Normal lattice polytopes

Winfried Bruns

FB Mathematik/Informatik
Universität Osnabrück

wbruns@uos.de

Osnabrück, July 2015
Joint work with

Joseph Gubeladze (San Francisco, since 1995)

and

Mateusz Michałek (Berlin/Berkeley, more recently)
A lattice polytope in \mathbb{R}^d is the convex hull of finitely many lattice points:

We set $L(P) = P \cap \mathbb{Z}^d$.

$$cP = P + \cdots + P \quad (c \text{ summands})$$

P is normal if

$$L(cP) = L(P) + \cdots + L(P) \quad (c \text{ summands})$$

This equation means: normal lattice polytopes are the discrete analog of convex polytopes.

Other terminology: P has the integer decomposition property, P is integrally closed.
The cone $C(P)$ is generated by $P' = P \times \{1\} \subset \mathbb{R}^{d+1}$:

The monoid $C(P) \cap \mathbb{Z}^{d+1}$ is finitely generated by Gordan’s lemma.

Proposition

P is normal \iff $L(P')$ generates $C(P) \cap \mathbb{Z}^{d+1}$.

Easy observation: $P = Q_1 \cup \cdots \cup Q_n$, Q_i normal \implies P is normal

Normality \implies $\mathbb{Z}L(P') = \mathbb{Z}^{d+1}$.
A lattice \textit{d-simplex} is a lattice polytope \(S\) of dimension \(d\) with \(d + 1\) vertices \(v_0, \ldots, v_d\): a triangle, a tetrahedron, \ldots

\(S\) is unimodular \(\iff\) \(v_1 - v_0, \ldots, v_d - v_0\) are a \(\mathbb{Z}\)-basis of \(\mathbb{Z}^d\)
\(\iff\) \(\text{vol}(S) = 1/d!\).

A unimoduler simplex is evidently normal.

\(S\) is \textit{empty} if the vertices are the only lattice points of \(S\).

\textbf{Theorem}

\begin{enumerate}
\item An empty 2-simplex is unimodular.
\item Every lattice 2-polytope is normal.
\end{enumerate}

\textbf{Proof.}

(1) By Pick’s formula, an empty 2-simplex has area 1/2.
(2) Every lattice polytope has a triangulation into empty simplices.

In general \((d - 1)P\) is always normal, \(d = \dim P\).
Quantum jumps and partial order

Let $\text{NPol}(d)$ be the set of normal lattice d-polytopes.

A pair (P, Q), $P, Q \in \text{NPol}(d)$, is a quantum jump if $P \subset Q$ and $\#L(Q) = 1 + \#L(P)$.

$P < Q \iff$ there are Q_0, \ldots, Q_n in $\text{NPol}(d)$ such that $P = Q_0, \ldots, Q_n = Q$ and (Q_i, Q_{i+1}) a quantum jump for every i.

Question

Is $<$ the same as \subset? Do there exist nontrivial minimal and/or maximal elements in $\text{NPol}(d)$?

Theorem

In $\text{NPol}(2)$ one has $P < Q \iff P \subset Q$.

In dim > 3 there exist nontrivial minimal elements: $< \neq \subset$.

Dim 3: nontrivial minimal elements?? Nevertheless $< \neq \subset$.

Winfried Bruns
Normal lattice polytopes
Characterizations of normality?

Definition

A lattice d-polytope P has

(UC) \iff P is the union of unimodular simplices (Unimodular Cover);

(ICP) \iff $\mathbb{Z}L(P') = \mathbb{Z}^{d+1}$ and for every $x \in \mathbb{Z}_+ L(P')$ there exist $x_1, \ldots, x_{d+1} \in L(P')$, such that $x = a_1 x_1 + \cdots + a_{d+1} x_{d+1}$, $a_i \in \mathbb{Z}_+$ (Integral Carathéodory Property).

Clearly: (UC) \implies (ICP) & normality.

More difficult: (ICP) \implies normality (B.-Gubeladze)

Question (Sebő)

Does normality imply (UC) or at least (ICP) ?
No characterization of normality

Theorem

Suppose P is a counterexample of minimal dimension d to (UC) or (ICP). Then there exists a descending chain in $\text{NPol}(d)$ down from P to a minimal counterexample with respect to $<$.

So, to find a counterexample, start from some “randomly” chosen polytope, descend from P in $\text{NPol}(d)$ and hope to end at a counterexample. This search strategy was indeed successful:

There exist normal 5-polytopes P_5 and $Q_5 \supset P_5$ with 10 and 12 lattice points, resp., both minimal in $\text{NPol}(5)$, such that

- (B.-Gubeladze, 1998) P_5 fails (UC),
- (Henk-Martin-Weismantel) P_5 fails (ICP),
- (B.,2006) Q_5 fails (UC), but has (ICP).
Open problems on covering and normality

The coordinates of P_5:

$$z_1 = (0, 1, 0, 0, 0, 0), \quad z_6 = (1, 0, 2, 1, 1, 2),$$
$$z_2 = (0, 0, 1, 0, 0, 0), \quad z_7 = (1, 2, 0, 2, 1, 1),$$
$$z_3 = (0, 0, 0, 1, 0, 0), \quad z_8 = (1, 1, 2, 0, 2, 1),$$
$$z_4 = (0, 0, 0, 0, 1, 0), \quad z_9 = (1, 1, 1, 2, 0, 2),$$
$$z_5 = (0, 0, 0, 0, 0, 1), \quad z_{10} = (1, 2, 1, 1, 2, 0).$$

Question

1. Does (UC) or at least (ICP) hold in dimension 3 or 4?
2. Does every counterexample inherit the failure of (UC) or (ICP) from P_5?
The height of quantum jumps

Question

Do maximal polytopes exist?

Let \((P, Q)\) be a quantum jump, \(z \in L(Q) \setminus L(P)\). Then \(z\) is also called a quantum jump over \(P\). How far can it be from \(P\)? How close is the nearest jump?

Let \(F\) be a facet of \(P\). Then \(ht_F : \mathbb{Z}^d \rightarrow \mathbb{Z}\) is the unique surjective affine linear function that vanishes on \(F\) and is \(\geq 0\) on \(L(P)\).

\(F\) is **visible** from \(z\) if \(ht_F(z) < 0\).

\[ht_P(z) = \max_F \text{ visible} \{|ht_F(z)|\} \]

\[\text{width}_F P = \max_{x \in P} \{ht_F(x)\} \]
In dimension 2 the situation is again simple, at least globally:

Proposition

1. If $\text{ht}_P(z) = 1$, then z is a jump over P.
2. The converse holds in dimension 2.

Locally the situation is more complicated, even in dimension 2. Let us say that vertex $x \in P$ is **dark** if it is not visible from a jump.

Proposition

For every n there exists a 2-polytope P with n adjacent dark vertices.
The dashed lines indicate ht -1 over the facets parallel to them. A point illuminating the origin must have coordinates $(-1, m)$ or $(m, -1)$. Each of them is excluded by one of the other facets.
Theorem

For every \(n \) there exists a normal 3-polytope \(P \) such that

1. there is no lattice point of height \(< n \) over \(P \);
2. there exists a jump \(z \) of height \(n \) over \(P \).

One can take the cross-polytope with half axes \(n, n + 1, n^2 + n + 1 \):

![Cross-polytope diagram](image-url)
Theorem

$P \subset Q$ lattice 3-polytopes, $P \in \text{NPol}(3)$, $\#L(Q) = \#L(P) + 1$, $z \in L(Q) \setminus L(P)$. Then the following are equivalent:

1. z is a quantum jump over P.
2. For each facet F of P visible from z, $P_{z,F}$ contains exactly $\mu(F)$ lattice points y such that $ht_F(y) = j$, $1 \leq j < |ht_F(z)|$.

$\mu(F) = \text{multiplicity of } F$
$= \text{lattice normalized volume}$
The height bound

Theorem

Let z be a quantum jump over P. Then

$$| \text{ht}_F(z) | \leq 1 + (d - 2) \text{width}_F P$$

for every facet F of P that is visible from z.

Theorem

For all $d \geq 2$ and $w \geq 1$ there exists a quantum jump (P, Q) in $\text{NPol}(d)$ such that:

1. $z \in \text{L}(Q) \setminus \text{L}(P)$ is visible from exactly one facet $F \subset P$,
2. $\text{width}_F P = w$,
3. $| \text{ht}_F(z) | = 1 + (d - 2)w$.
A jump of extreme height

\[P = \text{conv}(0, \mathbf{e}_1, \ldots, \mathbf{e}_{d-1}, -w\mathbf{e}_d), \quad z = (1, \ldots, 1, (d - 2)w + 1) \]

\[d = 3, \ w = 1: \]
Maximal polytopes

We are not sure in dimension 3, but there is a good chance that maximal polytopes do not exist:

Theorem

No simplex in dimension 3 is maximal.

We have no construction that produces a maximal polytope in dimension $d + 1$ from one in dimension d, but there is no doubt that maximal polytopes exist in dimensions ≥ 4:

Theorem

There exist maximal polytopes, even simplices, in dimensions 4 and 5.

The theorem is based on examples found by a computer search.
A maximal 4-simplex

The simplex with vertices

\[(0, 3, 2, 0) \ (1, 1, 3, 2) \ (2, 3, 0, 4) \ (4, 0, 0, 2) \ (4, 4, 4, 2)\]

is maximal. In order to verify maximality one computes all 125852 lattice points satisfying the height bound, and checks that none of them is a jump. This takes about 2 minutes.

Our program quantum does the search and verifies that a potentially maximal polytope is indeed maximal. It uses the library interface of Normaliz.
Search strategies

After long experimenting we found two successful strategies:

1. Start from a “random” normal polytope and extend it successively in such a way that the new polytope has a chance to be maximal. Stop when a maximal polytope is reached or some size bound is reached, and start again.

2. Make a “random” simplex and test it for maximality. If it is not maximal, test the next simplex.

It was a complete surprise that (2) works. We tried it after (1) had found a maximal 5-simplex in dimension 5. One must test MANY polytopes and (2) is fast: mass production beats sophistication.

For (1), all “pure” extension strategies have failed. The following has turned out optimal: if P allows a height 1 jump, take it. If not take the jump for which the new polytope maximizes the average facet multiplicity. Also successful: maximize $\text{vol}(Q \setminus P)$.
Final questions

Question

Do there exist maximal and nontrivial minimal elements in \(\text{NPol}(3)\)?

Question

Do there exist isolated points in \(\text{NPol}(d)\), i.e., polytopes that are both minimal and maximal?