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Let R be a normal Noetherian domain, andI an ideal inR for which the

Rees algebra

R = R(I) = R(R, I) =
∞⊕

k=0

IkTk ⊂ R[T]

is anormal Cohen-Macaulay domain. The normality of the Rees algebra is

equivalent to the integral closedness of all powersIk. We will assume in the

following thathtI ≥ 2.

The results can be generalized to the case in whichR is not normal. Then

R must be replaced by its normalization. Moreover, it would bepossible to

avoid the hypothesis htI ≥ 2.
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Main result: [ωR ] = [IR]+
t

∑
i=1

(1−htpi)[Pi ] where

• [. . . ] class in divisor class group,

• R regular domain, ess. of finite type over a fieldK,

• ωR is the canonical module ofR,

• P1, . . . ,Pt are the minimal prime ideals ofIR,

• pi = Pi ∩R,

• crucial hypothesis:p(k)
i = P(k)

i ∩R for i = 1, . . . , t and allk∈ N.

Herzog-Vasconcelos[HV]

I = p prime andp(k) = pk

IR is prime

Bruns-Conca[BC]

I = It(X) ideal of minors,

“initial methods”
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1 Divisor class group of a Rees algebra

Simis-Trung[ST]:

Theorem 1.1. There is an exact sequence

0→ Z
t → Cl(R) → Cl(R) → 0 (1)

where a basis ofZt is given by the classes[Pi ] of the minimal prime ideals

P1, . . . ,Pt of the divisorial ideal IR.

In the following: Z
t denotesZ[P1]+ · · ·+Z[Pt ].
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For the proof of the theorem we use the following lemma, in which Spec1

denotes the set of divisorial prime ideals.

Lemma 1.2. Let I be an ideal of height at least2, and, with the notation

introduced,Vi = RPi ; then

R = R[T]∩V1∩·· ·∩Vt , (2)

and, moreover, R[T] is asubintersectionof R,

R[T] =
⋂{

RP : P∈ Spec1(R), P 6= P1, . . . ,Pt
}
. (3)

Proof. R =
⋂
{RP : P∈ Spec1(R)} (by normality).

(2) RP = R[T]Q with Q∈ Spec1(R[T]) if P 6⊃ IR. (Easy localization

argument.)

(3) One uses htPiR[T] ≥ 2 ([BC, Lemma 2.1]).
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Proof of Theorem 1.1.By the lemma and Nagata’s theorem one has an

exact sequence

0→U → Cl(R) → Cl(R[T]) → 0

whereU = ZP[P1]+ · · ·+Z[Pt ].

For linear independence of[P1], . . . , [Pt ] see [ST]).

Finally, by Gauß’ theorem, Cl(R) = Cl(R[T]).
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In order to control the global choices for modules that are defined only up to

local isomorphism one needs the Picard group:

Pic(R) is the subgroup of Cl(R) formed by the isomorphism classes of

projective rank 1 modules (= invertible ideals).

Proposition 1.3. The natural mapPic(R) → Pic(R) is anisomorphism.

If R is locally factorial, then the natural map

Cl(R) = Pic(R) → Pic(R) ⊂ Cl(R) splits the exact sequence(1). In

particular Cl(R) = Z
t ⊕Pic(R).

Proof. Pic(R) → Pic(R[T]) isomorphism by normality, factors through

Pic(R), and Pic(R)∩Z
t = 0.
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2 Rees valuations and primary decomposition

As aboveP1, . . . ,Pt are the minimal prime ideals ofIR.

Vi = RPi is a discrete valuation domain, with associatedRees valuationvi . It

induces a (Rees) valuation onR.

If R is regular andp a prime ideal, then the function

vp(x) = max{k : x∈ p(k)}

induces thep-adic valuation onR. Crucial hypothesis of the main result can

be expressed in terms of thevi :

p
(k)
i = P(k)

i ∩R ⇐⇒ vpi = vi |R.
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Proposition 2.1. Set Ji( j) = {x∈ R : vi(x) ≥ j}. Then

Ik =
t⋂

i=1

Ji(kdi), di = −vi(T). (4)

The intersection is irredundant for k� 0. Moreover,

IR =
t⋂

i=1

P(di)
i .

Proof. ConsiderR = R[T]∩V1∩·· ·∩Vt in eachT-degree:

IkTk = {aTk : a∈ R, vi(a) ≥−vi(T
k), i = 1, . . . , t},

and this is evidently equivalent to equation (4).

One hasIR =
⋂t

i=1 P(vi(IR))
i and 0= vi(ITR) = vi(T)+vi(IR) since

ITR 6⊂ Pi . Thereforevi(IR) = −vi(T).
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Proposition 2.2. Let R be a regular ring and I an ideal of height≥ 2.

(a) Then the following are equivalent:

(i) R(I) is normal, and for each minimal prime ideal P of IR the Rees

valuationvP restricts on R to the valuation vp, p = P∩R;

(ii) there exist prime idealspi , . . . ,pu in R and d1, . . . ,du ∈ N such that

Ik =
⋂u

i=1p
(dik)
i for all k.

(b) Moreover, if(i) holds, and P1, . . . ,Pt are the minimal prime ideals of

IR, then one can choosepi = Pi ∩R, di = −vi(T), and the intersection

in (ii) is irredundant for k� 0.

(c) Conversely, if there exists ki for each i= 1, . . . ,u such thatp(dik)
i cannot

be omitted in the representation of Iki in (ii) , then the graded extensions

of the vi to R[T] with vi(T) = −di are the Rees valuations of I on

Q(R[T]).
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3 The canonical module of a subintersection

Strategy for the proof of the main result: SupposeR is factorial so that
Cl(R) = Z

t . Then
[ωR ] = w1[P1]+ · · ·+wt [Pt ].

We have to determine the coefficientswi . We have to findwi .

First step: localizeRatpi = Pi ∩R. This preserveswi , but also those
componentsZ[Pj ] of Z

t for whichp j ⊂ pi .

Finer instrument: AnalyzeRi = R[T]∩Vi . Then[ωR ⊗Ri ] = wi [PiRi ], and
the strategy works if

• [ωR ⊗Ri ] = [ωRi ] • [ωRi ] can be computed.

So we have to analyze the behaviour ofω under subintersections. Main
difficulty: ω is characterized by homological conditions, but
subintersections are usually not flat extensions.
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Lemma 3.1. Let R be a normal Cohen-Macaulay domain, essentially of

finite type over a perfect field K, and r= dimR. Then

ωR
∼=

( r∧
ΩR/K

)∗∗
.

Proof. It has been proved by Kunz [Ku1] thatωR is given by the regular
differentialr-forms Rr

K(R), r = dimR, and Platte and Storch [PS] have
noticed that RrK(R) =

(∧r ΩR/K
)∗∗

. Sketch:

Write R= A/I , A a regular domain.

0→ I/I2 → ΩA/K ⊗A R→ ΩR/K → 0

is exact in codimension 1, sinceR is normal. Hence[I/I2] = −[ΩR/K ]

where[M] = [(∧mM)∗∗] for a moduleM of rankmoverR. On the other
hand (See [HV] for the details),

[I/I2] = −[H1(I)] = −[ExtcA(R.A)] = −[ωR], c = codimR.

13



Theorem 3.2. Let K be a field, R a normal Cohen–Macaulay K-algebra of

essentially finite type over K, and Y⊂ Spec1(R). Suppose that the

subintersection S=
⋂

p∈Y Rp is again of essentially finite type over K and

Cohen–Macaulay.

Then thecanonical module of S is(ωR⊗RS)††, where† denotes the functor

HomS( ,S). In other words, the canonical class of S is the image ofωR

under the natural mapCl(R) → Cl(S).

Proof. If K is not perfect one replacesK by a subfieldK0 with [K : K0] < ∞
that is admissible in the sense of [Ku2, 6.23] forR, Sand regularK-algebras

A andB of essentially finite type for which there exist presentationsR= A/I

andS= B/J. Then Lemma 3.1 holds accordingly.
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The embeddingφ : R→ Sgives rise to anR-linear mapdφ : ΩR/K → ΩS/K ,

anddφ induces a naturalS-linear map

ψ :

( r∧
ΩR/K

)
⊗RS→

r∧
ΩS/K .

Let q be a height 1 prime ideal ofS. ThenSq = Rq∩R, and thereforeψ ⊗SSq

is an isomorphism. It follows that theS-bidual extensionψ†† is an

isomorphism at all height 1 prime idealsq of S. Since theS-biduals are

reflexive,ψ†† is an isomorphism itself.

The second statement about the divisor classes follows immediately, since

(J⊗S)†† is exactly the divisorial ideal ofS to which a divisorial idealJ of R

extends
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4 Main result and proof

Proposition 4.1. Let R be a regular local ring with maximal idealm. Then

the Rees algebraRk = R(mk) is normal and Cohen–Macaulay. Its

canonical module is unique up to isomorphism and has class
(k−dimR+1)[Pk] = [mkRk]− (dimR−1)[Pk] wherePk = mRk is the only

divisorial ideal ofRk containingmkRk.

Proof. Only the essential point. Letx1, . . . ,xr , r = dimR, be a regular
system of parameters and set

Jk = (x1 · · ·xr ·TR[T])∩Pk.

ThenJk has class−r[Pk]+ [mkRk]+ [Pk] = [mkRk]− (dimR−1)[Pk].

It remains thatJk = ωRk
. k = 1: Herzog and Vasconcelos,k > 1: Rk

Veronese subalgebra ofR1.
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Theorem 4.2.

t

∑
i=1

(di +1−htpi)[Pi ] = [IR]+
t

∑
i=1

(1−htpi)[Pi ]

class of a canonical module ofR if

• R regular domain, ess. of finite type over a field K,

• P1, . . . ,Pt are the minimal prime ideals of IR,

• IR =
⋂t

i=1 P(di)
i

• pi = Pi ∩R,

• crucial hypothesis:p(k)
i = P(k)

i ∩Rfor i = 1, . . . , t and all k∈ N.

Moreover,R is Gorenstein if and only if di = htpi −1 for all i = 1, . . . , t.

17



Proof. Let C be a module of the class given in the theorem. It is enough to

show that each of its localizationsCM with respect to maximal idealsM of

R is a canonical module ofRM. Such a localizationRM is a localization

of Rm with m = R∩M. Since the definition of[C] commutes with

localization inR (in fact, primary decomposition commutes with such

localizations), wemay assume thatR is regular local, and therefore factorial.

Then Cl(R) = Z
t , Pic(R) = 0 (by Proposition 1.3), and we have a unique

isomorphism class

[ωR ] = w1[P1]+ · · ·+wt [Pt ].

for the canonical module ofR.

It is enough to determine, say,w1. We localizeR with respect top1, and

may then assume thatR is regular local with maximal idealm = p1.
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In the next step we pass to the subintersectionS= R[T]∩V1. But this

subintersection is exactlyR(md1), as follows from Propositions 2.1 and 2.2.

(Sincem is a maximal ideal, ordinary and symbolic powers coincide.)

According to Theorem 3.2 the formation of the canonical class commutes

with subintersection, and sow1 is the coefficient of the canonical module of

R(md1) with respect to the extension ofP1. By Proposition 4.1 this

coefficient isd1 +1−dimR= d1 +1−htp1, as desired.

Gorenstein property: Because of the splitting Cl(R) = Z
t ⊕Pic(R), the

class
t

∑
i=1

(di +1−htpi)[Pi ]

is theZ
t-component of any canonical module ofR. ThereforeR is

Gorenstein if and only if it vanishes.
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Corollary 4.3. With the hypotheses of Theorem 4.2 suppose we can find an

elementx∈ Rsuch thatvPi (x) = htpi for all i.

Then

ωR = xTR[T]∩P1∩·· ·∩Pt

is the graded canonical module ofR (with respect to the grading by T).

Proof.

[TR[T]∩R] = [ITR] = [IR],

xR = (xR[T]∩R)∩P(d1)
1 ∩·· ·∩P(dt)

t

=⇒ [xR[T]∩R] = −(d1[P1]+ · · ·+dt [Pt ])
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Example 4.4. Condition on Rees valuations in Theorem 4.2 is crucial.

I = the integral closure of the ideal(X2,Y3,Z5) ⊂ K[X,Y,Z].

ThenR = R(I) is normal.

A K-basis ofR is given by all monomialsXaYbZcTd where

15a+10b+6c−30d ≥ 0.

=⇒ R = R[T]∩V1,

Valuation definingV1 is the multigraded extension of function with

v1(X) = 15,v1(Y) = 10,v1(Z) = 6 andv1(T) = −30.

=⇒ [IR] = 30[P1].

By toric calculation ωR = XYZTR[T]∩P1

=⇒ [ωR ] = (−15−10−6+30)[P1]+ [P1] = 0.

SoR is a Gorenstein ring.
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Remark 4.5. (a) The hypotheses of the theorem can be weakened. If we

definethe canonical module via Kaehler differentials (the description used

in the proof of Theorem 3.2), then the hypothesis that the Rees algebra is

Cohen–Macaulay is no longer necessary. However, one must modify the

statement as follows: up to a summand in Pic(R), the canonical module has

class
t

∑
i=1

(di +1−htpi)[Pi ]+ [ΩK(R)⊗R]

22



(b) One can generalize Theorem 4.2 in such a way that Example 4.4 is

covered.

Isolation of eachwi does not use the hypothesis on the Rees valuations.

Therefore, as soon as one can compute the canonical module ofR[T]∩Vi

for eachi, a generalization is possible.

A suitable hypothesis generalizing the conditionvPi |R= vpi is the following:

there exists aregular system of parametersx1, . . . ,xm of Rpi such that each

of the ideals{x∈ Rpi : vPi (x) ≥ k} is generated by monomials inx1, . . . ,xm.

Then one can replacehtpi in the theorem byvPi (x1 · · ·xm) = ∑m
j=1 vPi (x j).

However, there exist valuations that do not allow such a “monomialization”.

A counterexample was communicated by D. Cutkosky.
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Corollary 4.6. Suppose that R and I satisfy the hypothesis of Theorem 4.2.

Theextended Rees algebrâR = R[T−1] (or, the associated ring

grI (R) = R/IR) is Gorenstein

⇐⇒ there exist ci ∈ N, i = 1, . . . , t, such that

(i) cidi = htpi −1 for all i = 1, . . . , t, and

(ii) ci = c j whenever there exists a maximal idealm of R withpi ,p j ⊂ m.

Proof. R̂ is a subintersection ofR, namely

R̂ =
⋂
{RQ : Q∈ Spec1(R),Q 6= ITR}.

=⇒ Cl(R̂) = Cl(R)/Z[ITR]

Attention: Pic(R̂) may be6= 0!

Therefore[ωR ] ∈ Z[ITR] must be tested locally w.r.t.R.
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5 Applications

R= K[X1, . . . ,Xn], f1, . . . , fm ∈ R forms of degreeg

=⇒ S= K[ f1, . . . , fm] ∼= R/mR,

R = R(I), I = ( f1, . . . , fm), m = (X1, . . . ,Xm).

Furthermore, if dimS= n, thenmR is a minimal prime ideal ofIR, andR

andSare divisorially “close”to each other.

This may allow thecomputation ofωS.

Approach issuccessful for algebras generated by minors.
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