List of Symbols

\checkmark	join in lattice, 72
\wedge	meet in lattice (or exterior product), 72
$<_{\text {deglex }}$	degree lexicographic order, 3
$<_{\text {lex }}$	lexicographic order, 3
$<_{\text {revlex }}$	reverse lexicographic order, 3
[-]	cohomological shift, 370
- 『 -	external tensor product, 328
$(-)_{\chi}^{G}$	eigenspace corresponding to the character χ of $G, 356$
-	dot action of the symmetric group \mathfrak{S}_{n} on $\mathbb{Z}^{n}, 416$
1_{G}	unit element for an algebraic group $G, 350$
$[\ldots \mid \ldots]$ [$\ldots . . \mid \ldots]$	partial order of minors, 72
$\left[a_{1} \ldots a_{t} \mid b_{1} \ldots b_{t}\right]$	minor with rows a_{1}, \ldots, a_{t} and columns $b_{1}, \ldots, b_{t}, 70$
$\left[a_{1} \ldots a_{t} \mid b_{1} \ldots b_{t}\right]_{X}$	minor $\left[a_{1} \ldots a_{t} \mid b_{1} \ldots b_{t}\right]$ of matrix $X, 70$
$\left\langle a_{1} \ldots a_{t} \mid b_{1} \ldots b_{t}\right\rangle$	diagonal of minor $\left[a_{1} \ldots a_{t} \mid b_{1} \ldots b_{t}\right], 80$
[$a_{1} \ldots . . a_{m}$]	maximal minor with columns $a_{1}, \ldots, a_{m}, 70$
$\mathbb{A}_{\mathbf{B}}(\mathcal{E})$	affine bundle, 329
$a_{i}(M)$	highest degree in $H_{Q_{R}}^{i}(M), 276$
$\alpha_{k}(\sigma)$	$\sum_{i \leq k} s_{i}$ for $\sigma=\left(s_{1}, \ldots, s_{u}\right), 78$
$\alpha_{k}(\Sigma)$	$\alpha_{k}(\|\Sigma\|), 93$
α_{k}^{*}	dual of $\alpha_{k}, 119$
$\widehat{\alpha}_{k}(r)$	maximum of α_{k} taken over inc-decompositions of r, 118
$\widehat{\alpha}_{k}^{*}$	dual of $\widehat{\alpha}_{k}, 119$
Ann	annihilator of a module, 381
$a(R)$	a-invariant of graded algebra $R, 136$
$\operatorname{ara}(I)$	arithmetic rank of an ideal $I, 467$
$\mathcal{A}_{r, s}, \mathcal{B}_{r, s}$	sets used to describe syzygies of determinantal ideals, 472
$\mathfrak{A}(s)$	weights for simple \mathcal{D}-module supported on rank s matrices, 465

\mathfrak{a}^{t}	shorthand for the pair (a, t), 265
A_{t}	algebra generated by t-minors, 195
$\beta_{i j}(M)$	graded Betti number of module M, 38
Bigheight I	maximum height of an associated prime ideal of $I, 44$
bigheight I	maximum height of a minimal prime ideal of $I, 44$
$B_{i, j}(I)$	syzygies of the ideal $I, 470$
$B_{I}(q)$	equivariant Betti polynomial for the ideal $I, 471$
$\operatorname{cd}_{S}(I)$	cohomological dimension of an ideal $I \subset S$, 467
$\mathrm{cl}(\mathrm{I})$	divisor class of ideal I
$\mathrm{Cl}(R)$	divisor class group of ring R
$C(M)$	cone generated by monoid $M, 173$
Coker	cokernel of a homomorphism
computel	function to find value of l in Lemma 10.2.5, 389
D	product of minors along diagonals, 193
\mathcal{D}_{t}	product of minors of size $\geq t$ along diagonals, 241
$\boldsymbol{d}_{u v}$	special diagonal matrix, 209
$D^{d} \mathcal{E}$	divided power of locally free sheaf, 327
$D^{d} V$	divided power of a free module, 325
deg	degree
$\operatorname{Deg}_{M}\left(Z_{1}, \ldots, Z_{n}\right)$	multidegree of M, 147
$\langle\Delta\rangle$	product of diagonals of bitableau $\Delta, 80$
$\langle\delta\rangle$	diagonal of minor $\delta, 80$
$\|\Delta\|$	shape of bitableau $\Delta, 71$
$\|\delta\|$	size of minor $\delta, 71$
$\Delta^{\text {\{r }}$	r th secant of simplicial complex $\Delta, 142$
$\Delta_{1} * \cdots * \Delta_{r}$	join of simplicial complexes $\Delta_{1}, \ldots, \Delta_{r}, 142$
Δ_{G}	comultiplication on $K[G], 351$
$\Delta(I)$	simplicial complex defined by squarefree monomial ideal $I, 48$
Δ_{M}	comodule map for M, 356
depth M	depth of module $M, 38$
$\operatorname{det} V$	determinant of a free module, 326
\mathbf{D}_{n}	algebraic group of diagonal matrices (group scheme), 354
D_{r+1}	initial algebra of $R_{r+1}, 219$
D^{-}	derived category of bounded above complexes, 369
D^{+}	derived category of bounded below complexes, 369
$e(M)$	multiplicity of module $M, 25$
\mathcal{E}_{b}	fiber of a sheaf \mathcal{E} at the point $b, 329$
$e_{b}(M)$	mixed multiplicity of module $M, 147$
\mathcal{E}^{\vee}	dual of locally free sheaf, 328
$\mathcal{E}_{\text {\%,l }}^{j}(I)$	GL-module isomorphic to $\operatorname{Ext}_{S}^{j}\left(J_{\sigma, l}, S\right), 456$
ε	weight defined on shapes, 212
ε_{G}	counit on $K[G], 351$
Ext	sheaf Ext, 373

```
            F (often) Frobenius map, 230
        \langleF},\ldots,\mp@subsup{F}{p}{}\rangle\quad\mathrm{ simplicial complex generated by faces }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{p}{},11
        \mp@subsup{\mathbb{F}}{\mathbf{B}}{}(\mathcal{E})\quad\mathrm{ complete flag bundle, 332}
        \mp@subsup{\mathbb{F}}{\mathbf{B}}{}(L;\mathcal{E})\quad\mathrm{ partial flag bundle, 331}
            F(\Delta) set of facets of simplicial complex }\Delta,10
            Fe}\quad\mathrm{ iterated Frobenius map, }24
            f! exceptional inverse image functor, 370
            f!}K\quad\mathrm{ dualizing complex, 370
            f\overline{\otimes}g\quad\mathrm{ tensor product followed by counit, 351}
            \mathcal{F}(\mathfrak{p})\quad\mathrm{ face of cone of weights defined by }\mathfrak{p},214
            f* direct image functor
            F*}R\quadR\mathrm{ -module structure on }R\mathrm{ defined by Frobenius map,
            230
            F
                    f* inverse image functor
            F
            fpt (a)
            f*Tr
            \mp@subsup{G}{a}{}\quad\mathrm{ additive group, 351}
        me threshold of ideal a, 265
            \star Tr the map F*R 
            \gamma
        valuation defined by prime ideal of t-minors, 88
        \mp@subsup{\gamma}{t}{\prime}(\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{u}{})
            \mp@subsup{\gamma}{t}{\prime}}(r)\quad\mathrm{ maximum of }\mp@subsup{\gamma}{t}{}\mathrm{ taken over inc-decompositions, }12
            \Gamma(U,-) functor of sections on an open set U
            \mp@subsup{\mathbb{G}}{\mathbf{B}}{}(l;\mathcal{E})\quad\mathrm{ Grassmann bundle, 329}
generateSigma0 function to generate minimal partitions relative to }\subset\mathrm{ ,
                                388
                                GL}(m,K)\times\operatorname{GL}(n,K),9
        GL}(m,K)\quad\mathrm{ group of invertible }m\timesm\mathrm{ matrices, }9
            gl(m|n) general linear Lie superalgebra, 476
            GL
            \mp@subsup{G}{m}{}}\quad\mathrm{ multiplicative group, 351
            gp(M) group of differences of monoid M,173
            gr}\mp@subsup{\mathcal{F}}{(R)\quad\mathrm{ associated graded ring of filtration }\mathcal{F},53}{
            gr (R) associated graded ring of ideal I,186
        grade(I,M) grade of ideal I with respect to module M,276
            Hi}(\mathbf{B},-)\quad\mathrm{ sheaf cohomology functor on a variety B
            Hi+}\quad\mathrm{ linear halfspace, 173
        H(Q,M) Koszul homology of module M with respect to ideal
        Q,278
            HI}\mp@subsup{|}{(-) functor of local cohomology with support in an ideal I}{
            \mp@subsup{\operatorname{hom}}{w}{}(f)\quad\mathrm{ homogenization of }f\mathrm{ w.r.t. weight vector }w,32
            hom
                                w, 32
            Hom
            Hom sheaf of homomorphisms, 370
```

```
        hr\timess
        lution,}47
        HV}(t)\quadHilbert series of V,2
        H(V,) Hilbert function of V,24
            h(y) height of the partition y,341
                    \overline{I}
        48
            I (d)}\quadd\mathrm{ th symbolic power of an ideal I
            i}\mp@subsup{|}{G}{}\quad\mathrm{ inverse for an algebraic group G,350
            I*J join of ideals I and J,138
            I
                298
            In(\sigma) initial tableau of shape }\sigma,7
            In(V) set of initial monomials of elements of V,22
            in(A) initial (sub)algebra of (sub)algebra }A,1
            in(f) initial monomial of f,4
            in(I) initial ideal of ideal }I,
            in(V) initial vector space of vector space V,22
            in
            inic(f) initial coefficient of f,4
            init(f)\quad initial term of f,4
            init
            Ins(r) standard tableau obtained from sequence r by insertion,
                1 1 7
            I [p] Frobenius power of ideal I, 234
            I [p}\mp@subsup{}{[\mp@subsup{p}{}{c}]}{ iterated Frobenius power of ideal I, 243
            I {r}}\quadr\mathrm{ th secant ideal of I,140
        I
        resp., }9
            I\sigma
            I }\mp@subsup{}{}{(\Sigma)}\quad\mathrm{ ideal defined by the shapes in }\Sigma,38
            I}\quad\mathrm{ GL-invariant ideal associated to a set of shapes }\Sigma,45
            I}\quad\mathrm{ GL-invariant ideal associated to a shape }\sigma,44
            \mp@subsup{\mathcal{I}}{}{(\sigma)},\mp@subsup{\mathcal{I}}{}{(\Sigma)}\quad\mathrm{ sheaf of ideals defined by shape, 393}
            I* tight closure of ideal I,245
            It}(k)\quadkth symbolic power of It,9
            It, It (X) ideal generated by t-minors (of matrix X),70
            \mp@subsup{\mathcal{J}}{l}{(\sigma)}\quadquotient of sheaves of ideals defined by shape, 396
            J}\mp@subsup{|}{l}{(\sigma)}\quad\mathrm{ quotient of ideals defined by shape, 380
            J
Jt
                                202
    J
            \kappa(b) residue field at the point }b,32
```

$K[\Delta]$	Stanley-Reisner ring of simplicial complex $\Delta, 48$
Ker	kernel of a homomorphism
$K_{\lambda, \mu}$	Kostka number of partitions $\lambda, \mu, 151$
$K[M]$	monoid algebra, 172
$K\left[\mathcal{M}_{\tau}\right]$	coordinate ring of flag variety, 79
λ^{*}	dual of shape $\lambda, 119$
Λ_{t}	map taking a linear map to its t th exterior power, 208
$\bigwedge^{d} \mathcal{E}$	exterior power of locally free sheaf, 328
$\bigwedge^{d}{ }^{d} V$	exterior power of a free module (or vector space)
$\bigwedge^{d} V^{\vee}$	exterior power of V^{\vee}, also dual of the exterior power of $V, 327$
lcm	least common multiple
$\mathcal{L}_{i}^{\mathcal{E}}$	tautological line bundle, 332
$L_{\sigma},{ }_{\sigma} L$	subspaces generated by all right resp. left initial bitableaux, 95
$\ell(\sigma)$	length of a permutation $\sigma, 416$
\mathfrak{m}_{b}	maximal ideal of $\mathcal{O}_{\mathbf{B}, b}, 329$
M^{G}	G-invariants of $M, 356$
$\underset{M^{(i, *)}}{m_{G}}$	multiplication for an algebraic group $G, 350$
	288
$M^{(*, j)}$	j th homogeneous component of M w.r.t. (0, 1)-grading, 288
$M_{\geq j}$	truncated module $\bigoplus_{i \geq j} M_{i}, 283$
$\operatorname{Mon}(R)$	set of monomials in $R, 2$
M_{σ}	irreducible \mathbb{G}-representation, 98
$\mathcal{M}_{\sigma}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$	a direct summand of $\operatorname{Sym}^{d}\left(\mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ (in characteristic zero), 435
\mathcal{M}_{τ}	set of bitableaux generating coordinate ring of flag variety, 79
$\mathcal{M}_{t}(X)$	set of t-minors of $X, 70$
$\mu(M)$	minimal number of generators of module $M, 225$
$\mu_{1} \leq \mu_{2}$	monomial μ_{1} precedes μ_{2} in monomial order, 3
$\operatorname{mult}_{(\sigma \mid \tau)}$	multiplicity of bi-shape ($\sigma \mid \tau$) in $P_{t}(m, n), 201$
$\operatorname{mult}_{(\sigma \mid \tau)}(E)$	multiplicity of bi-shape ($\sigma \mid \tau$) occurring in $E, 201$
$\mathcal{M}(X)$	set of nonempty minors, 70
\mathbb{N}	set of nonnegative integers
$\mathbb{N}_{>0}$	set of positive integers
$\nu_{e}^{I}(\mathfrak{a})$	$\sup \left\{r \in \mathbb{N}: \mathfrak{a}^{r}\left(I^{\left[p^{e}\right]}: I\right) \not \subset \mathfrak{m}^{\left[p^{e}\right]}\right\}, 265$
$\mathcal{O}_{\text {B }}$	structure sheaf of a variety \mathbf{B}
$\mathcal{O}_{\mathbf{B}, b}$	local ring at the point $b, 329$
$\mathcal{O}_{\mathbb{F}_{\mathbf{B}}(\mathcal{E})}^{\mathcal{E}}(\underline{y})$	line bundle associated to the weight $y \in \mathbb{Z}^{n}, 332$
$\omega_{R}, \omega(\bar{R})$	(graded) canonical module of $R, 136$
$\omega_{\mathbb{F}_{\mathbf{B}}(\mathcal{E}) / \mathbf{B}}$	relative canonical sheaf for a complete flag bundle, 333
$\omega_{\mathbb{G}_{\mathbf{G}}(l ; \mathcal{E}) / \mathbf{B}}$	relative canonical sheaf for a Grassmann bundle, 330

$\Omega_{\mathbb{G}_{\mathbf{B}}(l ; \mathcal{E}) / \mathbf{B}}$	sheaf of relative differentials for a Grassmann bundle, 330
$\Omega_{\mathbb{P}_{\mathbf{B}}(\mathcal{E}) / \mathbf{B}}$	sheaf of relative differentials for a projective bundle, 330
$\omega_{X / Y}$	relative canonical sheaf
$\operatorname{Paths}(\mathcal{P}, \mathcal{Q})$	number of families of nonintersecting paths from \mathcal{P} to $\mathcal{Q}, 131$
$\operatorname{Paths}(\mathcal{P}, \mathcal{Q}, z)$	generating function of families of paths from \mathcal{P} to \mathcal{Q}, 134
$\mathbb{P}_{\mathbf{B}}(\mathcal{E})$	projective bundle, 329
$\mathcal{P}($ d $)$	set of partitions of d
\mathfrak{p}_{i}	\mathbb{G}-stable prime ideal in $A_{t}, 212$
Π_{2}	simplicial complex defined by initial ideal of $I_{2}, 108$
Π_{t}	simplicial complex defined by initial ideal of $I_{t}, 128$
π_{i}	valuation on $A_{t}, 212$
\mathcal{P}_{m}	set of shapes with parts of size $\leq m, 382$
$P \leq Q$	partial order of paths, 112
proj $\operatorname{dim} M$	projective dimension of module M
Proj	relative Proj, 329
$P_{t}(m, n), \overline{P_{t}}$	polynomial ring in indeterminates representing the t minors, 198
Q	often ideal (X_{1}, \ldots, X_{n}), 277
$Q_{(0,1)}$	ideal of $R^{(0, *)}$ generated by $R_{(0,1)}, 287$
$Q_{(1,0)}$	ideal of $R^{(*, 0)}$ generated by $R_{(1,0)}, 287$
$\binom{u}{v}_{q}$	q-binomial coefficient, 465
\mathfrak{q}_{k}	\mathbb{G}-stable prime ideal in $A_{t}, 212$
$\mathcal{Q}_{l}^{\mathcal{E}}$	tautological rank l quotient sheaf, 330
Q_{R}	ideal generated by $R_{1}, 276$
$(R \mid C)$	bitableau with row tableau R and column tableau C, 71
R_{χ}	semi-invariants of R for character $\chi, 220$
R°	set of elements of R not in any minimal prime ideal, 243
$R(\Delta)$	set of relevant faces of simplicial complex $\Delta, 148$
$\mathcal{R}(\mathcal{F})$	Rees algebra of filtration $\mathcal{F}, 260$
$\mathcal{R}(I)$	Rees algebra of ideal $I, 183$
$\mathcal{R}(I, M)$	Rees module of ideal I and module M, 296
$\mathcal{R}\left(I_{1}, \ldots, I_{m}\right)$	multi-Rees algebra of ideals $I_{1}, \ldots, I_{m}, 301$
$\mathcal{R}\left(I_{1}, \ldots, I_{m}, M\right)$	multi-Rees module of ideals I_{1}, \ldots, I_{m} and module M, 302
$\widehat{\mathcal{R}}(I)$	extended Rees algebra of ideal $I, 186$
$\mathcal{R}^{\text {symb }}\left(I_{t}\right)$	symbolic Rees algebra of ideal $I_{t}, 187$
$\operatorname{reg} M$	regularity of module M (generalized on p. 276), 39

$\mathrm{reg}_{(0,1)} M$	regularity of M with respect to the (0,1)-grading, 288
$\mathrm{reg}_{(1,0)} M$	regularity of M with respect to the (1,0)-grading, 288
relint (C)	relative interior of cone $C, 175$
$\widehat{R^{\mathcal{F}}}$	completion of ring R w.r.t. filtration $\mathcal{F}, 53$
$\widehat{R_{\text {m }}}$	completion of $R_{\mathfrak{m}}$ w.r.t. ideal $\mathfrak{m} R_{\mathfrak{m}}, 54$
$\rho_{N}(v)$	supremum of degrees i of nonvanishing components $N_{(i, v)}, 290$
$R^{i} f_{*}$	higher direct image functor, 334
$\left(R_{k}\right)$	Serre condition, 35
$\mathcal{R}_{l_{i}, l_{j}}^{\mathcal{E}}$	tautological subquotient sheaf, 331
$R(m, n)$	$K[X]$ for $m \times n$ matrix $X, 199$
$\mathcal{R}_{n-l}^{\mathcal{E}}$	tautological rank ($n-l$) subsheaf, 330
$R \# S$	Segre product of graded algebras R and $S, 107$
$\operatorname{RSK}(\Sigma)$	monomial (or 2-line array) obtained from Σ by RSK, 115
$\operatorname{RSK}(f)$	value of f under linear map RSK, 116
RSK(I)	image of ideal I under linear map RSK, 122
$R^{(i, *)}$	i th homogeneous component of R w.r.t. (1, 0)-grading, 288
$R^{(*, j)}$	j th homogeneous component of R w.r.t. (0, 1)-grading, 288
$R^{(*, 0)}$	subring $\bigoplus_{i} R_{(i, 0)}$ of bigraded ring, 287
$R^{(0, *)}$	subring $\bigoplus_{j} R_{(0, j)}$ of bigraded ring, 287
$\operatorname{sat}(I)$	saturation of ideal $I, 299$
\mathfrak{S}_{d}	symmetric group
sign	sign of permutation
shape	recursive function to generate shapes in $\mathcal{Z}(\Sigma), 390$
$\sigma \leq \tau$	σ precedes τ in dominance order, 78
$\sigma(c)$	truncation of the shape $\sigma, 382$
$\Sigma_{d}(V)$	submodule of symmetric power, 326
σ_{G}	coinverse on $K[G], 351$
$\Sigma^{\text {sat }}$	saturation of a set of shapes in $\mathcal{P}(d), 393$
$\Sigma_{\sigma, l}$	set of rectangular shapes associated to (σ, l), 457
$(\sigma \mid \tau)$	bi-shape, 201
$\left(S_{k}\right)$	Serre condition, 35
$\mathrm{SL}(r, K)$	group of $r \times r$ matrices of determinant 1,220
Spec	relative Spec, 329
\sqrt{I}	radical of I
$\operatorname{sr}(\psi)$	small rank of $\psi, 209$
$\mathfrak{s u c c}{ }^{\leq}(\sigma, l)$	another notation for $\mathfrak{s u c c}(\sigma, l), 453$
$\mathfrak{s u c c}(\sigma, l)$	l-successors of the shape σ with respect to $\leq, 380$
$\mathfrak{s u c c}{ }^{¢}(\sigma, l)$	l-successors of σ with respect to $\subset, 453$
$\operatorname{supp}(f)$	set of monomials with nonzero coefficient in $f, 2$
$\operatorname{supp}_{\mathbb{G}}(H)$	set of shapes in \mathbb{G}-module $H, 213$

$\mathbb{S}_{\underline{v}}(-)$	Schur functor associated to the weight $\underline{v}, 362$
$\operatorname{Sym}^{\bullet}(\mathcal{E})$	symmetric algebra of locally free sheaf, 329
$\operatorname{Sym}^{\bullet}(V)$	symmetric algebra of free module, 326
$\operatorname{Sym}^{d} \mathcal{E}$	symmetric power of locally free sheaf, 328
$\operatorname{Sym}^{d} V$	symmetric power of free module, 325
$t_{0}(M)$	minimum degree needed to generate module $M, 277$
$T^{d} \mathcal{E}$	tensor power of locally free sheaf, 327
$\left(T^{d} V\right)_{\mathfrak{S}_{d}}$	coinvariants for the symmetric group action on tensors, 325
$T^{d} V$	tensor power of free module, 325
$\Theta_{d}(V)$	submodule of tensor power, 326
$t_{i}(M)$	largest degree in i th Koszul homology of M, 279
\mathbf{T}_{n}	algebraic group of upper triangular matrices (group scheme), 354
Tr	distinguished map $F_{*} R \rightarrow R, 236$
$U(I)$	open subset of spectrum defined by ideal $I, 50$
\mathbf{U}_{n}	unipotent group (group scheme), 354
$U^{+}(n, K)$	upper unipotent $n \times n$ matrices, 97
$U^{-}(n, K)$	lower unipotent $n \times n$ matrices, 97
\mathbb{U}	$U^{-}(m, K) \times U^{+}(n, K), 98$
V^{\vee}	dual of a free module, 327
$V(I)$	closed subset of spectrum defined by ideal $I, 50$
v_{p}	valuation defined by prime ideal $\mathfrak{p}, 88$
$\underline{v}(r, s ; \alpha, \beta)$	weight used to describe syzygies of determinantal ideals, 471
$\mathcal{V}^{(\sigma)}, \mathcal{V}^{(\Sigma)}$	sheaf defined by shape, 393
\mathcal{W}	Weyl algebra, 468
$X(G)$	character group of $G, 353$
$X_{t}, X_{t}(m, n)$	Zariski closure of $Y_{t}, 208$
$Y_{t}, Y_{t}(m, n)$	set of exterior powers of linear maps, 208
$\mathcal{Z}\left(I^{(\Sigma)}\right), \mathcal{Z}(\Sigma)$	combinatorial set indexing a natural filtration on $S / I^{(\Sigma)}$ 382
$\mathcal{Z}\left(I_{\Sigma}\right), \mathcal{Z}^{\subset}(\Sigma)$	combinatorial set indexing a natural filtration on S / I_{Σ}, 454
$\mathbb{Z}_{\text {dom }}^{n}$	set of dominant weights, 341
$\mathcal{Z}_{p}^{(d)}$	special notation for the set $\mathcal{Z}\left(I_{p}^{(d)}\right), 391$
$\underline{z}(r)$	modification of the weight $\underline{z}, 436$
$\mathcal{Z} \leq{ }_{(}$(Σ)	another notation for $\mathcal{Z}\left(I^{(\Sigma)}\right), 454$

