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Preface

The theme of these notes is the duality between a Cohen–Macaulay graded algebra
and its canonical module. This duality manifests itself in numerous homological and
combinatorial theorems.

The first three sections represent what in my opinion should be the basic knowl-
edge of someone interested in the combinatorial aspects of commutative algebra. I
have tried to indicate all the major ideas on which the theory is built.

In Section 4 the usual direction from commutative algebra to combinatorics is
reversed: a combinatorial identity leads to the identification of the canonical module
of the ring of invariants of a finite group.

In Section 5 we discuss the theory of normal semigroup rings. It emerges from an
intriguing interplay of combinatorial, topological, and algebraic aspects. Once we
have determined the canonical module, we can harvest plenty of combinatorial the-
orems about lattice points in rational polytopes, among them Ehrhart’s remarkable
reciprocity law.

Section 6 is much more elementary. We prove a reciprocity law for the number
of walks in a directed graph from the formula that relates the Hilbert series of a
module M , that of the ring, and the Poincaré series of M defined by a graded free
resolution.

The homological and combinatorial theory of commutative rings is the topic of
the book [1], Cohen–Macaulay rings by Jrgen Herzog and me (Cambridge University
Press, 1993). There the reader will find a fully expanded version of the material of
Sections 1–5, and, among other things, a chapter on Stanley–Reisner rings.

There are almost no references to the original sources in the text. I have however
added a small bibliography of papers and books that deal with commutative algebra
and combinatorics.
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1 Graded K-algebras

Let K be a field, and R a finitely generated, positively graded K-algebra, i.e. R is
the direct sum

R =
∞⊕

i=0

Ri

of K-vector spaces, and the multiplication on R satisfies the rule RiRj ⊂ Ri+j ; fur-
thermore R = K[x1, . . . , xn] for suitable elements x1, . . . , xn ∈

⋃
i>0Ri. In particular

R0 = K, and R is a Noetherian ring. In order to have a compact terminology we
simply say that R is a graded K-algebra.

The elements of the i-th graded component Ri are homogeneous of degree i or
i-forms, and similar conventions apply to the graded R-modules below. By we
always denote the graded (or irrelevant) maximal ideal:

=
∞⊕

i=1

Ri.

A typical example of a gradedK-algebra is a polynomial ring S = K[X1, . . . , Xn]:
in its standard grading a polynomial f is homogeneous if all the monomials occuring
in f have the same (total) degree, and a monomial Xa1

1 · · ·X
an
n has degree a1+· · ·an.

As a K-algebra, S is generated by the degree 1 elements Xi. More generally, if a
graded K-algebra is generated by elements of degree 1, then we call it a homogeneous

K-algebra. (Some authors prefer the name standard K-algebra.)
However, we are free to assign arbitrary positive degrees ai to the indeterminates

of S: then the degree of Xe1
1 · · ·X

en
n is a1e1 + · · · anen, and the i-forms are the K-

linear combinations of the monomials of degree i.
Suppose that the graded K-algebra R is generated by homogeneous elements

x1, . . . , xn of degrees a1, . . . , an; then the assignment π : Xi 7→ xi makes R a residue
class K-algebra of S, and the natural epimorphism is compatible with the gradings:
the image of an i-form is an i-form, and Ri = Si/(Si ∩Kerπ).

In general, if the ideal is generated by homogeneous elements, then the residue
class ring R/ is a graded K-algebra with (R/)i = R/(Ri ∩ ).

A graded R-module is an R-module that as a K-vector space is a direct sum

M =
⊕

i∈

Mi.

satisfying the rule RiMj ⊂ Mi+j. (It would be more precise to say that a graded R-
module is an R-module together with such a decomposition.) Note that the elements
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1. Graded K-algebras 3

of M may have negative degrees. If M is a Noetherian R-module, then Mi = 0 for
i≪ 0; if it is Artinian, then Mi = 0 for i≫ 0; in both cases one has dimK Mi <∞
for all i. Every element x of M has a unique representation as a sum x =

∑
i xi of

elements xi ∈Mi, which are called the homogeneous components of x.
One can change the grading of M by a shift s ∈ : one sets M(s)i = Mi+s. In

other words, the degree j homogeneous elements of M have degree j − s in M(s).
A submodule U ofM is graded if U =

⊕
i U∩Mi. If U is a graded submodule, then

M/U is a graded module with homogeneous components Mi/(U ∩Mi). Obviously a
submodule U is graded if and only if contains the homogeneous components of each
of its elements. The annihilator of a graded module is a graded ideal.

A homomorphism ϕ : M → N of graded R-modules is called homogeneous if
ϕ(Mi) ⊂ Ni for all i ∈ , and M and N are isomorphic as graded modules if and only
if there exists a homogeneous isomorphism ϕ : M → N . Though all the modules
M(s) are isomorphic as plain R-modules, they are in general non-isomorphic as
graded modules. The kernel, image, and cokernel of a homogeneous homomorphism
are graded modules in a natural way. The graded modules form a category whose
morphisms are the homogeneous homomorphisms.

It is absolutely essential that the homomorphisms in complex of graded mod-
ules are homogeneous. The (co)homology modules of such a (co)chain complex are
graded so that one can use graded homological algebra.

Dimension and depth. A guiding principle in the theory of graded rings is that all
the local properties and invariants of a graded module should be determined by the
localizations with respect to graded prime ideals.

The basic lemma on which this principle rests is the following.

Lemma 1.1. Let R be a graded K-algebra.

(a) For every prime ideal the ideal ∗ that is generated by the homogeneous elements

in is a prime ideal.

(b) Let M be a graded R-module.

(i) If ∈ SuppM , then ∗ ∈ SuppM .

(ii) If ∈ AssM , then is graded; furthermore is the annihilator of a homogeneous

element.

Proposition 1.2. Let R be a graded K-algebra. Then dimR = dimR.

Let be a minimal prime ideal of R. Then, by virtue of the lemma, is graded,
and thus ⊂ . From the dimension theory of affine algebras it follows that dimR/ =
dimR/R. This implies the proposition.

There is no (standard) global notion of depth. Therefore we set

depthM = depthM

for a finite graded R-module (we use finite as a short form of ‘finitely generated’).
Recall that the depth of a finite module over a local ring is the length of a maximal
M-sequence (also called a regular sequence onM) contained in . That this definition
of depth is justified, will be seen at several occasions below.



4 Algebraic and combinatorial reciprocity laws

For the construction of sequences of elements with good properties the next
lemma is basic.

Lemma 1.3. Let R be a graded K-algebra and I an ideal generated by elements of

positive degree. Let 1, . . . , n be prime ideals such that I 6⊂ i for i = 1, . . . , n.
(a)Then there exists a homogeneous element x ∈ I, x /∈ 1 ∪ · · · ∪ n.

(b) If K is infinite and I is generated by m-forms, then x can be chosen as an

m-form.

We indicate the proof of (b) which implies (a) if K is infinite (we can always
replace I by an ideal with the same radical). It is very short: the K-vector space
Im is not the union of the finitely many proper subspaces Im ∩ i.

In the next proposition grade(I,M) denotes the length of a maximal M-sequence
contained in the ideal I. Suppose that M and I are graded. Then a sequence of
homogeneous elements is a (maximal) M-sequence in I if and only if is a (maximal)
M-sequence in I. This follows from the fact that the associated prime ideals of a
graded module are graded, and therefore contained in . That there exist homoge-
neous M-sequences of length grade(I,M) is stated in the next proposition.

Proposition 1.4. (a) Let R be a graded K-algebra, and let I be an ideal in R
generated by homogeneous elements of positive degree. Set h = height I and g =
grade(I,M) where M is a finite R-module. Then there exist sequences = x1, . . . , xh

and = y1, . . . , yg of homogeneous elements of I such that height(x1, . . . , xi) = i for
i = 1, . . . , h and is an M-sequence.

(b) If K is infinite and I is generated by m-forms, then the xi and yi can be chosen

as m-forms.

It is enough to find x1 and y1 because we may use induction on n after having
replaced all objects by their reductions modulo x1 or y1. But the choice of x1 or y1
only requires the avoidance of finitely many prime ideals none of which contains I.

Graded Noether normalization. The existence of Noether normalizations of affine
algebras is a fact of fundamental importance. If R is a graded K-algebra, then the
Noether normalization can be chosen to be graded. The construction of a graded
Noether normalization is equivalent to finding a homogeneous system of parameters.

Definition 1.5. A sequence of homogeneous elements x1, . . . , xn is called a homo-

geneous system of parameters if n = dimR and = Rad(x1, . . . , xn).

Note that a sequence x1, . . . , xn of homogeneous elements is a homogeneous sys-
tem of parameters for R if and only if x1, . . . , xn represents a system of parameters
for the localization R.

Theorem 1.6. Let K be a field and R a graded K-algebra. Set d = dimR.

(a) The following are equivalent for homogeneous elements x1, . . . , xd:

(i) x1, . . . , xd is a homogeneous system of parameters;

(ii) R is an integral extension of K[x1, . . . , xd];
(iii) R is a finite K[x1, . . . , xd]-module.



1. Graded K-algebras 5

(b) There exist homogeneous elements x1, . . . , xd satisfying one, and therefore all,

of the conditions in (a). Moreover, such elements are algebraically independent over

K.

(c) If R is a homogeneous K-algebra and K is infinite, then such x1, . . . , xd can be

chosen to be of degree 1.

Part (a) is essentially a statement about affine algebras. The rest follows from
1.4.

Graded free resolutions. Let M be a graded R-module, generated by homogeneous
elements xi, i ∈ I. Then the direct sum F0 =

⊕
i∈I R(− deg xi) is a free graded R-

module admitting a surjective homogeneous homomorphism ϕ0 : F0 → M : the map
which for each i maps a homogeneous basis element ei to xi extends to a unique
R-linear map ϕ0 : F0 →M . It is evidently surjective and homogeneous. The kernel
U0 of ϕ0 is again a graded module to which we can apply the same construction,
obtaining a surjective homogeneous homomorphism ϕ1 : F1 → U0, and an infinite
iteration of this process leads to a graded free resolution

F. : · · · −−→ Fn
ϕn−−→ Fn−1 −−→ · · · −−→ F1

ϕ1−−→ F0

of M . (In the language of homological algebra, the category of graded modules has
enough projective modules.)

Suppose that M is finite, and choose a minimal homogeneous system x1, . . . , xm

of generators; ‘minimal’ just means that no proper subset generates M . The kernel
of the map ϕ0 defined by x1, . . . , xm is again a finitely generated graded module
with a minimal homogeneous system y1, . . . , yp of generators. Therefore we have a
presentation

F1
ϕ1−−→ F0

ϕ0−−→ M −−→ 0

in which all the entries of a matrix representing ϕ1 are in : they are homogeneous
and cannot be non-zero elements of K; otherwise one of the xi would be a linear
combination of the others. This implies that M/M ∼= F0/F0. In particular the
number m and the degrees of the elements x1, . . . , xm are uniquely determined (up
to a permutation): exactly dimK(M/M)i among the xj have degree i.

Theorem 1.7. A finitely generated graded R-module M has a minimal graded free

resolution

F. : · · · −−→
⊕

j

R(−j)βij −−→
⊕

j

R(−j)βi−1,j −−→ · · · −−→
⊕

j

R(−j)β0j ;

it is uniquely determined up to an isomorphism of complexes of graded R-modules.

In the summands
⊕

j R(−j)βij we have collected all the summands R(−j) of Fi,
in other words, βij is the number of degree j elements in a minimal homogeneous
system of generators of Kerϕi−1. It follows by induction on i that the modules
Kerϕi−1 and the numbers βij are uniquely determined by M .
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Definition 1.8. The module Kerϕi−1 is the i-th graded syzygy module of M . The
numbers βij are called the i-th graded Betti numbers of M . The numbers βi =

∑
j βij

are the Betti numbers of M .

The numerical information in a complex like F. is represented by the generating
function of the assignment (i, j) 7→ βij,

PF.(t, u) =
∑

i,j

βijt
jui.

We call this power series in the variables t and u the Poincaré biseries of F.. If F.
is the minimal graded free resolution of M then we write PM(t, u) for PF.(t, u) and
call it the Poincaré biseries of M .

The entries of the matrices representing the maps ϕi (with respect to the decom-
positions Fi =

⊕
j R(−j)βij) are homogenous elements of . Therefore F. ⊗ R is a

minimal free resolution of M. This argument shows that a graded module behaves
homologically like a module over a local ring.

The Auslander–Buchsbaum formula tells us that proj dimM+depthM = depthR,
if proj dimM < ∞. Since proj dimM = proj dimM , we can write the Auslander–
Buchsbaum formula as proj dimM + depthM = depthR. In particular, if R =
K[X1, . . . , Xn], then proj dimM + depthM = n for every finitely generated R-
module.

The fundamental theorem about free resolutions of graded modules is Hilbert’s
syzygy theorem.

Theorem 1.9. Let R = K[X1, . . . , Xn], and M a finite graded R-module. Then M
has a finite free resolution

0 −−→
⊕

j

R(−j)βpj −−→ · · · −−→
⊕

j

R(−j)β0j −−→M −−→ 0

with p = proj dimM = proj dimM ≤ n.

Below we will see that the combination of Noether normalization and Hilbert’s
syzygy theorem is a very powerfool tool.

Graded Cohen–Macaulay rings and modules. A Noetherian ring R is called Cohen–
Macaulay if all its localizations R are Cohen–Macaulay, i.e. they satisfy the condition
dimR = depthR. If R is a graded K-algebra, then we need to test only a single
localization.

Proposition 1.10. Let R be a graded K-algebra, and suppose S is a graded Noether

normalization of R. Then the following are equivalent:

(a) R is Cohen–Macaulay;

(b) R is Cohen–Macaulay.

(c) R is a free S-module;
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Let be the homogeneous system of parameters generating S. If R is Cohen–
Macaulay, then is a R-sequence. By the arguments given above 1.4, is an R-
sequence, so that the Auslander–Buchsbaum formula implies proj dimS R = 0. Now
let be a prime ideal in R. If R is free over S, then RS∩ is free over SS∩. Therefore
SS∩ contains a regular RS∩-sequence of length dimSS∩ = dimR; is also R-regular.
It follows that R is Cohen–Macaulay.

A finite module M over a Noetherian ring R is called a Cohen–Macaulay module

if dimM = depthM for all prime ideals ∈ SuppM . The previous proposition holds
similarly for Cohen–Macaulay modules if we replace R by R/(AnnM) in (c). A
Cohen–Macaulay module M is maximal if dimM = dimR.

The grading of Hom and Ext. Let N be a graded R-module. In order to compute
the modules ExtiR(M,N) we form the complex HomR(F., N) where F. is a graded
free resolution as above. The module HomR(R(−j), N) is graded in a natural way:
we simply identify it with N(j). Since Hom commutes with finite direct sums, we
see that HomR(F., N) is a complex of graded R-modules (with homogeneous maps!).

Proposition 1.11. Let M and N be graded R-modules. Suppose that M is finite.

Then ExtiR(M,N) is a graded R-module in a natural way.

For an arbitrary graded R-module M , the module HomR(M,N) need not carry a
grading. Therefore, in the category of graded R-modules, one replaces HomR(M,N)
by the graded Hom functor

∗HomR(M,N) =
⊕

i∈

◦Hom(M(−i), N),

where ◦Hom(M(−i), N) is the K-vector space of homogeneous R-linear maps M →
N . It is easily seen that ∗HomR(M,N) is an R-submodule of HomR(M,N) in a
natural way.

The introduction of a graded tensor product is unnecessary: the tensor product
of graded modules M and N is always graded with (M ⊗RN)k =

∑
i+j=k Mi⊗K Nj.

Therefore the modules TorRi (M,N) are also graded.

Graded injective resolutions. Since a graded R-module has a graded free resolution,
it is projective in the category of all R-modules if and only if it is so in the category
of graded R-modules. The situation for ‘injective’ is slightly more complicated.
Nevertheless there exist enough injectives.

Theorem 1.12. Let M be a graded R-module. Then M has a resolution

0 −−→ I0 −−→ I1 −−→ · · · −−→ Im −−→ · · ·

by graded R-modules I i that are injective objects in the category of graded R-modules.

Over a Noetherian ring the direct sum of injective modules is injective. If we
combine this fact with Zorn’s lemma and the (defining) property of injective mod-
ules, namely to be direct summands in each of their overmodules, then we get that
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every injective module is the direct sum of indecomposable such modules, and more-
over one can ‘describe’ the indecomposable injective modules. All this carries over
to the graded category. We content ourselves with a very special case given in 1.14
below.

Graded K-duals. Let M be a graded R-module. We consider the graded K-dual

M∨ =
⊕

i∈

HomK(M−i, K).

A priori M∨ is just a graded K-vector space, but we can easily turn it into a graded
R-module: for a j-form x ∈ R, and ϕ ∈ HomK(M−i, K) we set xϕ = ϕ ◦ ϑx where
ϑx denotes multiplication by x. Then this operation is extended bilinearly over
R×M . It is not hard to check that ∨ defines a functor from the category of graded
R-modules into itself.

We list some important properties of the graded K-dual:

Proposition 1.13. (a) The additive contravariant functor ∨ is exact;

(b) M∨∨ ∼= M for all graded R-modules M such that dimK Mi < ∞ for all i; in

particular M∨∨ ∼= M for all Noetherian and Artinian graded R-modules;

(c) M∨ ∼= ∗HomR(M,R∨) for all graded R-modules M ;

(d) if M is Noetherian (Artinian), then M∨ is Artinian (Noetherian).

Part (a) is obvious, and (b) is not much more than the reflexivity of finite-
dimensional K-vector spaces. For (b) one should note that M∨ is a vector subspace
of HomK(M,K). Therefore one obtains the isomorphism by restricting the natural
isomorphism HomR(M,HomK(R,K)) ∼= HomR(M,K) to the appropriate subspaces.
Because of (a) and (c) the functor HomR( , R∨) is exact on the category of graded
R-modules so that R∨ is an injective object in that category. Since it contains
K ∼= (R∨)0 in a natural way and is an essential extension of K, it is the injective
hull of K, in fact, also in the category of all R-modules.

Theorem 1.14. The graded R-module R∨ is the (graded) injective hull of the R-

module K.

Moreover, if dimR = 0, then every (graded) injective R-module M is the direct

sum (R∨)m of m = dimK HomR(K,M) copies of R∨.

Proposition 1.13 and Theorem 1.14 show that the graded K-dual is the graded
analogue of what Matlis duality is for complete local rings.

Local cohomology. What has been said above shows that the theory of local rings
has a graded counterpart (which, in a sense, is even simpler). This analogy includes
local cohomology.

Definition 1.15. For a (graded) R-module we set

Γ(M) = {x ∈M : jx = 0 for some j}.
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Note that Γ(M) is a (graded) submodule of M . Moreover, if f : M → N is an
R-linear map, then f(Γ(M)) ⊂ Γ(N), and therefore Γ defines a covariant left exact
functor.

Definition 1.16. The i-the local cohomology H i( ) is the i-th right derived functor
of Γ, i.e. if I. is a (graded) injective resolution of M , then H i(M) is the i-th
cohomology of Γ(I.); especially Γ(M) = H0(M).

The preceding definitions make sense with and without the parentheses, and
moreover, if M is a graded R-module, then they yield the same result: it does not
matter whether local cohomology is computed from an injective resolution in the
category of graded R-modules or from one in the category of all R-modules, except
that in the first case we obtain a natural grading. This follows from part (a) of the
following proposition; cf. 1.11.

Proposition 1.17. (a) For any R-module M and all i ≥ 0 one has

H i(M) ∼= lim
−→

ExtiR(R/k,M).

(b) A short exact sequence 0 −−→ M1 −−→ M2 −−→ M3 −−→ 0 gives rise to a long

exact sequence

0 −−→ Γ(M1) −−→ Γ(M2) −−→ Γ(M3) −−→ H1(M1) −−→ · · ·

−−→ H i−1(M3) −−→ H i(M1) −−→ H i(M2) −−→ · · ·

(c) If M is a finite graded R-module, then the modules H i(M) are Artinian;

Since injective resolutions are very hard to grasp, it is difficult to understand local
cohomology if one has just its definition. Fortunately one can access it also from
another complex, which in some cases yields an effective computation; the most
notable case is Hochster’s determination of the local cohomology of the Stanley–
Reisner ring of a simplicial complex (see [1], Chapter 5). We define the complex C.

by

C. : 0 −−→ C0 −−→ C1 −−→ · · · −−→ Cn −−→ 0,

Ct =
⊕

1≤i1<i2<···<it≤n

Rxi1
xi2

···xit
,

where the differentiation dt : Ct → Ct+1 is given on the component

Rxi1
···xit
−−→ Rxj1

···xjt+1

to be the homomorphism (−1)s−1 ·nat: Rxi1
···xit
→ (Rxi1

···xit
)xjs

if {i1, . . . , it} = {j1,

. . . , ĵs, . . . , jt+1} and 0 otherwise.

Theorem 1.18. Let M be an R-module. Then H i(M) ∼= H i(M⊗RC
.) for all i ≥ 0.

One consequence of 1.18 is the behaviour of local cohomology under a change of
rings.
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Proposition 1.19. Let R and S be graded K-algebras with maximal graded ideals

and . Suppose that ϕ : R → S is a homomorphism of graded K-algebras for which

Rad(ϕ()S) = . Then H i(M) ∼= H i(M) (as graded modules over R) for all i and all

graded S-modules M .

The natural map of R-modules

ExtiR(R/k,M)→ (ExtiR(R/k,M)) = ExtiR(R/(R)k,M)

is an isomorphism. Since the local cohomology of M as a module over the local ring
R is the direct limit of the ExtiR(R/(R)k,M), we see that in fact

H i(M) ∼= H i
R(M)

so that one has an alternative approach to graded local cohomology: H i
R(M) is a

graded R-module in a natural way. At least one can use the isomorphism above in
order to reduce assertions about graded local cohomology to ‘local’ local cohomology,
for example Grothendieck’s vanishing theorem.

Theorem 1.20. Let M be a finite graded R-module of depth t and dimension d.
Then

(a) H i(M) = 0 for i < t and i > d,
(b) H t(M) 6= 0 and Hd(M) 6= 0.



2 Hilbert functions

Let R be a graded K-algebra as above, and M be a graded R-module. If all the
graded components Mi are finite-dimensional vector spaces, then we can define the
Hilbert function and the Hilbert series of M ; in particular this is possible if M is a
Noetherian or Artinian R-module:

Definition 2.1. Let M be a finite graded R-module. The numerical function
H(M, ) : → with H(M,n) = dimK Mn for all n ∈ is the Hilbert function of
M , and HM(t) =

∑
n∈ H(M,n)tn is the Hilbert series of M .

In the following we shall occasionally have to assume that K is an infinite field.
This is never a problem. The Hilbert function of M ⊗K L as a graded module over
R ⊗K L coincides with that of M for all extension fields L of M . Furthermore the
homological properties of M are stable under such extensions; see [1].

Hilbert series and free resolutions. In our investigation of Hilbert functions we follow
Hilbert’s approach via free resolutions. (See [1] for a ‘modern’ treatment.)

Theorem 2.2. Let R be a graded K-algebra, and M be a finite graded R-module.

Then

HM(t) = HR(t) · PM(t,−1).

Suppose first that M has a finite free resolution

0 −−→
⊕

j

R(−j)βpj −−→ · · · −−→
⊕

j

R(−j)β0j −−→ M −−→ 0.

The Hilbert series of
⊕

j R(−j)βij is HR(t)
∑

j βijt
j , and so the formula follows since

the Hilbert series is additive on exact sequences.
For the applications we have in mind it is however important to note that the

theorem is equally valid if the minimal free resolution has infinite length. Then
one considers the vector spaces in each degree separately: this is possible since
in each degree there exist only finitely many non-zero terms. Namely, if we set
si = min{j : βij 6= 0}, then the ‘minimal shifts’ si are strictly ascending.

Suppose that S is the polynomial ring K[X1, . . . , Xd] with a grading defined by
degXi = ai. Then

HS(t) =
1

(1− ta1) · · · (1− tad)
.

11



12 Algebraic and combinatorial reciprocity laws

This follows easily by induction on d: we have an exact sequence

0 −−→ S(−ad)
Xd−−→ S −−→ S ′ −−→ 0, S ′ = K[X1, . . . , Xd−1],

and the additivity of the Hilbert function implies (1− ta1)HS(t) = HS′(t).

Theorem 2.3. Let R be a graded K-algebra, and M 6= 0 a finite graded R-module

of dimension d. Then there exist positive integers a1, . . . , ad, and Q(t) ∈ [t, t−1] such
that

HM(t) =
Q(t)

∏d
i=1(1− tai)

with Q(1) > 0.

For the proof we choose a Noether normalization S ⊂ R/(AnnM). Then M is
a finite S-module in a natural way, and S ∼= K[X1, . . . , Xd]. By Hilbert’s syzygy
theorem M has a graded free resolution

0 −−→
⊕

j

S(−j)βpj −−→ · · · −−→
⊕

j

S(−j)β0j −−→ M −−→ 0.

We choose Q(t) = PM(t,−1) =
∑p

i=0(−1)
i(
∑

j βijt
j). Since dimM = dimS, M has

positive rank over S, and Q(1) = rankS M by the additivity of rank.
Generating functions of the type occuring in Theorem 2.3 appear frequently

in combinatorics, and one can describe their associated numerical functions very
precisely. A function P : → is called a quasi-polynomial (of period g) if there exist
a positive integer g and polynomials Pi, i = 0, . . . , g − 1, such that for all n ∈ one
has P (n) = Pi(n) where n = mg + i with 0 ≤ i ≤ g − 1.

Theorem 2.4 (Serre). Let R be a graded K-algebra, and M 6= 0 a finite graded

R-module of dimension d. Then

(a) there exists a uniquely determined quasi-polynomial PM with H(M,n) = PM(n)
for all n≫ 0; the minimal period of PM divides a1 · · · ad;
(b) H(M,n)− PM(n) =

∑d
i=0(−1)

i dimk H
i(M)n for all n ∈ ;

(c) one has

degHM(t) = max{n : H(M,n) 6= PM(n)}

= max{n :
d∑

i=0

(−1)i dimk H
i(M)n 6= 0}.

(Here degHM(t) denotes the degree of the rational function HM(t).)

Part (a) and the first equation in (c) are exercises in rational generating functions;
it is obviously sufficient to prove them for the function (1 − ta1)−1 · · · (1 − tad)−1.
For (b), note that the general behaviour of local cohomology under ring extensions
allows us to replace R again by a Noether normalization S of R/(AnnM). The right
hand side in (b) is additive on exact sequences as every Euler characteristic formed
from a series of derived functors. (The K-dimensions of the graded components of
the local cohomology modules are finite: H i(M) is Artinian.) Therefore induction
on proj dimM reduces the theorem to the case M = S which is then handled by
induction on dimS: for S = K the theorem is indeed true.
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Definition 2.5. (a) The quasi-polynomial PM is called the Hilbert quasi-polynomial

of M .
(b) The degree a(R) of the rational function HR(t) is called the a-invariant of the
graded K-algebra R.

By Theorem 2.4, we have a(R) < 0 if and only the equation PR(n) = H(R, n)
holds for all n ≥ 0. At least in the Cohen–Macaulay case the a-invariant has a
satisfactory homological interpretation:

Proposition 2.6. Let R be a graded Cohen–Macaulay K-algebra of dimension d.
Then

a(R) = max{i : Hd(R)i 6= 0}.

Homogeneous K-algebras. The exponents ai in the denominator of HM(t) are the
degrees of the elements in a homogeneous system of parameters of R/(AnnM). As
pointed out above, we may freely assume that K is infinite; by 1.6 we can then
choose a system of parameters among the 1-forms if R is a homogeneous K-algebra.

Theorem 2.7. Let R be a homogeneous K-algebra, and M a finite graded R-module

of dimension d. Then there exists QM(t) ∈ [t, t−1] such that

HM(t) =
QM (t)

(1− t)d
with QM(1) 6= 0.

In particular it follows that the Hilbert quasi-polynomial of M is a true poly-
nomial now, and therefore one uses the term Hilbert polynomial for modules over
homogeneous K-algebras.

Theorem 2.8. Let R be a homogeneous K-algebra, and M 6= 0 a finite graded

R-module of dimension d > 0. Then the Hilbert polynomial of M can be written

PM(n) =
e(M)

(d− 1)!
nd−1 + terms of lower degree.

where e(M) > 0 is an integer, namely e(M) = QM(1).

That the degree of the Hilbert polynomial is d − 1, can be considered as a
statement about generating functions; however, there is also a direct proof in terms
of commutative algebra. (See [1], 4.1.3.) That the leading term of the Hilbert
polynomial is a rational number with denominator (d− 1)! follows simply from the
fact that every integer valued polynomial is a -linear combination of the binomial

coefficients
(
n+k
k

)
viewed as functions of n.

Definition 2.9. The number e(M) = QM (1) is the multiplicity of M . (Note that
QM(1) = dimK M if dimM = 0, and recall that, more generally, QM(1) is the rank
of M over a Noether normalization of R/(AnnM) generated by 1-forms.)

The numerator polynomial of HM(t) is uniquely determined. This fact justifies
the following definition.
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Definition 2.10. We write QM (t) =
∑

i hit
i, and call the sequence (hi)i∈ the h-

vector of M .

The concept of h-vector is a bridge between combinatorics and commutative
algebra. For example, if ∆ is a simplicial complex, then the h-vector of ∆ and the
h-vector of the Stanley-Reisner ring K[∆] coincide. The next theorem indicates that
a ring-theoretic property can be combinatorially significant.

Proposition 2.11. Assume that in addition to the assumptions of 2.8 the module

M is Cohen–Macaulay. Then the h-vector of M is non-negative.

Choose an M-regular 1-form x ∈ R. Then we have an exact sequence

0 −−→M(−1)
x
−−→M −−→M/xM −−→ 0.

The additivity of the Hilbert series implies HM/xM(t) = (1 − t)HM(t). Therefore
M and M/xM have the same h-vector, and by induction it is enough to prove the
assertion in the case in which dimM = 0. In that case hi = H(M, i) ≥ 0 for all i.

For M = R one can give much stronger bounds for the h-vector. If is a homoge-
neous system of parameters of R, then R/() is a zero dimensional K-algebra with the
same h-vector as R. Therefore one can apply Macaulay’s theorem about the Hilbert
functions of zero dimensional homogeneous algebras (see [1], Section 4.2). For exam-
ple, if the Stanley-Reisner ring of a simplicial complex ∆ is Cohen-Macaulay, then
the h-vector of ∆ satisfies the bounds provided by Macaulay’s theorem.

The reader may have noticed that 2.7, 2.8, and 2.11 do not really require R to
be homogeneous. What we precisely need is that R has a homogeneous system of
parameters consisting of 1-forms, at least after an extension of K to an infinite field.
This is equivalent to R/(R1) being a finite dimensional vector space, and we call
such graded algebras almost homogeneous.



3 Graded canonical modules

We introduce the graded canonical module of a graded Cohen-Macaulay K-algebra
as an object with distinguished numerical invariants.

Definition 3.1. Let R be a Cohen–Macaulay graded K-algebra of dimension d. A
finite graded R-module C is a graded canonical module of R if there exist homoge-
neous isomorphisms

ExtiR(K,C) ∼=
{
0 for i 6= d,
K for i = d.

Note that the condition ExtiR(K,C) = 0 for i = 0, . . . , d− 1 implies that C is a

maximal Cohen–Macaulay R-module. The fact that ExtiR(K,C) = 0 for all i > d
is a similarly strong condition; see [1], Section 3.1 for the the local version of the
next theorem. (It does not matter whether the invariants in 3.2 are measured in the
category of graded R-modules or in that of all R-modules.)

Theorem 3.2 (Bass). Let M be a finite graded R-module and t = depthR. Then

the following conditions are equivalent:

(a) M has finite injective dimension as an R-module;

(b) inj dimR M = depthR;

(c) ExtiR(K,M) = 0 for all i > t.

A graded K-algebra is necessarily Cohen–Macaulay if it has a non-zero finite
graded module of finite injective dimension. This fact, called Bass’ conjecture, was
proved by Peskine and Szpiro; that it similarly holds for all Noetherian local rings,
is due to Roberts. (For a proof in the equicharacteristic case see [1], Chapter 9.)

As we will see, every Cohen–Macaulay graded K-algebra has a uniquely deter-
mined graded canonical module.

Existence and uniqueness. In dimension 0 the situation is very simple.

Proposition 3.3. Suppose R is a graded K-algebra of dimension 0. Then R∨ is the

unique graded canonical module of R.

The proposition follows readily from our observations about injective modules
in Section 1.

One method to show the existence and uniqueness of ωR in general is the re-
duction of all steps to the special case in which the dimensions of all the algebras
involved are equal to 0. This method is carried out in all details in [1], at least in
the local case (which, if one has it available, makes the extension to the graded case
very easy). The reduction to dimension 0 is by taking residue classes with respect
to homogeneous regular sequences, and it is based on the following lemma of Rees.

15
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Lemma 3.4. Let R be a gradedK-algebra, and M and N graded R-modules; if x ∈ R
is a homogeneous element of degree a which is R- and M-regular and annihilates N ,

then

Exti+1
R (N,M)(−a) ∼= ExtiR/(x)(N,M/xM) for all i ≥ 0.

Given modules C and C ′ over R that satisfy the conditions for being a graded
canonical module, we immediately conclude from this lemma that (C/C)(

∑
deg xi)

and (C ′/C ′)(
∑

deg xi) are canonical modules of R/() if = x1, . . . , xd is a homoge-
neous R-sequence. In particular, if is a maximal such sequence, then (C/C)(

∑
deg xi)

and (C ′/C ′)(
∑

deg xi) are isomorphic R/()-modules. The next proposition implies
that we can indeed lift this isomorphism to an isomorphism of C and C ′, thereby
establishing the uniqueness of the canonical module.

Proposition 3.5. Let R be a Cohen–Macaulay graded K-algebra of dimension d,
and C a graded canonical module of R
(a) If M is a graded maximal Cohen–Macaulay R-module, then HomR(M,C) is a

maximal Cohen–Macaulay module, and for every homogeneous R-sequence we have

a homogeneous isomorphism

HomR(M,C)⊗R/() ∼= HomR/()(M/M,C/C).

Furthermore ExtjR(M,C) = 0 for all j > 0.
(b) More generally, if M is a Cohen–Macaulay R-module of dimension t, then

ExtjR(M,C) = 0 if and only if j = d − t; Extd−t
R (M,C) is also Cohen–Macaulay

of dimension t, and

Extd−t
R

(
Extd−t

R (M,C), C
)
∼= M.

Now that we know the canonical module is unique we denote it by

ωR.

The proposition, whose proof is an exercise in exact sequences, implies in particular
that

HomR(ωR, ωR) ∼= HomR

(
HomR(R, ωR), ωR

)
∼= R.

Rees’ lemma also helps us in establishing the existence of the canonical module.
Suppose first that R = S = K[x1, . . . , xd] with degXi = ai. As a first attempt we
try S as its own graded canonical module. Since S is a maximal Cohen–Macaulay
S-module, Rees’ lemma implies that K(

∑
ai) is the graded canonical module of K,

and this is obviously false. But we only need to correct the grading: S(−
∑

ai) is
the graded canonical module of S.

Now let R be an arbitrary Cohen–Macaulay graded K-algebra. We choose a
graded Noether normalization S ⊂ R, S = K[X1, . . . , Xd]. As we have just seen,
S has a graded canonical module ωS. Set C = HomS(R, ωS). Since R and ωS are



3. Graded canonical modules 17

free S-modules, C is also a free S-module and therefore a maximal Cohen–Macaulay
R-module. Furthermore

(C/C)(
∑

deg xi) = HomS/()(R/R, S/())

= HomK(R/R,K) = (R/R)∨,

so that C is indeed the graded canonical module of R (use Rees’ lemma).

Theorem 3.6. Let R be a Cohen–Macaulay graded K-algebra. Then R has a unique

graded canonical module ωR.

In establishing this theorem we have used the fact that R contains a polynomial
K-algebra over which it is a finite graded module. One can also compute the canon-
ical module from a representation as a residue class ring, or more generally from an
arbitrary representation of R as a module-finite extension.

Proposition 3.7. Let R and S be Cohen–Macaulay graded K-algebras, and suppose

that ϕ : S → R is a homogeneous K-algebra homomorphism such that R is a finite

graded S-module with respect to ϕ. Then ωR
∼= ExttS(R, ωS), where t = dimS −

dimR.

Using appropriate regular sequences, first in the kernel of ϕ, and then in S/Kerϕ,
one reduces the proposition to the case dimR = dimS = 0. In this case it amounts
to the isomorphism R∨ ∼= HomS(R, S∨). We have stated in 1.13 that R∨ and
HomS(R, S∨) are isomorphic as S-modules, but this isomorphism is easily seen to
be compatible with the R-module structure.

Forgetting the grading, we may consider R as a Noetherian ring, and ask the
question whether a graded canonical module localizes to a canonical module of the
local ring R for all ∈ SpecR. This is indeed the case.

Proposition 3.8. Let Let R be a Cohen–Macaulay graded K-algebra. Then (ωR) is
a canonical module of R for all ∈ SpecR.

The easiest (though perhaps not the most systematic) way for proving the propo-
sition is to write R as a residue class ring of a polynomial ring S. Choose ∈ SpecR
to be the preimage of in S. Then dimS − dimR = dimS − dimR, and so the
proposition follows from 3.7 and its local counterpart (and the fact that ωS

∼= S,
since S is a regular local ring).

Gorenstein graded K-algebras. A Noetherian ring R is called Gorenstein if it is
Cohen–Macaulay and ωR

∼= R for all prime ideals .

Proposition 3.9. Let R be a Cohen–Macaulay gradedK-algebra. Then the following

are equivalent:

(a) ωR
∼= R(a) for some integer a;

(b) R is Gorenstein;

(c) R is Gorenstein.
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The implication (c) ⇒ (a) holds since a finite graded module M is free if and
only if M is free. The rest is trivial. The number a is (a) is easily identifiable:
a = a(R), as will be seen below.

Graded local duality. The importance of the canonical module rests to a large extent
on its role as the dualizing module in Grothendieck’s local duality theorem.

Theorem 3.10. Let R be a Cohen–Macaulay graded K-algebra of dimension d.
Then

(a) ωR
∼= (Hd(R))∨, and

(b) for all finite graded R-modules and all integers i there exist natural homogeneous

isomorphisms

(Hd−i(M))∨ ∼= ExtiR(M,ωR).

For the proof we refer to [1] where ‘local’ local duality is treated in detail. The
reader should check that the argument given there also works in the category of
graded R-modules.

The Hilbert function of the canonical module. The duality between R and ωR is also
expressed by the Hilbert function of ωR.

Theorem 3.11. Let R be a d-dimensional Cohen–Macaulay graded K-algebra, M
a maximal Cohen–Macaulay graded R-module, and M ′ = HomR(M,ωR). Then

(a) HM ′(t) = (−1)dHM(t−1), and
(b) if R is a domain and HM(t) = tqHωR

(t) for some q, then M(q) ∼= ωR.

For part (a) we use a Noether normalization S to simplify the situation:

HomR(M,ωR) ∼= HomR

(
M,HomS(R, ωS)

)
∼= HomS

(
M,S(a(S))

)
,

and since M is a free S-module, it suffices to consider M = S(b) for some b ∈ .
Then

(−1)dHM(t−1) = (−1)d
tb

(1− t−a1) · · · (1− t−ad)
.

Furthermore, with a = a(S) we have HomS(S(b), S(a)) = S(a− b) and

HS(a−b)(t) = tb−aHS(t) = tb−a (−1)dta

(1− t−a1) · · · (1− t−ad)

= (−1)d
tb

(1− t−a1) · · · (1− t−ad)
.

(As above a1, . . . , ad denote the degrees of the algebra generators of S, and thus
a = −

∑
ai.)

Replacing M by M(q) we may assume that q = 0 in (b). Note that (a) implies
the equation HM ′(t) = HR(t). Let x be a non-zero degree 1 element of M ′. Then
the map R→ M ′, r 7→ rx, is injective since a maximal Cohen–Macaulay R-module
is torsionfree and every non-zero element of R is R-regular. The equality of Hilbert
series then yields Rx = M ′. Since M ∼= M ′′, we have M ∼= R′ ∼= ωR.
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Corollary 3.12 (Stanley). With the notation and hypothesis of 3.11 suppose that R

has the Hilbert series HR(t) =
∑s

i=0 hit
i/

∏d
j=1(1− taj ).

(a) Then HωR
(t) = (−1)dHR(t

−1), equivalently,

HωR
(t) =

t
∑

aj−s ∑s
i=0 hs−it

i

∏d
j=1(1− taj )

.

(b) If R is Gorenstein, then HR(t) = (−1)dta(R)HR(t
−1).

(c) Suppose R is a domain, and HR(t) = (−1)dtqHR(t
−1) for some integer q. Then

R is Gorenstein.

The corollary implies in particular that

a(R) = −min{i : (ωR)i 6= 0};

this equation follows also from local duality and 2.4.
If R is almost homogeneous, then the equation HR(t) = (−1)dta(R)HR(t

−1) just
says that the h-vector of R is a palindrome, and if the h-vector of an almost homo-
geneous Cohen–Macaulay integral domain is palindromic, then R is Gorenstein!

As an application of 2.11 one obtains an equality for the h-vector of an almost
homogeneous Cohen–Macaulay domain.

Theorem 3.13 (Stanley). Let R be an almost homogeneous Cohen–Macaulay K-

algebra with h-vector (h0, . . . , hs), s = a(R) + dimR. Suppose that R is an integral

domain. Then
j∑

i=0

hi ≤
j∑

i=0

hs−i for all j = 0, . . . , s.

Set a = a(R). We choose a non-zero element x ∈ (ωR)−a. Then, by the same
argument as above, we have an exact sequence

0 −−→ R −−→ ωR(−a) −−→ N −−→ 0.

From standard arguments on depth it follows thatN is a Cohen–Macaulay R-module
of dimension dimR − 1. According to 2.11 it has a non-negative h-vector. This h-
vector can be computed from those of R and ωR, and its non-negativity implies the
inequalities claimed.



4 Invariants of finite groups

In the invariant theory of finite groups ring theory and combinatorics are inextricably
connected. Let K be a field of characteristic 0, and G ⊂ GLn(K) a finite linear
group. The group G operates on the polynomial ring R = K[X1, . . . , Xn] in a
natural way: we can identify each indeterminate with an element of the canonical
basis of Kn, and then, for every g ∈ G, consider the automorphism of R induced by
the substitution Xi 7→ g(Xi); we simply denote this automorphism by g. The set

RG = {s ∈ R : g(s) = s for all g ∈ G}

of G-invariants is a K-subalgebra of R. Evidently a polynomial s is invariant if
and only if its homogeneous components are invariant; therefore RG is a graded
subalgebra of R.

The group G operates linearly on each vector space Rm. By Maschke’s theorem,
Rm is a direct sum of irreducible representations of G. It follows that R itself is
the direct sum of such representations. There are only finitely many isomorphism
classes of irreducible representations Ω0, . . . , Ωr of G; we let Ω0 denote the trivial
representation on K (i.e. g(x) = x for all x ∈ K). For each j we form the vector
subspace Nj by taking the sum of all irreducible representations in R that belong

to the isomorphism class Ωj ; in particular N0 = RG.
Let V ⊂ R be an irreducible representation, and s an invariant. Then g(sv) =

g(s)g(v) = sg(v) for all v ∈ V and g ∈ G. Thus sV and V are isomorphic represen-
tations of G. It follows that sNj ⊂ Nj for all s ∈ R and all j, in other words each
Nj is an RG-submodule of R.

The next observation is that R is an integral extension of RG. In fact each
element s of R is a zero of the monic polynomial

∏

g∈G

(Y − g(s)) ∈ RG[Y ].

Theorem 4.1. (a) RG is a graded Cohen–Macaulay K-algebra, and R is a finite

RG-module.

(b) As an RG-module R splits into the direct sum RG = N0 ⊕N1 ⊕ · · · ⊕Nr.

(c) Each Ni is a maximal Cohen–Macaulay RG-module (provided Ni 6= 0).

Part (b) has been shown above. For the proof of (a) let us first notice that R is a
finitely generated RG-algebra; being integral over RG, it is a module-finite extension
of RG. Next observe that for each ideal ∈ RG one has RG ∩ R = because of (b).

20
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Thus RG is a Noetherian ring, and therefore a finitely generated K-algebra. We
choose a homogeneous system of parameters in RG; it is also a homogeneous system
of parameters of R, therefore an R-sequence, and finally an Ni-sequence since Ni is a
direct RG-module summand of R for each i. In particular RG is a Cohen–Macaulay
ring.

The Hilbert series of the Ni are given by a classical formula of Molien. There-
fore one calls them Molien series. We restrict ourselves to those Ni for which the
corresponding irreducible representation has K-dimension 1. This means, for each
x ∈ Ni one has

g(x) = χi(g)x

where χi : G→ K× is a group homomorphism. We write Rχ for Ni, and denote its
Molien series by Mχ(t). Typical examples are the powers detu of the determinant
map, i.e. χ(g) = (det g)u for some u ∈ .

Let us define the linear operator ρχ on R by

ρχ(r) = |G|−1
∑

g∈G

χ(g)−1g(r).

It is easy to check that ρχ(R) = Rχ and ρχ(r) = r for r ∈ Rχ. The operator ρχ is a
K-endomorphism of the graded K-vector space R. Let ρχi denote its restriction to
Ri; then ρχi = (ρχi )

2, and therefore

dimRχ
i = dim Im ρχi = Tr ρχi = |G|−1

∑

g∈G

χ(g)−1Tr g|Ri
.

Here Tr denotes the trace, and we use its linearity. Combining the formulas yields

Mχ(t) = |G|
−1

∑

g∈G

χ(g)−1
∞∑

i=0

(Tr g|Ri
)ti.

(All this remains correct for irreducible representations of dimension w > 1 if we
replace the factor |G|−1 by w|G|−1 and denote the character of the representation by
χ; in order to check that ρχ has the desired properties one needs some elementary
facts about group representations.)

Theorem 4.2 (Molien’s formula). Let K be a field of characteristic 0, V a finite

dimensional K-vector space, G a finite subgroup of GL(V ), and χ : G→ K× a group

homomorphism. Then the Molien series of Rχ is given by

Mχ(t) = |G|
−1

∑

g∈G

χ(g)−1

det(id−tg)
.

We need to show that

1

det(id−tg)
=

∞∑

i=0

(Tr g|Ri
)ti
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for each g ∈ G. In fact, this equation holds for an arbitrary element g ∈ GL(V ).
In order to prove it we may extend K to an algebraically closed field. Then, for
a suitable basis X1, . . . , Xn of V , g is given by an upper triangular matrix whose
diagonal entries are the eigenvalues λ1, . . . , λn of g (as an element of GL(V )).

The monomials of total degree i in X1, . . . , Xn form a basis of the vector space
Ri. If these monomials are ordered lexicographically, then g|Ri

is again represented
by an upper diagonal matrix whose diagonal entry corresponding to the monomial
X = Xa1

1 · · ·X
an
n is λ = λa1

1 · · ·λ
an
n . Therefore

Tr g|Ri
=

∑

||=i

λ,

and the expansion of the product of the geometric series 1/(1 − λjt), j = 1, . . . , n,
gives us

∞∑

i=0

(Tr g|Ri
)ti =

∞∑

i=0

∑

||=i

λti =
n∏

j=1

1

1− λjt
.

Using that λ−1
1 , . . . , λ−1

n are the eigenvalues of g−1, we finally get

n∏

j=1

1

1− λjt
=

n∏

j=1

λ−1
j

λ−1
j − t

=
det g−1

det(g−1 − t id)
=

1

det(id−gt)
.

We use Molien’s formula in order to determine the canonical module of RG.

Theorem 4.3 (Watanabe). Let K be a field of characteristic 0, V a K-vector space

of dimension n, R = S(V ), and G a finite subgroup of GL(V ).

(a) Then Rdet−1
(−n) is the graded canonical module of RG.

(b) In particular RG is Gorenstein if G ⊂ SL(V ).

Set S = RG and χ = det−1. It was observed above that N = Rdet−1
is a maximal

Cohen–Macaulay S-module. Furthermore

Mχ(t) = |G|
−1

∑

g∈G

det g

det(id−tg)
= |G|−1

∑

g∈G

1

det(g−1 − t id)

= |G|−1
∑

g∈G

1

det(g − t id)
= |G|−1

∑

g∈G

(−1)nt−n

det(id−t−1g)

= (−1)nt−nMG(t
−1).

As the Molien series are Hilbert series, we may apply 3.11 to conclude that N(−n)
is the graded canonical module of S. This proves (a).

If G ⊂ SL(V ), then, by (a), S is isomorphic to the graded canonical module of
S. According to 3.9 S is Gorenstein.

The use of combinatorial methods in the investigation of rings of invariants of
finite groups is by no means limited to the preceding theorem. For further results, for
example the Shepard–Todd–Chevalley–Serre theorem on the invariants of reflection
groups or a partial converse to part (b) of 4.3 we refer the reader to [1], Chapter 6.



5 Normal semigroup rings

Let D ⊂ n be a convex cone, i.e. a subset closed under the formation of linear
combinations with non-negative coefficients. The elements z ∈ C = D ∩ n form a
semigroup with respect to addition, and therefore

K[C] = K[Xz1 · · ·Xzn : (z1, . . . , zn) ∈ C] ⊂ K[X±1
1 , . . . , X±n

n ]

is a well-defined K-algebra. In the following we write Xz for Xz1 · · ·Xzn. In general
K[C] is not a finitely generated K-algebra, and one cannot say much about it.
However, suppose that the cone D is a finitely generated rational cone, i.e. there
exist c1, . . . , cm ∈

n such that D is the set of non-negative linear combinations of
c1, . . . , cm. Then K[C] looks much more promising.

Theorem 5.1. Suppose that D is a finitely generated rational cone. Then K[C] is
a finitely generated K-algebra and a normal integral domain. One has dimK[C] =
dimD = rankC.

The rank of a semigroup C ⊂ n is the rank of the subgroup generated by C.
That K[C] is finitely generated is essentially Gordan’s lemma; it says that C is a
finitely generated semigroup if D is a finitely generated rational cone. In order to see
that K[C] is normal, one uses a desription of D that is equivalent to being finitely
generated: D is the intersection of finitely many vector half-spaces:

D =
r⋂

i=1

H+
i , H+

i = {v ∈ V : 〈ai, v〉 ≥ 0};

here 〈 , 〉 is the scalar product. If D is rational, then the ai can be chosen in n, and
vive versa: a cone is rational and finitely generated if and only if it is the intersection
of finitely many rational vector half-spaces H+

i . Let Ci = H+
i ∩

n. Then it is not
hard to see that

Ci
∼= n−1 ⊕

as a semigroup. Thus K[Ci] ∼= K[X±1
1 , . . . , X±1

n−1, X
n] is a normal ring, and K[C],

the intersection of the K[Ci], is also normal.
When C ⊂ n is an arbitrary finitely generated semigroup, then K[C] is called an

affine semigroup ring. It turns out that the rings K[C] introduced above are exactly
the normal ones among all affine semigroup rings. That explains the title we have
given to this section of our notes.

23
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Faces and prime ideals. From now on it is tacitly understood that all the cones D
being considered are finitely generated and rational. By C we always denote the
semigroup D ∩ n.

A combinatorial object accompanying D is its face lattice F(D): the faces of D
are the intersections

D ∩H0
i1
∩ · · · ∩H0

ij
, j = 0, . . . , m

where H0
i denotes the hyperplane {v ∈ n : 〈ai, v〉 = 0} bordering H+

i . The faces
are partially ordered by inclusion; with this partial order they form a lattice. The
maximal face is D itself, the minimal face is H0

1 ∩ · · · ∩H0
m.

Let A be the affine subspace of n generated by a face F of D. Then the interior
of F with respect to the subspace topology on A is called the relative interior of F ;
we denote it by

relintF.

To each face F of D we associate an ideal of K[C] by setting

(F ) = (Xz : z /∈ C ∩ F ).

Given an ideal of K[C], we say that is C-graded if is generated by the monomials
Xz contained in .

Theorem 5.2. (a) For all prime ideals of K[C] the ideal generated by the monomials

in is a C-graded prime ideal.

(b) The assignment F 7→ (F ) is a bijection between the set of non-empty faces of D
and the set of C-graded prime ideals of K[C].

We refer to [1] for the proof. The reader should note that (a) is the C-graded
variant of 1.1(a).

We want to apply the theory of graded rings as developed in Sections 1, 2, and
3 to K[C]; this makes only sense if the grading on K[C] is compatible with the
semigroup structure of C.

Definition 5.3. A decomposition

K[C] =
⊕

i∈

K[C]i

of the K-vector space K[C] is an admissible grading if K[C] is a graded K-algebra
with respect to this decomposition, and furthermore each component K[C]i has a
basis consisting of finitely many monomials Xz.

It is not hard to see which K[C] can be endowed with an admissible grading.

Proposition 5.4. The following are equivalent:

(a) if z ∈ C and −z ∈ C, then z = 0;
(b) {0} is the minimal face of D (i.e. D has an apex);
(c) there exists an embedding C → m of semigroups for some m ≥ 0;
(d) K[C] has an admissible grading.
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It is clear that we may replace C by D in (a). If the conditions of 5.4 are satisfied,
then C or D are called positive. Positive cones have cross-sections T .

Proposition 5.5. Let D be a positive cone.

(a) Then for each x ∈ n with −x /∈ D there exists an affine hyperplane A such that

x ∈ A and T = A ∩D is a bounded set generating the cone D.

(b) Such T is a convex polytope, and its faces (including ∅) correspond bijectively to

the faces of D.

In conjunction with 5.2 the previous proposition shows that the set of C-graded
prime ideals of K[C] has the same combinatorial structure as the face lattice of a
polytope T .

Cell complexes. A (finite regular) cell complex is a non-empty topological space X
together with a finite set Γ of subsets of X such that the following conditions are
satisfied:
(i) X =

⋃
e∈Γ e;

(ii) the subsets e ∈ Γ are pairwise disjoint;
(iii) for each e ∈ Γ , e 6= ∅ there exists a homeomorphism from a closed i-dimensional
ball Bi = {x ∈ i : ‖x‖ ≤ 1} onto the closure ē of e which maps the open ball
U i = {x ∈ i : ‖x‖ < 1} onto e;
(iv) ∅ ∈ Γ .

By the invariance of dimension the number i in (iii) is uniquely determined by e,
and e is called an open i-cell; ∅ is a (−1)-cell. By Γ i we denote the set of the i-cells
in Γ . The dimension of Γ is given by dimΓ = max{i : Γ i 6= ∅}. It is finite since Γ
is finite. One sets |Γ | = X .

A cell e′ is a face of the cell e 6= e′ if e′ ⊂ ē, and a subset Σ of Γ is a subcomplex

if for each e ∈ Σ all the faces of e are contained in Σ.
The classical examples of cell complexes are convex polytopes P together with

their decomposition P =
⋃

f∈F(P ) relint f . For them the following property, which

follows from (i)–(iv), is an elementary theorem:
(v) if e ∈ Γ i and e′ ∈ Γ i−2 is a face of e, then there exist exactly two cells e1,
e2 ∈ Γ i−1 such that ej is a face of e and e′ is a face of ej .

Let us say that ε is an incidence function on Γ if the following conditions are
satisfied:
(a) to each pair (e, e′) such that e ∈ Γ i and e′ ∈ Γ i−1 for some i ≥ 0, ε assigns a
number ε(e, e′) ∈ {0,±1};
(b) ε(e, e′) 6= 0⇐⇒ e′ is a face of e;
(c) ε(e, ∅) = 1 for all 0-cells e;
(d) if e ∈ Γ i and e′ ∈ Γ i−2 is a face of e, then

ε(e, e1)ε(e1, e
′) + ε(e, e2)ε(e2, e

′) = 0

where e1 and e2 are those (i − 1)-cells such that ej is a face of e and e′ is a face of
ej (see (v) above).
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Lemma 5.6. Let Γ be a cell complex. Then there exists an incidence function on Γ .

For a proof see [22] where the incidence numbers ε(e, e′) appear as topological
data determined by orientations of the cells. Figure 5.1 indicates two incidence
functions on the solid rectangle and how they are induced by orientations.
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Let Γ be a cell complex of dimension d − 1, and ε an incidence function on Γ .
We define the augmented oriented chain complex of Γ to be the complex

C̃(Γ ) : 0 −−→ Cd−1
∂
−−→ Cd−2 −−→ · · · −−→ C0

∂
−−→ C−1 −−→ 0

where
Ci =

⊕

e∈Γ i

e and ∂(e) =
∑

e′∈Γ i−1

ε(e, e′)e′ for e ∈ Γ i,

i = 0, . . . , d−1. That ∂2 = 0 follows from the definition of an incidence function and

property (v) of cell complexes. (The notation C̃(Γ ) is justified since the dependence

of C̃(Γ ) on ε is inessential.) For simplicity of notation we set H̃ i(Γ ) = Hi(C̃(Γ )).

The fundamental importance of C̃(Γ ) in algebraic topology relies on the fact that
it computes reduced singular homology:

Theorem 5.7. Let Γ be a cell complex. Then H̃ i(Γ ) = H̃ i(|Γ |) for all i ≥ 0 (and

H̃−1(Γ ) = 0).

We use 5.7 via the following corollary:

Corollary 5.8. Let Γ be a cell complex such that |Γ | is homeomorphic to a closed

ball Bn. Then H̃ i(Γ ) = 0 for all i ≥ −1.

Local cohomology. From now on D is a positive cone. By d we denote the rank of
C. Recall that d equals the Krull dimension of R = K[C].

We choose an admissible grading on K[C]. Independently of this choice, the
ideal in R = K[C] generated by the elements Xc, c ∈ C \ {0}, is the irrelevant
maximal ideal. We want to construct a complex ‘computing’ H i(M) that resembles
the combinatorial structure of D as closely as possible.

Fix a cross-section T of D, and let F = F(T ) be its face lattice, which we
consider as a cell complex. We denote a face of D and its intersection with T by
corresponding capital and small letters. Let F be a face of D. Then we set

RF = R{Xz : z∈C∩F};
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that is, we form the ring of fractions of R whose denominators are the monomials
in {Xz : z ∈ C ∩ F}. In particular, RD = K[C] is the algebra generated by all
monomials Xz where z belongs to the group C generated by C. Let

Lt =
⊕

f∈Ft−1

RF , t = 0, . . . , d,

and define ∂ : Lt−1 → Lt by specifying its component

∂f ′,f : RF ′ → RF to be
{
0 if F ′ 6⊂ F ,
ε(f, f ′) nat if F ′ ⊂ F ;

here ε is an incidence function on F . It is clear that

L. : 0 −−→ L0 ∂
−−→ L1 −−→ · · · −−→ Ld−1 ∂

−−→ Ld −−→ 0

is a complex. In the special case D = n
+, K[C] = K[X1, . . . , Xn] we have seen it

already: it is (up to the choice of the incidence function) the complex C. of 1.18.
That L. is exactly what we want, is shown by the next theorem.

Theorem 5.9. For every K[C]-module M , and all i ≥ 0,

H i(M) ∼= H i(L. ⊗M).

The first step in proving the theorem is the verification of the equation H0(L0⊗
M) = H0(M). This amounts to the fact that the ideal generated by the monomials
Xz contained in the 1-faces of D (i.e. the extremal rays of D) generate an -primary
ideal. This is true because their exponents z generate the cone D.

Now let 0 → M1 → M2 → M3 → 0 be an exact sequence of K[C]-modules.
Since all the summands of L. are flat K[C]-modules, this yields an exact sequence

0→ L. ⊗M1 → L. ⊗M2 → L. ⊗M3 → 0.

Therefore we have a long exact sequence

· · · → H i(L. ⊗M1)→ H i(L. ⊗M2)→ H i(L. ⊗M3)→ H i+1(L. ⊗M1)→ · · ·

Finally we must show that H i(L. ⊗M) = 0 for all i if M is an injective K[C]-
module. It suffices to consider the indecomposable modules E(R/) where is a prime
ideal of R = K[C]. (Each injective K[C]-module is the direct sum of indecompos-
ables, and each indecomposable injective module is the injective hull of a residue
class ring R/.) Let G be the face of D such that (G) is the C-graded prime ideal
generated by all the monomials in . Let G = F(g) denote the face lattice of the face
g = G ∩ T of a cross-section T of D. The crucial point of the proof is that

L. ⊗E(R/) ∼= Hom
(
C̃(G)(−1), E(R/)

)
.

(As for graded modules, −1 denotes a shift.) Since g is a convex polytope, it is

homeomorphic to a closed ball. So C̃(G) is an exact complex. Since C̃(G) is a

complex of free -modules, exactness is preserved in Hom(C̃(G)(−1), E(R/)).
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Cohen–Macaulay property and canonical module. The modules Li appearing in the
complex L. are direct sums

Li =
⊕

z∈n

(Li)z,

(Li)z being spanned by the copies of the monomial of Xz appearing in the direct
summands RF . The maps of L. respect this decomposition, and in order to compute
its cohomology we analyze each component (L.)z. Given z ∈ n, the crucial point is
to determine those faces F of D for which (RF )z 6= 0. As we shall see, this is the
case if and only if the face F is not ‘visible’ from z.

Let P be a polyhedron in a -vector space V . Let x, y ∈ V . We say that y is
visible from x if y 6= x and the line segment [x, y] does not contain a point y′ ∈ P ,
y′ 6= y. A subset S ⊂ V is visible if each v ∈ S is visible.

Proposition 5.10. Let P be a polytope in n with face lattice F , and x ∈ n a point

outside P . Set S = {F ∈ F : F visible from x}. Then S is a subcomplex of F ; its
underlying space S =

⋃
F∈S F is the set of points y ∈ P which are visible from x,

and is homeomorphic to a closed ball.

Just look at a polytope if you don’t believe the proposition. Figure 5.2 illustrates
the following lemma. Let C = 2 ⊂ 2, and F be the positive X-axis, G the positive
Y -axis. Then K[C]F = K[X, Y,X−1], and (K[C]F )z 6= 0 for z /∈ C exactly when
z is in the second quadrant (including the negative X-axis). Thus (K[C]F )z 6= 0 if
and only if F is not visible from z. Similar arguments work for the faces {0}, G,
and C.

C

F

G

Figure 5.2

Lemma 5.11. (RF )z 6= 0 (and therefore (RF )z ∼= K) if and only if F is not visible

from z.

Now we can describe the cohomology of L.. In order to have a compact notation,
we set relintC = C ∩ relintD, and relint(−C) = n ∩ relint(−D). Then, with a self-
explaining notation, relint(−C) = − relintC.

Theorem 5.12. (a) If z ∈ relint(−C), then (L.)z is isomorphic to 0→ K → 0 with

K in homological degree d. Consequently H i(L.)z = 0 for i 6= d, and Hd(L.)z ∼=
K ∼= (L.)z.

(b) Suppose that z /∈ relint(−C). Let T be a cross-section of D with face lattice F ,
and S = {F ∩ T : F ∈ F(D) visible from z} . Then
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(i) (L.)z ∼= Hom
(
(C̃(F)

/
C̃(S))(−1), K

)
,

(ii) H̃ i(F) = H̃ i(S) = 0 for all i,

(iii) (H i(L.))z = 0 for all i.

Part (a) is easy to see: for z ∈ relint(−C) one has z ∈ RF if and only if F = D.
The rest requires a careful discussion based on 5.10 and 5.11.

The previous theorem allows us not only to show that normal semigroup rings
are Cohen–Macaulay, but also to determine their canonical modules.

Theorem 5.13. (a) (Hochster) R = K[C] is a Cohen–Macaulay ring, and

(b) (Danilov, Stanley) the ideal I generated by the monomials Xc with c ∈ relintC
is the graded canonical module of K[C] (with respect to any admissible grading).

In fact, we have H i(R) = 0 for i = 0, . . . , d − 1 by 5.9 and 5.12. Therefore
depthR = d by 1.20, and it follows that R is Cohen–Macaulay.

For (b) one first shows that I∨ is isomorphic as an R-module to K[C]/U where
the submodule(!) U is the K-vector subspace spanned by all the monomials Xz,
z ∈ C, z /∈ relint(−C). Thus I∨ ∼= Hd(R), and local duality implies I ∼= ωR.

Corollary 5.14. K[C] is Gorenstein if and only if there exists c ∈ relintC with

relintC = c+ C.

One must only check that I is a principal ideal if and only if it is generated by
a monomial.

Combinatorial applications. One of the most beautiful combinatorial applications
of commutative algebra is the study of the Ehrhart function of a convex polytope.
The Ehrhart function counts the lattice points in a polytope and all its multiples,
i.e. its images under the maps x 7→ mx, M ∈ .

Let P ⊂ n be a polytope of dimension d. Since P is bounded, we may define its
Ehrhart function by

E(P,m) = |{z ∈ n :
z

m
∈ P}|, m ∈ , m > 0, and E(P, 0) = 1.

and its Ehrhart series by

EP (t) =
∑

m∈

E(P,m)tm.

It is clear that E(P,m) = |{z ∈ n : z ∈ mP}| where mP = {mp : p ∈ P}. Similarly
as above we set

E+(P,m) = |{z ∈ n :
z

m
∈ relintP}| for m > 0, E+(P, 0) = 0,

and
E+

P (t) =
∑

m∈

E+(P,m)tm.

Note that E+(P,m) = |{z ∈ n : z ∈ relintmP}| for m > 0.
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We define the cone D ⊂ n+1 by D = +{(p, 1) : p ∈ P}. Then C = D ∩ n+1 is
a subsemigroup of n+1. Therefore one may consider the k-algebra k[C]. Suppose
P is a rational polytope, i.e. the convex hull of finitely many points with rational
coordinates. Then D is a finitely generated rational cone, and K[C] is a normal
semigroup ring. Let us fix a grading on k[C] by assigning to c = (c1, . . . , cd+1)
the degree cd+1. For this grading the Hilbert functions of k[C] and of the ideal I
generated by the monomials Xc, x ∈ relintC, are given by

H(k[C], m) = E(P,m) and H(I,m) = E+(P,m).

The grading under consideration is admissible for k[C], and therefore we may
apply our previous results. Part (b) of the following theorem is Ehrhart’s remarkable
reciprocity law for rational polytopes.

Theorem 5.15 (Ehrhart). Let P ⊂ n be a d-dimensional rational polytope, d > 0.
Then

(a) EP (t) is a rational function, and there exists a quasi-polynomial q with E(P,m) =
q(m) for all m ≥ 0;
(b) E+

P (t) = (−1)d+1EP (t
−1), equivalently

E+(P,m) = (−1)dE(P,−m) for all m ≥ 1

where E(P,−m) = q(−m) is the natural extension of E(P, ).

(a) Since EP (t) is the Hilbert series of a positively graded Noetherian k-algebra,
it is a rational function. According to 2.4 we must show for the second statement
in (a) that EP (t) has negative degree, or, equivalently, that the a-invariant of k[C]
is negative. By 5.13 the ring k[C] is Cohen–Macaulay, and its graded canonical
module is generated by the elements Xc, c ∈ relintC. These have positive degrees
under the grading of k[C], and hence a(k[C]) < 0.

(b) By what has just been said, E+
P (t) is the Hilbert series of the canonical

module of k[C]. Furthermore, dim k[C] = d+ 1. Thus the first equation is a special
case of 3.12. The second equation results from

∑
m≥1E(P,−m)tm = −EP (t

−1).
(The reader may prove this identity as an exercise.)

The quasi-polynomial q in 5.15 is called the Ehrhart quasi-polynomial of P .
Suppose that P is even an integral polytope, that is, a polytope whose vertex set

V is contained in n. Then, in addition to k[C], we may also consider its subalgebra

k[V ] = k[X(v,1) : v ∈ V ].

Obviously k[V ] is a homogeneous k-algebra. Let c ∈ C; then there exist qv ∈ + such
that c =

∑
v∈V qvv. If we multiply this equation by a suitable common denominator e

and interpret the result in terms of monomials, then we see that (Xc)e ∈ k[V ]. Thus
k[C] is integral over k[V ]. Since it is also a finitely generated k[V ]-algebra, it is even
a finite k[V ]-module. Thus K[C] is almost homogeneous. In particular the Ehrhart
quasi-polynomial of P is a polynomial and therefore called the Ehrhart polynomial.
Furthermore k[C] has a well defined h-vector, which one calls the h-vector of P ,
and a well-defined multiplicity. The multiplicity of K[C] is an elementary geometric
invariant of P .
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Theorem 5.16. Let P ⊂ n be an n-dimensional integral polytope, and let k[C] the
normal semigroup ring constructed above. Then

e(k[C]) = n! volP.

Elementary arguments of measure theory show that the volume of P is

volP = lim
m→∞

E(P,m)

mn
.

Being the Hilbert polynomial of a (n + 1)-dimensional k[V ]-module, E(P,m) has
degree n. Thus its leading coefficient is given by volP . On the other hand, it is also
given by e(k[C])/n! .

The restriction to n-dimensional polytopes P ⊂ n is only for simplicity; see [30],
Section 4.6, for the general case. Using the fact that the volume of P is the leading
coefficient of its Ehrhart polynomial one can derive classical formulas for volP . For
example,

volP =
1

2
(E(P, 1) + E+(P, 1)− 2) for n = 2, and

volP =
1

6
(E(P, 2)− 3E(P, 1)− E+(P, 1) + 3) for n = 3.

For the polytope P of figure 5.3 we obtain the following numerical data:
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E(P, 1) = 16, E+(P, 1) = 10, E(P, n) = 12n2 + 3n+ 1 vol(P ) = 12.

The h-vector of an integral polytope P is subject to the following restraints.

Theorem 5.17. Let P be an integral polytope. Then

(a) hi ≥ 0 for all i; hi = 0 for i < 0 and i > d;

(b) (Stanley)
∑j

i=0 hi ≤
∑j

i=0 hs−i for all j = 0, . . . , s where s = max{i : hi 6= 0};

(c) (Hibi)
∑d

i=d−j hi ≤
∑j+1

i=0 hi for all j = 0, . . . , d.

Part (a) follows from the facts that K[C]i = 0 for i < 0 and that the a-invariant
of K[C] is negative. The inequality in (b) is an immediate consequence of 3.13. For
(c) one uses that, according to 5.13 and with its notation, there is an exact sequence
0→ ωR → R→ R/I → 0; then one applies 2.11 to R/I.



6 Walks in directed graphs

In this section we want to investigate generating functions defined by the walks
in a directed graph. The material below is much more elementary than that of
the preceding sections since we will only use the relationship between the Poincaré
biseries of a module, its Hilbert series and that of the underlying K-algebra R.

Let us first remark that the commutativity of R is not crucial for the validity of
the equation

(∗) HM(t) = HR(t) · PM(t,−1).

This is crucial for us since there is no reasonable way to work in a commutative
setting below. (The only exception is that of a directed graph representing a partial
order on its set of vertices: then we may choose R as the Stanley–Reisner ring of
the corresponding simplicial complex.)

A directed graph G on the vertex set V is a subset of V ×V ; we always assume V
is finite. We want to study the numerical function counting the walks (v1, v2, . . . , vn)
in G, i.e. sequences satisfying the condition (vi, vi+1) ∈ G. We call n the degree of
the walk, and denote the number of degree n walks in G by χn(G); by convention,
χ0(G) = 1. The generating function of χn(G) is

HG(t) =
∞∑

n=0

χn(G)tn.

Figure 6.1 shows a graph and its complementary graph Ḡ = (V × V ) \G. We have
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Figure 6.1

HG(t) = 1+ 4t+ 8t2 + 17t3 + 37t4 + · · · and HḠ(t) = 1+ 4t+8t2 + 17t3 +35t4 + · · ·
so that HG(t)HḠ(−t) = 1+ terms of degree ≥ 5. It would be an incredible accident,
if this equation were not a special case of a general theorem. Indeed, it is.

32
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Theorem 6.1 (Carlitz–Scoville–Vaughan). HG(t)HḠ(−t) = 1, where Ḡ = (V ×V )\
G is the graph complementary to G.

We prove 6.1 in a refined version. For a subset W of V let χn(G, W̄ ) the number
of degree n walks in G starting in W̄ = V \W , and χn(Ḡ,W ) the number of degree
n walks in Ḡ starting in W (with the same convention for n = 0 as above). We
introduce the corresponding generating functions

HW̄ (t) =
∞∑

n=0

χn(G, W̄ )tn, and H̄W (t) =
∞∑

n=0

χn(Ḡ,W )tn.

Theorem 6.2 (Gessel). With the notation just introduced, HW̄ (t) = H̄W (−t)HG(t),
equivalently

χn(G, W̄ ) =
n∑

i=0

(−1)iχi(Ḡ,W )χn−i(G) for all n ∈ .

We want to derive 6.2 as a special instance of (∗). Let us first note that (∗)
simplifies considerably if the free resolution is linear, i.e. it has the form

F. : · · · −−→ R(−i)βi −−→ R(−(i− 1))βi−1 −−→ · · · −−→ Rβ0;

Then PF.(t,−1) =
∑∞

i=0 βi(−t)
i.

One almost immediately associates sequences of vertices with sequences of in-
determinates. However, since we cannot permute the vertices in a walk, we are
forced to work with non-commuting indeterminates. This makes the algebra more
cumbersome – we must strictly distinguish between ‘left’ and ‘right’, but simplifies
the combinatorics tremendously.

So, let K〈G〉 be the residue class algebra of the free K-algebra K〈V 〉 on V
modulo the two-sided ideal generated by the products vv′ for which (v, v′) /∈ G (for
simplicity we identify a vertex and its corresponding variable), and set A = K〈G〉.
It is clear that HG(t) is the Hilbert series of A: the monomials (in non-commuting
variables) which form a K-basis of A are presented by the walks in G. Now we
choose I as the right ideal generated by the elements w ∈ W . The monomials
whose leftmost factor belongs to W form a K-basis of I, and so the residue classes
of those monomials whose leftmost factor is outside W form a K-basis of the right
A-module A/I. Thus HW̄ (t) is the Hilbert series of A/I.

We start the free resolution of A/I with the natural choice F0 = A. Next let

F1 = A(W ) be a free right A-module with basis ew, w ∈ W . Then the assignment
ew 7→ w induces a homomorphism ϕ1 : F1 → F0 with Imϕ1 = I. Note that I =⊕

w∈W wA. Thus Kerϕ1 =
⊕

w∈W ew Annw. Obviously Annw is the right ideal
generated by those v ∈ V for which wv ∈ , equivalently, for which (w, v) ∈ Ḡ.

Applying the same argument to each of Annw in place of I and iterating the pro-
cedure, we obtain a linear free resolution of A/I in which the basis of Fj corresponds
bijectively to the walks v1, . . . , vj in Ḡ that start from a vertex v1 ∈ W .
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Corollary 6.3. The following are equivalent:

(()a) K has finite projective dimension over K〈G〉;
(()b) Ḡ contains no cycles;

(()c) HG(t)
−1 is a polynomial.

A proof by linear algebra. We would like to present another proof of 6.2 which uses
the transfer matrix T of the graph G (over the real numbers ). In order to define T
we enumerate the vertices v1, . . . , vm ∈ V . Then Tij = 1 if (vi, vj) ∈ G, and Tij = 0
otherwise. Let T̄ be the transfer matrix of Ḡ; then E = T + T̄ is the matrix with all
entries equal to 1. For a subset W ⊂ V we define its indicator eW as the row vector
whose i-th component is 1 if vi ∈ W , and 0 otherwise. It follows immediately by
induction that for n ≥ 1 the number of degree n walks starting from a vertex in a
subset X ⊂ V and ending in a vertex belonging to Y ⊂ V is

〈eXT
n−1, eY 〉

where 〈 , 〉 denotes the standard scalar product in m. In particular, the j-th com-
ponent of eXT

n−1 is the number of degree n walks starting in a vertex v ∈ X and
ending in vj . The generating function HG(t) above can be written

HG(t) = 1 +
∞∑

n=1

〈eV T
n−1, eV 〉t

n.

Furthermore, if we set λ(y) = 〈y, eV 〉, τ(y) = yT , ε(y) = yE, and τ̄ (y) = (ε− τ)(y),
then the equation for χn(G, W̄ ) in 3.1 reads

λ(τn−1(eW̄ )) = λ(τn−1(eV ))

+
n−1∑

i=1

(−1)iλ(τ̄ i−1(eW ))λ(τn−i−1(eV )) + (−1)nλ(τ̄n−1(eW )).

The following lemma will show that one has an even stronger equation.

Lemma 6.4. Let M be a left module over some ring R, τ : M → M an endo-

morphism, e ∈ M , and λ : M → R an arbitrary map. We define ε : M → M by

ε(x) = λ(x)e. Then

(τ − ε)n(y) = τn(y)−
n∑

i=1

λ
(
(τ − ε)n−i(y)

)
τ i−1(e)

for all x ∈ M and n ∈ .

One goes by induction on n. For the induction step one writes (τ − ε)n+1(y) =
(τ − ε)((τ − ε)n(y)), applies the induction hypothesis, and uses the definition of ε.

We apply the lemma to the maps introduced above. Note that indeed ε(x) =
λ(x)eV . Since λ is now linear, we obtain from the lemma with y = eW = eV − eW̄
that

(−1)nτ̄n(eW ) = τn(eV − eW̄ )−
n∑

i=1

(−1)n−iλ
(
τ̄n−i(eW )

)
τ i−1(eV ).
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Solving for τn(eW̄ ) yields

τn(eW̄ ) = (−1)n+1τ̄n(eW ) +
n∑

i=1

(−1)n+1−iλ
(
τ̄n−i(eW )

)
τ i−1(eV ) + τn(eV ).

The j-th component of τn(eW̄ ) is the number χ
(j)
n+1(G, W̄ ) of degree n + 1 walks in

G which start in W̄ and end in the vertex vj . If we modify the remaining notation
accordingly, then we get a vectorial refinement of the second equation in 6.2 (we
have replaced n by n− 1 and i by n− i):

Theorem 6.5. With the notation introduced,

χ(j)
n (G, W̄ ) =

n−1∑

i=0

(−1)iχi(Ḡ,W )χ
(j)
n−i(G) + (−1)nχ(j)

n (Ḡ,W ) for n ≥ 1.

To obtain 6.2, simply sum the equations in 6.5 over j. The question arises
whether one can prove 6.5 homologically. This is indeed possible, and the homolog-
ical approach explains the structure of the formula very well.

Let A = K〈G〉. We observed in the proof of 6.2 that the maps in the free resolu-
tion F. of A/I are composed of homomorphisms A→ A, 1 7→ w, of right A-modules.
But such a homomorphism is left multiplication by w, and left multiplication maps
a left ideal into itself. This observation is the starting point for a decomposition of
F. that yields the formula in 6.5.

Let A(j) = Avj be the left ideal of A generated by vj . Then one has a decom-

position A = K ⊕
⊕m

j=1A
(j) of K-vector spaces. Writing the free A-modules Fi in

F. as a direct sum of copies of A, namely Fi = Aβi with βi = χi(Ḡ,W ), one may
similarly decompose Fi as

Fi = Kβi ⊕
m⊕

j=1

(A(j))βi.

Furthermore, for i ≥ 1 we split the direct summand Kβi into the direct sum

m⊕

j=1

Kχ
(j)
i

(Ḡ,W )

where for each j we have collected the subspaces eK with base elements e of Fi

corresponding to those direct summands A on which the map to a component of

Fi−1 is left multiplication by vj. Finally we set F
(j)
i = Kχ

(j)
i

(Ḡ,W )⊕ (A(j))βi for i ≥ 1,

and F
(j)
0 = A(j).

These decompositions are compatible with the grading of F. and furthermore

they even split F. into a direct sum of complexes, since F
(j)
i is mapped into F

(j)
i−1:

the maps A → A which occur in F. are left multiplications by an element w ∈ V
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or 0. Taking both decompositions simultaneously we obtain an acyclic complex of
K-vector spaces

0→ (F j
n)n −−→ (F j

n−1)n −−→ . . . −−→ (F j
1 )n −−→ (F j

0 )n

for each n ≥ 1. Its Euler characteristic is the right hand side of the formula in 6.5
and the degree n piece of its homology is the vector space generated by all degree n
monomials in A/I which end in vj.

Remarks. The material of this section has been taken from Bruns–Herzog–Vetter [2],
which furthermore contains some extensions of 6.2. Kobayashi [21] used a similar
approach towards proving combinatorial identities. Fröberg [6] showed that the
residue class algebras of a free algebra with respect to certain classes of homogeneous
relations of degree 2 are Koszul algebras (i.e. K has a linear resolution). In the case
W = V the resolution in the proof of 6.2 is a (very simple) special case of Fröberg’s
construction, which gives the base elements in a free resolution as monomials in
‘complementary’ variables modulo ‘complementary’ relations.
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