The Drude Model

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011
Paul Drude, German physicist, 1863-1906
The Drude Model

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect
• The Drude model links optical and electric properties of a material with the behavior of its electrons or holes
• The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

• The model
The Drude model links optical and electric properties of a material with the behavior of its electrons or holes.

- The model
- Dielectric permittivity
• The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals
The Drude model links optical and electric properties of a material with the behavior of its electrons or holes.

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity
The Drude model links optical and electric properties of a material with the behavior of its electrons or holes.

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity
- Faraday effect
The Drude model links optical and electric properties of a material with the behavior of its electrons or holes.

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity
- Faraday effect
- Hall effect
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Consider a typical electron denoted by $x(t)$ the deviation from its equilibrium position.

External electric field strength $E(t)$

Electron mass m, charge q, friction coefficient $m\Gamma$, spring constant $m\Omega^2$

Fourier transform this

Solution is $	ilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}$
• consider a typical electron
• consider a typical electron
• denote by $x = x(t)$ the deviation from its equilibrium position
• consider a typical electron
• denote by $x = x(t)$ the deviation from its equilibrium position
• external electric field strength $E = E(t)$
• consider a typical electron
• denote by $\mathbf{x} = \mathbf{x}(t)$ the deviation from its equilibrium position
• external electric field strength $\mathbf{E} = \mathbf{E}(t)$
• $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q\mathbf{E}$
• consider a typical electron
• denote by \(x = x(t) \) the deviation from its equilibrium position
• external electric field strength \(E = E(t) \)
• \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
• electron mass \(m \), charge \(q \), friction coefficient \(m\Gamma \), spring constant \(m\Omega^2 \)
• consider a typical electron
• denote by $x = x(t)$ the deviation from its equilibrium position
• external electric field strength $E = E(t)$
• $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
• electron mass m, charge q, friction coefficient $m\Gamma$, spring constant $m\Omega^2$
• Fourier transform this
• consider a typical electron
• denote by \(x = x(t) \) the deviation from its equilibrium position
• external electric field strength \(E = E(t) \)
• \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
• electron mass \(m \), charge \(q \), friction coefficient \(m\Gamma \), spring constant \(m\Omega^2 \)
• Fourier transform this
• \(m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x} = q\tilde{E} \)
• consider a typical electron
• denote by $x = x(t)$ the deviation from its equilibrium position
• external electric field strength $E = E(t)$
• $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
• electron mass m, charge q, friction coefficient $m\Gamma$, spring constant $m\Omega^2$
• Fourier transform this
• $m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x} = q\tilde{E}$
• solution is
 $$\tilde{x}(\omega) = \frac{q}{m \Omega^2 - \omega^2 - i\omega\Gamma} \tilde{E}(\omega)$$
The Drude Model

Polarization

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is

\[\tilde{p} = q \tilde{x} \]

• recall

\[\tilde{x}(\omega) = \frac{q m \tilde{E}(\omega)}{\Omega^2 - \omega^2 - i \omega \Gamma} \]

• there are \(N \) typical electrons per unit volume

• polarization is

\[\tilde{P} = Nq \tilde{x} = \epsilon_0 \chi \tilde{E} \]

• susceptibility is

\[\chi(\omega) = \frac{Nq^2 \epsilon_0 m}{\Omega^2 - \omega^2 - i \omega \Gamma} \]

• in particular

\[\chi(0) = \frac{Nq^2 \epsilon_0 m}{\Omega^2} > 0 \]

• . . . as it should be
Polarization

- dipole moment of typical electron is $\tilde{p} = q\tilde{x}$
• dipole moment of typical electron is $\tilde{p} = q\tilde{x}$
• recall

$$\tilde{x}(\omega) = \frac{q}{m(\Omega^2 - \omega^2 - i\omega\Gamma)} \tilde{E}(\omega)$$
The Drude Model

Polarization

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- dipole moment of typical electron is $\tilde{p} = q\tilde{x}$
- recall
- $\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}$
- there are N typical electrons per unit volume
The Drude Model

Overview

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Polarization

- dipole moment of typical electron is $\tilde{p} = q\tilde{x}$
- recall

 $$\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}$$
- there are N typical electrons per unit volume
- polarization is $\tilde{\mathcal{P}} = Nq\tilde{x} = \epsilon_0\chi\tilde{E}$
Polarization

- dipole moment of typical electron is $\tilde{p} = q\tilde{x}$
- recall
 $$\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}$$
- there are N typical electrons per unit volume
- polarization is $\tilde{P} = Nq\tilde{x} = \epsilon_0\chi\tilde{E}$
- susceptibility is
 $$\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - \omega^2 - i\omega\Gamma}$$
• dipole moment of typical electron is \(\tilde{p} = q\tilde{x} \)
• recall
\[
\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]
• there are \(N \) typical electrons per unit volume
• polarization is \(\tilde{P} = Nq\tilde{x} = \epsilon_0\chi\tilde{E} \)
• susceptibility is
\[
\chi(\omega) = \frac{Nq^2}{\epsilon_0m} \frac{1}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]
• in particular
\[
\chi(0) = \frac{Nq^2}{\epsilon_0m\Omega^2} > 0
\]
Polarization

• dipole moment of typical electron is \(\tilde{p} = q\tilde{x} \)

• recall

\[
\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]

• there are \(N \) typical electrons per unit volume

• polarization is \(\tilde{P} = Nq\tilde{x} = \epsilon_0\chi\tilde{E} \)

• susceptibility is

\[
\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]

• in particular

\[
\chi(0) = \frac{Nq^2}{\epsilon_0 m\Omega^2} > 0
\]

• \(\ldots \) as it should be
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Discussion

1

• decompose susceptibility \(\chi(\omega) = \chi'(\omega) + i \chi''(\omega) \) into refractive part \(\chi' \) and absorptive part \(\chi'' \)

• Introduce \(R(\omega) = \frac{\chi(\omega)}{\chi(0)} \), \(s = \frac{\omega}{\Omega} \) and \(\gamma = \frac{\Gamma}{\Omega} \) as normalized quantities.

• refraction \(R'(s) = 1 - s^2 \frac{(1 - s^2)^2 + \gamma^2 s^2}{(1 - s^2)^2 + \gamma^2 s^2} \)

• absorption \(D''(s) = s \frac{(1 - s^2)^2 + \gamma^2 s^2}{(1 - s^2)^2 + \gamma^2 s^2} + \gamma s \)

• limiting cases: \(s = 0, s = 1, s \to \infty \), small \(\gamma \)
• decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''
• decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''

• Introduce $R(\omega) = \chi(\omega)/\chi(0)$, $s = \omega/\Omega$ and $\gamma = \Gamma/\Omega$ as normalized quantities.
• decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''

• Introduce $R(\omega) = \chi(\omega)/\chi(0)$, $s = \omega/\Omega$ and $\gamma = \Gamma/\Omega$ as normalized quantities.

• refraction

$$R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2}$$
• decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''

• Introduce $R(\omega) = \chi(\omega)/\chi(0)$, $s = \omega/\Omega$ and $\gamma = \Gamma/\Omega$ as normalized quantities.

• refraction

$$R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2}$$

• absorption

$$D''(s) = \frac{\gamma s}{(1 - s^2)^2 + \gamma^2 s^2}$$
• decompose susceptibility \(\chi(\omega) = \chi'(\omega) + i\chi''(\omega) \) into refractive part \(\chi' \) and absorptive part \(\chi'' \)

• Introduce \(R(\omega) = \chi(\omega)/\chi(0) \), \(s = \omega/\Omega \) and \(\gamma = \Gamma/\Omega \) as normalized quantities.

• refraction
\[R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2} \]

• absorption
\[D''(s) = \frac{\gamma s}{(1 - s^2)^2 + \gamma^2 s^2} \]

• limiting cases: \(s = 0, s = 1, s \to \infty, \text{small } \gamma \)
Refractive part (blue) and absorptive part (red) of the susceptibility function $\chi(\omega)$ scaled by the static value $\chi(0)$. The abscissa is ω/Ω. $\Gamma/\Omega = 0.1$
Discussion II

- For small frequencies (as compared with ω), the susceptibility is practically real.
- This is the realm of classical optics
- $\partial \chi / \partial \omega$ is positive – normal dispersion
- In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
- For very large frequencies again absorption is negligible, and the susceptibility is negative with normal dispersion. This applies to X rays.
- $\chi(\infty) = 0$ is required by first principles...
• For small frequencies (as compared with Ω) the susceptibility is practically real.
• For small frequencies (as compared with Ω) the susceptibility is practically real.

• This is the realm of classical optics
• For small frequencies (as compared with Ω) the susceptibility is practically real.

• This is the realm of classical optics

• $\partial \chi / \partial \omega$ is positive – normal dispersion
• For small frequencies (as compared with Ω) the susceptibility is practically real.
• This is the realm of classical optics
• $\partial \chi / \partial \omega$ is positive – normal dispersion
• In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
• For small frequencies (as compared with Ω) the susceptibility is practically real.
• This is the realm of classical optics
• $\partial \chi / \partial \omega$ is positive – normal dispersion
• In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
• For very large frequencies again absorption is negligible, and the susceptibility is negative with normal dispersion. This applies to X rays.
• For small frequencies (as compared with Ω) the susceptibility is practically real.
• This is the realm of classical optics
• $\partial \chi / \partial \omega$ is positive – normal dispersion
• In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
• For very large frequencies again absorption is negligible, and the susceptibility is negative with normal dispersion. This applies to X rays.
• $\chi(\infty) = 0$ is required by first principles . . .
Kramers-Kronig relation I

\[\chi(\omega) \text{ must be the Fourier transform of a causal response function } G(\tau) = G(\tau) \]

\[P(t) = \epsilon_0 \int d\tau G(\tau) E(t - \tau) \]

• poles at \(\omega_1, 2 = -\frac{i}{2} \pm \bar{\omega} \)

\[\bar{\omega} = \sqrt{\Omega^2 - \Gamma^2}/4 \]

Indeed, \(G(\tau) = 0 \) for \(\tau < 0 \)

\[G(\tau) = Nq^2 \epsilon_0 m \sin \bar{\omega} \tau \bar{\omega} e^{-\Gamma \tau/2} \]
- \(\chi(\omega) \) must be the Fourier transform of a causal response function \(G = G(\tau) \)
The Drude Model

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Kramers-Kronig relation I

- \(\chi(\omega) \) must be the Fourier transform of a causal response function \(G = G(\tau) \)
- as defined in

\[
P(t) = \varepsilon_0 \int d\tau G(\tau) E(t - \tau)
\]
The Drude Model

Overview

Peter Hertel

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Kramers-Kronig relation 1

- \(\chi(\omega) \) must be the Fourier transform of a causal response function \(G = G(\tau) \)

- as defined in

\[
P(t) = \varepsilon_0 \int d\tau G(\tau) E(t - \tau)
\]

- check this for

\[
G(\tau) = a \int \frac{d\omega}{2\pi} \frac{e^{-i\omega\tau}}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]
The Drude Model

Overview

Peter Hertel

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Kramers-Kronig relation 1

- $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$
- as defined in
 \[P(t) = \epsilon_0 \int d\tau G(\tau) E(t - \tau) \]
- check this for
 \[G(\tau) = a \int \frac{d\omega}{2\pi} \frac{e^{-i\omega\tau}}{\Omega^2 - \omega^2 - i\omega\Gamma} \]
- poles at
 \[\omega_{1,2} = -\frac{i\Gamma}{2} \pm \bar{\omega} \text{ where } \bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4} \]
• $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$

• as defined in

$$P(t) = \varepsilon_0 \int d\tau G(\tau) E(t - \tau)$$

• check this for

$$G(\tau) = a \int \frac{d\omega}{2\pi} \frac{e^{-i\omega\tau}}{\Omega^2 - \omega^2 - i\omega\Gamma}$$

• poles at

$$\omega_{1,2} = -\frac{i\Gamma}{2} \pm \bar{\omega} \text{ where } \bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4}$$

• Indeed, $G(\tau) = 0$ for $\tau < 0$
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Kramers-Kronig relation 1

• \(\chi(\omega) \) must be the Fourier transform of a causal response function \(G = G(\tau) \)

• as defined in

\[
P(t) = \epsilon_0 \int d\tau G(\tau) E(t - \tau)
\]

• check this for

\[
G(\tau) = a \int \frac{d\omega}{2\pi} \frac{e^{-i\omega\tau}}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]

• poles at

\[
\omega_{1,2} = -\frac{i\Gamma}{2} \pm \bar{\omega} \text{ where } \bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4}
\]

• Indeed, \(G(\tau) = 0 \) for \(\tau < 0 \)

• for \(\tau > 0 \)

\[
G(\tau) = \frac{Nq^2}{\epsilon_0 m} \frac{\sin \bar{\omega}\tau}{\bar{\omega}} e^{-\Gamma\tau/2}
\]
Kramers-Kronig relation II

• causal response function:
 \[G(\tau) = \theta(\tau) G(\tau) \]

• apply the convolution theorem
 \[\chi(\omega) = \int \frac{d\omega}{2\pi} \chi(u) \tilde{\theta}(\omega - u) \]

• Fourier transform of Heaviside function is
 \[\tilde{\theta}(\omega) = \lim_{\eta \to 0} \frac{1}{\eta - i\omega} \]

• dispersion, or Kramers-Kronig relations
 \[\chi'(\omega) = 2\text{Pr} \int \frac{du}{\pi} u \chi''(u) \left(u^2 - \omega^2 \right) \]
 \[\chi''(\omega) = 2\text{Pr} \int \frac{du}{\pi} \omega \chi'(u) \left(\omega^2 - u^2 \right) \]
Kramers-Kronig relation II

- causal response function: \(G(\tau) = \theta(\tau)G(\tau) \)
• causal response function: $G(\tau) = \theta(\tau)G(\tau)$

• apply the convolution theorem

$$\chi(\omega) = \int \frac{du}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$
Kramers-Kronig relation II

- **causal response function:** \(G(\tau) = \theta(\tau)G(\tau) \)
- apply the convolution theorem

\[
\chi(\omega) = \int \frac{du}{2\pi} \chi(u)\tilde{\theta}(\omega - u)
\]

- Fourier transform of Heaviside function is

\[
\tilde{\theta}(\omega) = \lim_{\eta \to 0} \frac{1}{\eta - i\omega}
\]
causal response function: \(G(\tau) = \theta(\tau)G(\tau) \)

apply the convolution theorem

\[
\chi(\omega) = \int \frac{du}{2\pi} \chi(u) \tilde{\theta}(\omega - u)
\]

Fourier transform of Heaviside function is

\[
\tilde{\theta}(\omega) = \lim_{\eta \to 0} \frac{1}{\eta - i\omega}
\]

dispersion, or Kramers-Kronig relations

\[
\chi'(\omega) = 2\text{Pr} \int \frac{du}{\pi} \frac{u\chi''(u)}{u^2 - \omega^2}
\]
causal response function: $G(\tau) = \theta(\tau)G(\tau)$

apply the convolution theorem

$$\chi(\omega) = \int \frac{du}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

Fourier transform of Heaviside function is

$$\tilde{\theta}(\omega) = \lim_{\eta \to 0} \frac{1}{\eta - i\omega}$$

dispersion, or Kramers-Kronig relations

$$\chi'(\omega) = 2\text{Pr} \int \frac{du}{u^2 - \omega^2} \frac{u \chi''(u)}{\pi}$$
Kramers-Kronig relation II

- **causal response function**: \(G(\tau) = \theta(\tau)G(\tau) \)
- apply the convolution theorem
 \[
 \chi(\omega) = \int \frac{du}{2\pi} \chi(u)\tilde{\theta}(\omega - u)
 \]
- Fourier transform of Heaviside function is
 \[
 \tilde{\theta}(\omega) = \lim_{\eta \to 0} \frac{1}{\eta - i\omega}
 \]
- **dispersion**, or Kramers-Kronig relations
 \[
 \chi'(\omega) = 2\text{Pr} \int \frac{du}{\pi} \frac{u\chi''(u)}{u^2 - \omega^2}
 \]
 \[
 \chi''(\omega) = 2\text{Pr} \int \frac{du}{\pi} \frac{\omega\chi'(u)}{\omega^2 - u^2}
 \]
Dispersion of white light
Overview of the Drude model: a model for dielectric media, including permittivity of metals, electrical conductors, Faraday effect, and Hall effect. Free quasi-electrons are considered as free quasi-particles, with their behavior governed by the equation:

\[
m \left(\ddot{x} + \Gamma \dot{x} + \Omega^2 x\right) = qE
\]

The spring constant \(m\) vanishes, and the effective mass \(m\) is determined. The permittivity \(\epsilon(\omega)\) is given by:

\[
\epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2} + i\frac{\omega \Gamma}{\omega_p^2}
\]

Where \(\omega_p\) is the plasma frequency, \(\epsilon_0\) is the permittivity of free space, and \(\omega\) is the angular frequency.

Corrections for \(\omega \gg \omega_p\) are applied.

References and further reading are included.
Free quasi-electrons

- consider a typical conduction band electron
Free quasi-electrons

- consider a typical conduction band electron
- it behaves as a free quasi-particle
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Free quasi-electrons

- consider a typical conduction band electron
- it behaves as a free quasi-particle
- recall \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
Free quasi-electrons

- consider a typical conduction band electron
- it behaves as a free quasi-particle
- recall $m(\ddot{x} + \dot{\Gamma} \dot{x} + \Omega^2 x) = qE$
- spring constant $m \Omega^2$ vanishes
Free quasi-electrons

- consider a typical conduction band electron
- it behaves as a free quasi-particle
- recall \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
- spring constant \(m\Omega^2 \) vanishes
- \(m \) is effective mass
Free quasi-electrons

- consider a typical conduction band electron
- it behaves as a free quasi-particle
- recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
- spring constant $m\Omega^2$ vanishes
- m is effective mass
- therefore

$$\epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma}$$
- consider a typical conduction band electron
- it behaves as a free quasi-particle
- recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
- spring constant $m\Omega^2$ vanishes
- m is effective mass
- therefore
 \[
 \epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma}
 \]
- plasma frequency ω_p
 \[
 \omega_p^2 = \frac{Nq^2}{\epsilon_0 m}
 \]
Free quasi-electrons

• consider a typical conduction band electron
• it behaves as a free quasi-particle
• recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
• spring constant $m\Omega^2$ vanishes
• m is effective mass
• therefore
 \[
 \epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma}
 \]
• plasma frequency ω_p
 \[
 \omega_p^2 = \frac{Nq^2}{\epsilon_0 m}
 \]
• correction for $\omega \gg \omega_p$
 \[
 \epsilon(\omega) = \epsilon_\infty - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma}
 \]
Example: gold

Drude model parameters for gold as determined by Johnson and Christy in 1972:

- $\varepsilon_\infty = 9.5$
- $\hbar \omega_p = 8.95 \text{ eV}$
- $\hbar \Gamma = 0.069 \text{ eV}$

With these parameters, the Drude model fits optical measurements well for $\hbar \omega < 2.25 \text{ eV}$ (green).

The refractive part of the permittivity can be large and negative while the absorptive part is small. This allows surface plasmon polaritons (SPP).
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Example: gold

- Drude model parameters for gold

\[\epsilon_\infty = 9.5 \]

\[\hbar \omega_p = 8.95 \text{ eV} \]

\[\hbar \Gamma = 0.069 \text{ eV} \]

With these parameters the Drude model fits optical measurements well for \(\hbar \omega < 2.25 \text{ eV} \) (green).

The refractive part of the permittivity can be large and negative while the absorptive part is small. This allows surface plasmon polaritons (SPP).
• Drude model parameters for gold
• as determined by Johnson and Christy in 1972
Example: gold

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\epsilon_{\infty} = 9.5$
Example: gold

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- \(\epsilon_\infty = 9.5 \)
- \(\hbar \omega_p = 8.95 \) eV
Drude model parameters for gold
as determined by Johnson and Christy in 1972

- $\epsilon_\infty = 9.5$
- $\hbar\omega_p = 8.95$ eV
- $\hbar\Gamma = 0.069$ eV
Example: gold

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\epsilon_\infty = 9.5$
- $\hbar \omega_p = 8.95$ eV
- $\hbar \Gamma = 0.069$ eV
- with these parameters the Drude model fits optical measurements well for $\hbar \omega < 2.25$ eV (green)
Drude model parameters for gold
as determined by Johnson and Christy in 1972
\(\varepsilon_\infty = 9.5 \)
\(\hbar \omega_p = 8.95 \text{ eV} \)
\(\hbar \Gamma = 0.069 \text{ eV} \)

with these parameters the Drude model fits optical measurements well for \(\hbar \omega < 2.25 \text{ eV} \) (green)
The refractive part of the permittivity can be large and negative while the absorptive part is small.
Example: gold

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\varepsilon_\infty = 9.5$
- $\hbar \omega_p = 8.95 \text{ eV}$
- $\hbar \Gamma = 0.069 \text{ eV}$
- with these parameters the Drude model fits optical measurements well for $\hbar \omega < 2.25 \text{ eV}$ (green)
- The refractive part of the permittivity can be large and negative while the absorptive part is small.
- This allows surface plasmon polaritons (SPP)
Refractive (blue) and absorptive part (red) of the permittivity function for gold. The abscissa is $\hbar \omega$ in eV.
Electrical conductivity

Consider a typical charged particle:

\[m \ddot{x} + \Gamma \dot{x} + \Omega^2 x = qE \]

Electric current density:

\[J = Nq \dot{x} \]

Fourier transformed:

\[\tilde{J} = Nq (\omega^2 - i\omega) \tilde{x} \]

\[\tilde{x}(\omega) = qm \tilde{E}(\omega) \Omega^2 - \omega^2 - i\omega \Gamma \]

Ohm's law:

\[\tilde{J} = \sigma(\omega) \tilde{E} \]

Conductivity:

\[\sigma(\omega) = \frac{Nq^2}{m} - \frac{i\omega \Omega^2}{\omega^2 - i\omega \Gamma} \]
• consider a typical charged particle
• consider a typical charged particle
• recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
• consider a typical charged particle
• recall \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
• electric current density \(J = Nq\dot{x} \)
• consider a typical charged particle

• recall \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)

• electric current density \(\mathbf{J} = Nq \dot{x} \)

• Fourier transformed: \(\tilde{\mathbf{J}} = Nq(-i\omega)\tilde{x} \)
• consider a typical charged particle
• recall \(m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE \)
• electric current density \(J = Nq\dot{x} \)
• Fourier transformed: \(\tilde{J} = Nq(-i\omega)\tilde{x} \)
• recall

\[
\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]
• consider a typical charged particle
• recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
• electric current density $J = Nq\dot{x}$
• Fourier transformed: $\tilde{J} = Nq(-i\omega)\tilde{x}$
• recall

\[
\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 - \omega^2 - i\omega\Gamma}
\]

• **Ohm’s law**

\[
\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega)
\]
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Electrical conductivity

- consider a typical charged particle
- recall $m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = qE$
- electric current density $J = Nq\dot{x}$
- Fourier transformed: $\tilde{J} = Nq(−i\omega)\tilde{x}$
- recall
 $$\tilde{x}(\omega) = \frac{q}{m} \frac{\tilde{E}(\omega)}{\Omega^2 − \omega^2 − i\omega\Gamma}$$
- Ohm’s law
 $$\tilde{J}(\omega) = \sigma(\omega) \tilde{E}(\omega)$$
- conductivity is
 $$\sigma(\omega) = \frac{Nq^2}{m} \frac{−i\omega}{\Omega^2 − \omega^2 − i\omega\Gamma}$$
Electrical conductors

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect
• A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
Electrical conductors

- A material with $\sigma(0) = 0$ is an **electrical insulator**. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical **conductor**.
Electrical conductors

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.
- Charged particles must be free, $\Omega = 0$.
• A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
• A material with $\sigma(0) > 0$ is an electrical conductor.
• Charged particles must be free, $\Omega = 0$.
• which means

$$\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - i\omega}$$
A material with \(\sigma(0) = 0 \) is an electrical insulator. It cannot transport direct currents (DC).

A material with \(\sigma(0) > 0 \) is an electrical conductor.

Charged particles must be free, \(\Omega = 0 \).

which means

\[
\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - i\omega}
\]

or

\[
\frac{\sigma(\omega)}{\sigma(0)} = \frac{1}{1 - i\omega/\Gamma}
\]
• A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
• A material with $\sigma(0) > 0$ is an electrical conductor.
• Charged particles must be free, $\Omega = 0$.
• which means
 \[\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - i\omega} \]
• or
 \[\frac{\sigma(\omega)}{\sigma(0)} = \frac{1}{1 - i\omega/\Gamma} \]
• Note that the DC conductivity is always positive.
Georg Simon Ohm, German physicist, 1789-1854
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

External static magnetic field
• apply a quasi-static external induction \mathbf{B}
External static magnetic field

- apply a quasi-static external induction \mathcal{B}
- the typical electron obeys

$$m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B})$$
External static magnetic field

- apply a quasi-static external induction B
- the typical electron obeys
 \[m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times B) \]
- Fourier transform this
 \[m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i\omega \tilde{x} \times B) \]
apply a quasi-static external induction \mathcal{B}

the typical electron obeys

$$m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B})$$

Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i\omega\tilde{x} \times \mathcal{B})$$

assume $\mathcal{B} = B\hat{e}_z$
External static magnetic field

- apply a quasi-static external induction \mathcal{B}
- the typical electron obeys
 \[m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B}) \]
- Fourier transform this
 \[m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i\omega \tilde{x} \times \mathcal{B}) \]
- assume $\mathcal{B} = B\hat{e}_z$
- assume circularly polarized light
 \[\tilde{E} = \tilde{E}_\pm \hat{e}_\pm \text{ where } \hat{e}_\pm = (\hat{e}_x + i\hat{e}_y)/\sqrt{2} \]
• apply a quasi-static external induction \mathcal{B}
• the typical electron obeys
 \[m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B}) \]
• Fourier transform this
 \[m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i\omega \tilde{x} \times \mathcal{B}) \]
• assume $\mathcal{B} = B\hat{e}_z$
• assume circularly polarized light
 \[\tilde{E} = \tilde{E}_\pm \hat{e}_\pm \text{ where } \hat{e}_\pm = (\hat{e}_x + i\hat{e}_y)/\sqrt{2} \]
• try $\tilde{x} = \tilde{x}_\pm \hat{e}_\pm$
apply a quasi-static external induction \mathcal{B}
the typical electron obeys
\[
m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B})
\]
Fourier transform this
\[
m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i\omega \tilde{x} \times \mathcal{B})
\]
assume $\mathcal{B} = B\hat{e}_z$
assume circularly polarized light
\[
\tilde{E} = \tilde{E}_\pm \hat{e}_\pm \text{ where } \hat{e}_\pm = (\hat{e}_x + i\hat{e}_y)/\sqrt{2}
\]
try \(\tilde{x} = \tilde{x}_\pm \hat{e}_\pm\)
note \(\hat{e}_\pm \times \hat{e}_z = \mp i\hat{e}_\pm\)
apply a quasi-static external induction \mathcal{B}

the typical electron obeys

$$m(\ddot{x} + \Gamma \dot{x} + \Omega^2 x) = q(E + \dot{x} \times \mathcal{B})$$

Fourier transform this

$$m(-\omega^2 - i \omega \Gamma + \Omega^2)\tilde{x} = q(\tilde{E} - i \omega \tilde{x} \times \mathcal{B})$$

assume $\mathcal{B} = B\hat{e}_z$

assume circularly polarized light

$$\tilde{E} = \tilde{E}_\pm \hat{e}_\pm \text{ where } \hat{e}_\pm = (\hat{e}_x + i \hat{e}_y)/\sqrt{2}$$

try $\tilde{x} = \tilde{x}_\pm \hat{e}_\pm$

note $\hat{e}_\pm \times \hat{e}_z = \mp i \hat{e}_\pm$

therefore

$$m(-\omega^2 - i \omega \Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega B \tilde{x}_\pm)$$
Faraday effect
\begin{itemize}
\item \(m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega B\tilde{x}_\pm) \)
\end{itemize}
$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega B \tilde{x}_\pm)$

therefore

$$\tilde{x}_\pm = \frac{q\tilde{E}_\pm}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega B}$$
• \(m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega B\tilde{x}_\pm) \)
• therefore
\[
\tilde{x}_\pm = \frac{q\tilde{E}_\pm}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega B}
\]
• recall \(\tilde{P} = Nq\tilde{x} = \epsilon_0\chi\tilde{E} \)
Faraday effect

\begin{itemize}
 \item \(m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega B \tilde{x}_\pm)\)

 \item therefore
 \[
 \tilde{x}_\pm = \frac{q\tilde{E}_\pm}{m(\Omega^2 - i\omega \Gamma - \omega^2) \pm q\omega B}
 \]

 \item recall \(\tilde{P} = Nq\tilde{x} = \epsilon_0 \chi \tilde{E}\)

 \item effect of quasi-static induction \(B\) is
 \[
 \chi_{\pm}(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - i\omega \Gamma - \omega^2 \pm (q/m)\omega B}
 \]
\end{itemize}
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Faraday effect

- \[m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega \mathcal{B}\tilde{x}_\pm) \]

- therefore

\[\tilde{x}_\pm = \frac{q\tilde{E}_\pm}{m(\Omega^2 - i\omega \Gamma - \omega^2) \pm q\omega \mathcal{B}} \]

- recall \(\tilde{P} = Nq\tilde{x} = \epsilon_0 \chi \tilde{E} \)

- effect of quasi-static induction \(\mathcal{B} \) is

\[\chi_\pm(\omega) = \frac{Nq^2}{\epsilon_0 m \Omega^2 - i\omega \Gamma - \omega^2 \pm (q/m)\omega \mathcal{B}} \]

- left and right handed polarized light sees different susceptibility
\[m(-\omega^2 - i\omega \Gamma + \Omega^2)\tilde{x}_\pm = q(\tilde{E}_\pm \mp \omega \mathcal{B}\tilde{x}_\pm) \]

therefore

\[\tilde{x}_\pm = \frac{q\tilde{E}_\pm}{m(\Omega^2 - i\omega \Gamma - \omega^2) \pm q\omega \mathcal{B}} \]

recall \(\tilde{P} = Nq\tilde{x} = \epsilon_0\chi \tilde{E} \)

effect of quasi-static induction \(\mathcal{B} \) is

\[\chi_\pm(\omega) = \frac{Nq^2}{\epsilon_0 m \frac{1}{\Omega^2 - i\omega \Gamma - \omega^2 \pm (q/m)\omega \mathcal{B}}} \]

left and right handed polarized light sees different susceptibility

Faraday effect
Michael Faraday, English physicist, 1791-1867
The Drude Model

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Remarks

- \mathbf{B} is always small (in natural units)
- $\varepsilon_{ij}(\omega; B) = \varepsilon_{ij}(\omega; 0) + iK(\omega)\varepsilon_{ijk}B_k$
- linear magneto-optic effect
- Faraday constant is $K(\omega) = Nq^3\varepsilon_0m^2\omega(\Omega^2 - i\omega\Gamma - \omega^2)^2$
- $K(\omega)$ is real in transparency window
- i.e. if ω is far away from Ω
- Faraday effect distinguishes between forward and backward propagation

Optical isolator
• \mathcal{B} is always small (in natural units)
• B is always small (in natural units)

• $\varepsilon_{ij}(\omega; B) = \varepsilon_{ij}(\omega; 0) + i K(\omega)\varepsilon_{ijk}B_k$
Remarks

- B is always small (in natural units)
- $\varepsilon_{ij}(\omega; B) = \varepsilon_{ij}(\omega; 0) + i K(\omega) \varepsilon_{ijk} B_k$
- linear magneto-optic effect
• \(B \) is always small (in natural units)

• \(\epsilon_{ij}(\omega; B) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}B_k \)

• linear magneto-optic effect

• Faraday constant is

\[
K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}
\]
- **Remarks**

 - \mathcal{B} is always small (in natural units)
 - $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + i K(\omega) \epsilon_{ijk} \mathcal{B}_k$
 - linear magneto-optic effect
 - Faraday constant is
 \[
 K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}
 \]
 - $K(\omega)$ is real in transparency window
The Drude Model
Peter Hertel

Remarks

- \(\mathcal{B} \) is always small (in natural units)
- \(\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k \)
- linear magneto-optic effect
- Faraday constant is
 \[
 K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}
 \]
- \(K(\omega) \) is real in transparency window
- i.e. if \(\omega \) is far away from \(\Omega \)
• \mathcal{B} is always small (in natural units)

• $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$

• linear magneto-optic effect

• Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}$$

• $K(\omega)$ is real in transparency window

• i.e. if ω is far away from Ω

• Faraday effect distinguishes between forward and backward propagation
• B is always small (in natural units)
• $\epsilon_{ij}(\omega; B) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}B_k$
• linear magneto-optic effect
• Faraday constant is

 $$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}$$

 • $K(\omega)$ is real in transparency window
 • i. e. if ω is far away from Ω
 • Faraday effect distinguishes between forward and backward propagation
 • optical isolator
Conduction in a magnetic field

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

\[m \frac{\omega^2 - i \Gamma \omega}{\omega (\omega^2 - i \Gamma \omega)} \tilde{x} = q (\tilde{E} - i \omega \tilde{x} \times \tilde{B}) \]

\[\text{Ohmic current } \propto \tilde{E} \text{ and Hall current } \propto \tilde{E} \times \tilde{B} \]
Conduction in a magnetic field

- set the spring constant $m\Omega^2 = 0$
Conduction in a magnetic field

- set the spring constant $m\Omega^2 = 0$
- study AC electric field \tilde{E}
Conduction in a magnetic field

- set the spring constant $m\Omega^2 = 0$
- study AC electric field \tilde{E}
- and static magnetic induction \mathcal{B}
Conduction in a magnetic field

- set the spring constant $m\Omega^2 = 0$
- study AC electric field \tilde{E}
- and static magnetic induction B
- solve
 \[m(-\omega^2 - i\Gamma\omega)\tilde{x} = q(\tilde{E} - i\omega\tilde{x} \times B) \]
Conduction in a magnetic field

- set the spring constant $m\Omega^2 = 0$
- study AC electric field \tilde{E}
- and static magnetic induction \mathcal{B}
- solve
 \[m(-\omega^2 - i\Gamma \omega)\tilde{x} = q(\tilde{E} - i\omega \tilde{x} \times \mathcal{B}) \]
- or
 \[\tilde{x} = \frac{q}{m - i\omega \Gamma - i\omega} \left\{ \tilde{E} - i\omega \tilde{x} \times \mathcal{B} \right\} \]
Conduction in a magnetic field

- set the spring constant \(m \Omega^2 = 0 \)
- study AC electric field \(\tilde{E} \)
- and static magnetic induction \(\mathcal{B} \)
- solve
 \[
 m(-\omega^2 - i\Gamma\omega)\tilde{x} = q(\tilde{E} - i\omega\tilde{x} \times \mathcal{B})
 \]
- or
 \[
 \tilde{x} = \frac{q}{m - i\omega \Gamma - i\omega} \left\{ \tilde{E} - i\omega\tilde{x} \times \mathcal{B} \right\}
 \]
- by iteration
 \[
 \tilde{x} = \ldots \left\{ \tilde{E} + \frac{q}{m \Gamma - i\omega} \tilde{E} \times \mathcal{B} \right\}
 \]
Conduction in a magnetic field

- set the spring constant \(m\Omega^2 = 0 \)
- study AC electric field \(\tilde{E} \)
- and static magnetic induction \(B \)
- solve
 \[
 m(-\omega^2 - i\Gamma \omega)\tilde{x} = q(\tilde{E} - i\omega\tilde{x} \times B)
 \]
- or
 \[
 \tilde{x} = \frac{q}{m - i\omega} \left(\frac{1}{\Gamma - i\omega} \{\tilde{E} - i\omega\tilde{x} \times B\} \right)
 \]
- by iteration
 \[
 \tilde{x} = \ldots \left\{ \tilde{E} + \frac{q}{m} \frac{1}{\Gamma - i\omega} \tilde{E} \times B \right\}
 \]
- Ohmic current \(\propto \tilde{E} \) and Hall current \(\propto \tilde{E} \times B \)
Hall effect, schematically
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Hall effect

- Hall current usually forbidden by boundary conditions
- Hall field \(\tilde{E}_H = -\frac{q}{m_1} \Gamma - i\omega \tilde{E} \times B \)
- replace \(\tilde{E} \) by \(\tilde{E} + \tilde{E}_H \)
- \(\tilde{E}_H \times B \) can be neglected
- current \(\tilde{J}(\omega) = \sigma(\omega) \tilde{E}(\omega) \) as usual
- additional Hall field \(\tilde{E}_H(\omega) = R(\omega) \tilde{J}(\omega) \times B \)
- Hall constant \(R = -1/Nq \) does not depend on \(\omega \).
- ... if there is a dominant charge carrier.
- \(R \) has different sign for electrons and holes.
• Hall current usually forbidden by boundary conditions
Hall effect

- Hall current usually forbidden by boundary conditions
- Hall field
 \[
 \tilde{\mathcal{E}}_H = -\frac{q}{m \Gamma - i\omega} \tilde{\mathcal{E}} \times \mathcal{B}
 \]
• Hall current usually forbidden by boundary conditions
• Hall field
\[\tilde{\mathcal{E}}_H = -\frac{q}{m \Gamma - i\omega} \tilde{\mathcal{E}} \times \mathcal{B} \]
• replace \(\tilde{\mathcal{E}} \) by \(\tilde{\mathcal{E}} + \tilde{\mathcal{E}}_H \)
- Hall current usually forbidden by boundary conditions
- Hall field
 \[
 \tilde{\mathcal{E}}_H = -\frac{q}{m} \frac{1}{\Gamma - i\omega} \tilde{\mathcal{E}} \times \mathcal{B}
 \]
 - replace \(\tilde{\mathcal{E}} \) by \(\tilde{\mathcal{E}} + \tilde{\mathcal{E}}_H \)
 - \(\tilde{\mathcal{E}}_H \times \mathcal{B} \) can be neglected
• Hall current usually forbidden by boundary conditions

• Hall field
\[\tilde{E}_H = -\frac{q}{m \Gamma - i\omega} \tilde{E} \times B \]

• replace \(\tilde{E} \) by \(\tilde{E} + \tilde{E}_H \)

• \(\tilde{E}_H \times B \) can be neglected

• current \(\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega) \) as usual
Hall effect

- Hall current usually forbidden by boundary conditions
- Hall field
 \[\tilde{E}_H = -\frac{q}{m \Gamma - i\omega} \tilde{E} \times B \]
 - replace \(\tilde{E} \) by \(\tilde{E} + \tilde{E}_H \)
 - \(\tilde{E}_H \times B \) can be neglected
- current \(\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega) \) as usual
- additional Hall field \(\tilde{E}_H(\omega) = R(\omega)\tilde{J}(\omega) \times B \)
- Hall current usually forbidden by boundary conditions
- Hall field
 \[\tilde{\mathbf{E}}_H = -\frac{q}{m \Gamma - i\omega} \tilde{\mathbf{E}} \times \mathcal{B} \]
- replace \(\tilde{\mathbf{E}} \) by \(\tilde{\mathbf{E}} + \tilde{\mathbf{E}}_H \)
- \(\tilde{\mathbf{E}}_H \times \mathcal{B} \) can be neglected
- current \(\tilde{\mathbf{J}}(\omega) = \sigma(\omega) \tilde{\mathbf{E}}(\omega) \) as usual
- additional Hall field \(\tilde{\mathbf{E}}_H(\omega) = R(\omega) \tilde{\mathbf{J}}(\omega) \times \mathcal{B} \)
- Hall constant \(R = -1/Nq \) does not depend on \(\omega \)
The Drude Model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- Hall current usually forbidden by boundary conditions
- Hall field
 \[\tilde{E}_H = -\frac{q}{m \Gamma - i\omega} \tilde{E} \times B \]
 - replace \(\tilde{E} \) by \(\tilde{E} + \tilde{E}_H \)
 - \(\tilde{E}_H \times B \) can be neglected
- current \(\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega) \) as usual
- additional Hall field \(\tilde{E}_H(\omega) = R(\omega)\tilde{J}(\omega) \times B \)
- **Hall constant** \(R = -1/Nq \) does not depend on \(\omega \)
- ... if there is a dominant charge carrier.
• Hall current usually forbidden by boundary conditions
• Hall field
 \[\tilde{E}_H = - \frac{q}{m \Gamma - i\omega} \tilde{E} \times B \]
• replace \(\tilde{E} \) by \(\tilde{E} + \tilde{E}_H \)
• \(\tilde{E}_H \times B \) can be neglected
• current \(\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega) \) as usual
• additional Hall field \(\tilde{E}_H(\omega) = R(\omega)\tilde{J}(\omega) \times B \)
• Hall constant \(R = -1/Nq \) does not depend on \(\omega \)
• \(\ldots \) if there is a dominant charge carrier.
• \(R \) has different sign for electrons and holes