it is natural to assume that players know their
opponents’ behavior in equilibrium, players should be aware that language is used with
a margin of error. Uncertainty about language use is therefore a basic feature of this
model. But the qre model leaves quite some room as to what kind of uncertainty this
is. Slack in best responding could come from imprecise observation, but also from con-
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textual variability of the preferences of agents. The former would explain quite readily
why especially observational predicates are vague, the latter relates this approach to
more pragmatic explanations of vagueness (c.f. [7,3]).

Of course, the qre raises a number of fair questions too. Even if we accept that
all natural language expressions are vague, then it is still not necessarily the case that
all natural language expressions are vague in the same way: terms like ‘red’, ‘wet’ or
‘probable’ are more readily vague, so to speak, than terms like ‘cd-rom’, ‘dry’ or ‘cer-
tain’. In further research it would be interesting to relate these properties of meanings
to (i) the source and nature of probabilistic error in qre, and/or to (ii) more nuanced
topological properties of the space given by T and the utility function U. Further issues
for future research are to extend the two-agent qre models to more realistic multi-agent
models, to combine lmf and qre, and to take the step from simulation to analytic results
where feasible.
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