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Let R be a normal Noetherian domain, andn ideal inR for which the
Rees algebra

B =% ):%(R,I):élkaCR[T]
k=0

Is anormal Cohen-Macaulay domaifhe normality of the Rees algebra is
equivalent to the integral closedness of all pow&raVe will assume in the

following thathtl > 2.

The results can be generalized to the case in wbial not normal. Then
% must be replaced by its normalization. Moreover, it woulgbssible to
avoid the hypothesis ht> 2.




Main result: (] = | 2]+ i(l— htp; )R] where
=1

...] class in divisor class group,

R regular domain, ess. of finite type over a fi&ld
wy IS the canonical module 67,

Pi,...,B are the minimal prime ideals ®#7,

pi=BNR

crucial hypothesispi( ) — F’i(k> NRfori=1,...,tandallk e N.

Herzog-Vasconcelod#iV] Bruns-ConcdBC]
| = p prime andp®) = pk | = It(X) ideal of minors,

| Z is prime “Initial methods”




1 Divisor classgroup of a Reesalgebra

Simis-Trung[ST]:
Theorem 1.1. There is an exact sequence

0—7Z'—Cl(#)—CIR) — 0 (1)

where a basis of! is given by the classéB] of the minimal prime ideals
Pi,...,R of the divisorial ideal %.

In the following:  Z' denote<Z[Py] +---+Z[R].




For the proof of the theorem we use the following lemma, inchi8pecd
denotes the set of divisorial prime ideals.

Lemma 1.2. Let | be an ideal of height at lea&t and, with the notation
introduced)V; = %p; then

% =RT|NViN-- N\, 2)

and, moreover, R’] is asubintersectiomof %,

RT]=(){%p:P <€ Spec(%), P£Pi,...,R}. (3)

Proof. Z=({%p:PcSpec¢(#)} (bynormality).

(2) %p = R[T]o with Q € Spec(R[T]) if P 5 1Z. (Easy localization
argument.)

(3) Oneuses BR[T|>2 ([BC, Lemma 2.1]).




Proof of Theorem 1.1By the lemma and Nagata’s theorem one has an
exact sequence

0—-U—Cl(#)— CI(RT]) —0
whereU = ZP|P]| +--- + Z[R].

For linear independence @?],...,[R] see [ST)).
Finally, by Gaul3’' theorem, CR) = CI(R[T]).




In order to control the global choices for modules that afened only up to
local isomorphism one needs the Picard group:

Pic(R) is the subgroup of CR) formed by the isomorphism classes of
projective rank 1 modules=invertible ideals).

Proposition 1.3. The natural magPic(R) — Pic(Z) is anisomorphism
If R is locally factorial then the natural map

Cl(R) = Pic(R) — Pic(#) C CI(Z) splits the exact sequen¢®). In
particular Cl(%Z) = Z! © Pic(%).

Proof. Pic(R) — Pic(R[T]) isomorphism by normality, factors through
Pic(#), and Pi¢Z) NZ! = 0. O




2 Reesvaluationsand primary decomposition

As abovePy, ..., R are the minimal prime ideals 7.

Vi = Zp Is a discrete valuation domain, with assocliategks valuation;. It
Induces a (Rees) valuation &n

If Ris regular ang a prime ideal, then the function
Vp(x) = max{k: x € p¥}

Induces the-adic valuation orR. Crucial hypothesis of the main result ca
be expressed in terms of thie

pi(k) —pH¥AR — Vp, = Vi|R.




Proposition 2.1. Set J(j) = {xe R:Vvi(x) > ]

t
= () Ji(kd),
i—1
The intersection is irredundant fork 0. Moreover,

t
%= (P
=1

Proof. ConsiderZ = R[T]NV1N---NV; in eachT-degree:

Tk ={aTk:aecR vi(a) > —vi(T"),i=1,...,t},

and this is evidently equivalent to equation (4).

One hadZ =\_,P V'('%)) and O=Vv(ITZ) =v(T) +Vvi(IZ) since
ITZ ¢ B. Thereforev.(l%) = —Vvi(T).

10

[]




Proposition 2.2. Let R be a regular ring and | an ideal of height 2.

(a) Then the following are equivalent:

(i) Z(l)is normal, and for each minimal prime ideal P aFlthe Rees
valuationvp restricts on R to the valuation,yp = PNR;

(i) there exist prime idealsg;,...,pyiInRandd,...,d, € N such that
K=, p'%" for all k.

(b) Moreover, if(i) holds, and P,..., B are the minimal prime ideals of
| %, then one can chooge =R NR, d = —V(T), and the intersection
in (ii) is irredundant for k> 0.

(c) Conversely, if there existgfor each i=1,...,u such thabi(dik) cannot
be omitted in the representation &f In (ii), then the graded extensions
of the y to RT| with v(T) = —d; are the Rees valuations of | on

Q(R[T]).
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3 Thecanonical module of a subinter section

Strategy for the proof of the main resuBupposer is factorial so that
Cl(#%) =17 Then

(wz| =W [P1]+ - +W [R].
We have to determine the coefficiemts We have to findy;.

First step: localiz&k atp; = B NR. This preserveswy;, but also those

componentZ[P;] of Z' for whichp; C p;.

Finer instrument: Analyze7; = R[T|NV,. Then[w, ® %] = w[P%;], and
the strategy works if
o Wy QK] = |wz] e [ws ] can be computed.

So we have to analyze the behaviourotinder subintersections. Main
difficulty: w is characterized by homological conditions, but
subintersections are usually not flat extensions.
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Lemma 3.1. Let R be a normal Cohen-Macaulay domain, essentially of
finite type over a perfect field K, and=dimR. Then

r
o= (\Qr) "™

Proof. It has been proved by Kunz [Kul] thak is given by the regular
differentialr-forms R, (R), r = dimR, and Platte and Storch [PS] have

noticed that R (R) = (A" Qr/k) " . Sketch:
Write R=A/l, Aaregular domain.

0—1/1” = Qpx ®aAR— Qrjx — 0

is exact in codimension, kinceR is normal. Hencél /1] = —[Qr/k]
where[M| = [(A™M)**] for a moduleM of rankm overR. On the other

hand (See [HV] for the details),
1/1?] = —[Hi()] = —[ExtS(RA)] = —[wr],  c=codimR. [
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Theorem 3.2. Let K be a field, R a normal Cohen—Macaulay K-algebra c
essentially finite type over K, and Spec¢(R). Suppose that the
subintersection &,y R, Is again of essentially finite type over K and
Cohen—Macaulay.

Then thecanonical module of S ek ®r S)'!, where' denotes the functor
Homs(_,S). In other words, the canonical class of S is the imagexef
under the natural magl(R) — CI(S).

Proof. If K is not perfect one replacésby a subfieldg with [K : Kg] < o0
that is admissible in the sense of [Ku2, 6.23] RiSand regulaK-algebras
A andB of essentially finite type for which there exist presentagi@ = A/I
andS=B/J. Then Lemma 3.1 holds accordingly.
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The embedding : R — Sgives rise to amR-linear mapdg : Qg — Qg/k,
anddg induces a naturd-linear map

W (/\QR/K) QrRS— N\ Qg/k.-

Let g be a height 1 prime ideal & ThenS; = Rynr, and therefore) ®sS,

is an isomorphism. It follows that tt&@bidual extensiony' is an
Isomorphism at all height 1 prime ideaj®f S Since theS-biduals are
reflexive, Y is an isomorphism itself.

The second statement about the divisor classes follows dhatedy, since
(J® 9™ is exactly the divisorial ideal dBto which a divisorial ideal of R
extends ]
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4 Main result and proof

Proposition 4.1. Let R be a regular local ring with maximal ideal. Then
the Rees algebraz, = % (m¥) is normal and Cohen—Macaulay. Its
canonical module is unigue up to isomorphism and has class
(k—dimR+ 1)[R] = [m*Z] — (dimR— 1)[R] whereR, = m% is the only
divisorial ideal of Zx containingm*%.

Proof. Only the essential point. Let,..., %, r = dimR, be a regular
system of parameters and set

Jk= (% -TRT])NA
ThenJ, has class-r[R] + [m*%y] + [R] = [m*Z%] — (dimR— 1)[R].

It remains thatlc = wy,. k= 1: Herzog and Vasconcelds> 1: %
Veronese subalgebra &f;. []
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Theorem 4.2.
t

Z(d.+1 htpi ) [P +Zl htp;) [P
=

class of a canonical module &7 if
R regular domain, ess. of finite type over a field K,
Pi,...,B are the minimal prime ideals of#,
1% = iy P
pi=RNR,
crucial hypothesispi(k) —= Pi(k) NRfori=1,...,tandall ke N.

Moreover,% is Gorenstein if and only ifid= htp; —1foralli =1,...
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Proof. LetC be a module of the class given in the theorem. It is enough 1
show that each of its localizatiosy; with respect to maximal ideaiB8t of

Z 1S a canonical module a¥gy,. Such a localizatiosy; Is a localization

of Ry, with m = RN 1. Since the definition ofC] commutes with
localization InR (in fact, primary decomposition commutes with such
localizations), wanay assume thdt is regular localand therefore factorial.

Then Cl%) = Z', Pi(%#) = 0 (by Proposition 1.3), and we have a unique
Isomorphism class
(@] =wa[P1] + -+ W [R].

for the canonical module o®.

It is enough to determine, say;. We localizeR with respect tgp4, and
may then assume thRtis regular local with maximal ideah = p1.
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In the next step we pass to the subintersecienR|[T|NV;. But this
subintersection is exactly(m%), as follows from Propositions 2.1 and 2.2
(Sincem is a maximal ideal, ordinary and symbolic powers coincide.)

According to Theorem 3.2 the formation of the canonicalsE@mmutes
with subintersection, and s, IS the coefficient of the canonical module o
Z(m%) with respect to the extension Bf. By Proposition 4.1 this
coefficient isd; + 1—dimR =d; +1— htp4, as desired.

Gorenstein propertyBecause of the splitting C#?) = Z! ® Pic(%), the
class

t

_Z(di +1— htp;)[P]

is theZ!'-component of any canonical module#f ThereforeZ is
Gorenstein if and only if it vanishes.
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Corollary 4.3. With the hypotheses of Theorem 4.2 suppose we can fino
element € R such thatvp (X) = htp; for all i.

Then
wy =XTRT|NPLN---NR

IS the graded canonical module &f (with respect to the grading by T).

Proof.
TRT|NZ| = ITZ%] = 1%],

x% = (XRT]NZ) NP ...A R
— XRT|NZ] = —(c[P] +-- -+ [R])

[]

20



Example 4.4. Condition on Rees valuations in Theorem 4.2 is crucial.

| = the integral closure of the ideéX?,Y3,Z°%) c K[X,Y,Z].
Thenz = Z (1) is normal.

A K-basis ofZ is given by all monomialX2Y°z°T? where
15a+ 10b+ 6¢—30d > 0.

— = R[T] NV,

Valuation definingv; is the multigraded extension of function with
v1(X) =15,v1(Y) =10,v1(Z) = 6 andv,(T) = —30.

—  [|Z]| =30[P].
By toric calculation wy, = XYZTRT|NPy
— [wgg] = (—15— 10—6—|—30)[P1]—|—[P1] = 0.

SoZ is a Gorenstein ring.
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Remark 4.5. (a) The hypotheses of the theorem can be weakened. If we
definethe canonical module via Kaehler differentials (the dgdmn used

In the proof of Theorem 3.2), then the hypothesis that thesR&gebra is
Cohen—Macaulay is no longer necessary. However, one muiifyntbe

statement as follows: up to a summand in(B4g, the canonical module has
class

i(di +1—htpi)[R] + [k (R) @ %]
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(b) One can generalize Theorem 4.2 in such a way that Exampls 4
covered.

Isolation of eaclw; does not use the hypothesis on the Rees valuations.

Therefore, as soon as one can compute the canonical modR|€ of V;
for eachi, a generalization is possible.

A suitable hypothesis generalizing the conditignR = vy, is the following:
there exists aegular system of parametets ... ,Xm of R,, such that each
of the ideals{x € Ry, : vp (X) > k} is generated by monomials xa, ..., Xm.

Then one can repladép; in the theorem byp (X1 Xm) = 311 VR (X))

However, there exist valuations that do not allow such a “omoialization”.
A counterexample was communicated by D. Cutkosky.
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Corollary 4.6. Suppose that R and | satisfy the hypothesis of Theorem

Theextended Rees algebsd = [T 1] (or, the associated ring
o, (R) = #/1%) is Gorenstein

= there existce N, i =1,...,t, such that
() ¢di=htp;—1foralli =1,....t,and

() c = cj whenever there exists a maximal ideabf R withp;,pj C m.

Proof. % is a subintersection o#, namely

Z = {%q: Qe Spet(#),Q+IT#}.

— Cl(%Z) = Cl(R)Z[IT %]
Attention: Pic(g?) may be+ 0!
Therefore|wy| € Z[IT Z] must be tested locally w.ri.
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5 Applications

R=K|[X1,...,Xn], f1,..., fm € Rforms of degreq
—  S=K|[fq,...,Tn| 2Z/mZ,
=), =(fr,....Tn), m=(Xg,...,Xm).

Furthermore, if dins= n, thenm% is a minimal prime ideal of%#, and%
andSare divisorially “close’to each other.

This may allow thecomputation ofws.

Approach issuccessful for algebras generated by minors
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