V	join in lattice, 72
× ^	meet in lattice (or exterior product), 72
	degree lexicographic order, 3
<deglex< th=""><th>• • •</th></deglex<>	• • •
< _{lex}	lexicographic order, 3
<revlex< th=""><th>reverse lexicographic order, 3</th></revlex<>	reverse lexicographic order, 3
[-]	cohomological shift, 370
$-\boxtimes$ $-$	external tensor product, 328
$(-)^G_{\chi}$	eigenspace corresponding to the character χ of G , 356
•	dot action of the symmetric group \mathfrak{S}_n on \mathbb{Z}^n , 416
1_G	unit element for an algebraic group G , 350
$[\ldots \ldots] \preceq [\ldots \ldots]$	partial order of minors, 72
$[a_1\ldots a_t b_1\ldots b_t]$	minor with rows a_1, \ldots, a_t and columns $b_1, \ldots, b_t, 70$
$[a_1\ldots a_t b_1\ldots b_t]_X$	minor $[a_1 \dots a_t b_1 \dots b_t]$ of matrix X, 70
$\langle a_1 \dots a_t b_1 \dots b_t \rangle$	diagonal of minor $[a_1 \dots a_t b_1 \dots b_t]$, 80
$[a_1 \ldots a_m]$	maximal minor with columns $a_1, \ldots, a_m, 70$
$\mathbb{A}_{\mathbf{B}}(\mathcal{E})$	affine bundle, 329
$a_i(M)$	highest degree in $H^i_{O_R}(M)$, 276
$lpha_k(\sigma)$	$\sum_{i < k} s_i$ for $\sigma = (s_1, \ldots, s_u), 78$
$lpha_k(\Sigma)$	$\alpha_k(\Sigma), 93$
$lpha_k^*$	dual of α_k , 119
$\widehat{\alpha}_k(r)$	maximum of α_k taken over inc-decompositions of r,
	118
$\widehat{\pmb{lpha}}_k^*$	dual of $\widehat{\alpha}_k$, 119
Ann	annihilator of a module, 381
a(R)	<i>a</i> -invariant of graded algebra <i>R</i> , 136
ara(I)	arithmetic rank of an ideal I , 467
$\mathcal{A}_{r,s}, \ \mathcal{B}_{r,s}$	sets used to describe syzygies of determinantal ideals,
	472
$\mathfrak{A}(s)$	weights for simple \mathcal{D} -module supported on rank s
	matrices, 465

479

© Springer Nature Switzerland AG 2022 W. Bruns et al., *Determinants, Gröbner Bases and Cohomology*, Springer Monographs in Mathematics, https://doi.org/10.1007/978-3-031-05480-8

\mathfrak{a}^t	shorthand for the pair (a, t) , 265
A_t	algebra generated by t -minors, 195
$\beta_{ij}(M)$	graded Betti number of module M , 38
Bigheight I	maximum height of an associated prime ideal of I , 44
bigheight I	maximum height of a minimal prime ideal of I, 44
$B_{i,i}(I)$	syzygies of the ideal I , 470
$B_I(q)$	equivariant Betti polynomial for the ideal I , 471
$\mathrm{cd}_{S}(I)$	cohomological dimension of an ideal $I \subset S$, 467
$\operatorname{cl}(I)$	divisor class of ideal I
$\operatorname{Cl}(R)$	divisor class group of ring R
C(M)	cone generated by monoid M , 173
Coker	cokernel of a homomorphism
computel	function to find value of l in Lemma 10.2.5, 389
\mathcal{D}	product of minors along diagonals, 193
\mathcal{D}_t	product of minors of size $\geq t$ along diagonals, 241
d_{uv}	special diagonal matrix, 209
$D^d \overline{\mathcal{E}}$	divided power of locally free sheaf, 327
$D^d V$	divided power of a free module, 325
deg	degree
$\operatorname{Deg}_M(Z_1,\ldots,Z_n)$	multidegree of M , 147
$\langle \Delta \rangle$	product of diagonals of bitableau Δ , 80
$\langle \delta angle$	diagonal of minor δ , 80
$ \Delta $	shape of bitableau Δ , 71
$ \delta $	size of minor δ , 71
$\Delta^{\{r\}}$	<i>r</i> th secant of simplicial complex Δ , 142
$\Delta_1 * \cdots * \Delta_r$	join of simplicial complexes $\Delta_1, \ldots, \Delta_r, 142$
Δ_G	comultiplication on $K[G]$, 351
$\Delta(I)$	simplicial complex defined by squarefree monomial
	ideal I, 48
Δ_M	comodule map for M , 356
depth <i>M</i>	depth of module M , 38
detV	determinant of a free module, 326
\mathbf{D}_n	algebraic group of diagonal matrices (group scheme),
D	354
D_{r+1}	initial algebra of R_{r+1} , 219
D^-	derived category of bounded above complexes, 369
D^+	derived category of bounded below complexes, 369
e(M)	multiplicity of module M , 25
\mathcal{E}_b	fiber of a sheaf \mathcal{E} at the point b, 329
$e_b(M) \ {\cal E}^ee$	mixed multiplicity of module M , 147
	dual of locally free sheaf, 328
$\mathcal{E}^{J}_{\sigma,l}(I)$	GL-module isomorphic to $\text{Ext}_{S}^{J}(J_{\sigma,l}, S)$, 456
3	weight defined on shapes, 212
ε_G	counit on $K[G]$, 351
Ext	sheaf Ext, 373

480

$$\begin{array}{lll} F & (often) Frobenius map, 230 \\ (F_1, \ldots, F_p) & simplicial complex generated by faces $F_1, \ldots, F_p, 110 \\ \mathbb{F}_B(E) & complete flag bundle, 332 \\ \mathbb{F}_B(L; \mathcal{E}) & partial flag bundle, 331 \\ F(\Delta) & set of facets of simplicial complex Δ , 109 \\ iterated Frobenius map, 243 \\ f^i & exceptional inverse image functor, 370 \\ f & dualizing complex, 370 \\ f & face of cone of weights defined by p, 214 \\ f_s & direct image functor \\ F_s R & R-module structure on R defined by Frobenius map, 230 \\ F_s^e R & R-module structure on R defined by F^e, 243 \\ f^* & inverse image functor \\ F_r & set of facets of I_r, 188 \\ fpt_R(a) & F-pure threshold of ideal a, 265 \\ f \star Tr & the map F_s R \rightarrow R defined by g \mapsto Tr(g), 236 \\ G_a & additive group, 351 \\ \gamma_i & valuation defined by prime ideal of t-minors, 88 \\ \gamma_i(s_1, \ldots, s_n) & \gamma_i(\Delta) \text{ for a bitableau of shape }(s_1, \ldots, s_n), 89 \\ \widehat{\gamma}_i(r) & maximum of \gamma_i taken over inc-decompositions, 121 \\ \Gamma(U, -) & functor of sections on an open set U \\ \mathbb{G}_B(l; \mathcal{E}) & \text{Grassmann bundle, 329} \\ generatesigma0 & function to generate minimal partitions relative to \subset, 388 \\ \mathbb{G} & GL(m, K) \times GL(n, K), 95 \\ gf(m|n) & general linear Lie superalgebra, 476 \\ GL_n & general linear group (group scheme), 352 \\ multiplicative group, 351 \\ gr(R) & associated graded ring of idlation \mathcal{F}, 53 \\ associated graded ring of idlation \mathcal{F}, 53 \\ associated graded ring of idlation \mathcal{F}, 53 \\ associated graded ring of idleal I, 186 \\ grade(I, M) & group of idleal I with respect to module M, 276 \\ H^i(B, -) & sheaf cohomology functor on a variety B \\ H_i^{+1} & linear halfspace, 173 \\ H(Q, M) & Koszul homology of module M with respect to ideal $Q, 278 \\ Hom_GL & homoorphisms of GL-modules, 447 \\ \#com & sheaf of homomorphisms, 370 \\ \end{array}$$$$

1 ()	······································
$h_{r \times s}(q)$	polynomial encoding linear strands in Lascoux' reso-
	lution, 472
$H_V(t)$	Hilbert series of V , 24
H(V,)	Hilbert function of V , 24
h(y)	height of the partition y , 341
\overline{I}_{Λ}	face or Stanley–Reisner ideal of simplicial complex Δ ,
	48
$I^{(d)}$	<i>d</i> th symbolic power of an ideal <i>I</i>
i_G	inverse for an algebraic group G , 350
I * J	join of ideals I and J , 138
$I_{\leq j}$	subideal of I generated by the elements of degree $\leq j$,
r≥J	298
$\ln(\sigma)$	initial tableau of shape σ , 79
In(V)	set of initial monomials of elements of V , 22
in(A)	initial (sub)algebra of (sub)algebra A, 14
in(f)	initial monomial of f , 4
in(I)	initial ideal of ideal <i>I</i> , 4
in(V)	initial vector space of vector space V , 22
$\operatorname{in}_w(V)$	initial subspace (algebra, ideal) w.r.t. weight w , 27
$\operatorname{inic}(f)$	initial coefficient of f , 4
$\operatorname{init}(f)$	initial term of f , 4
$\operatorname{init}_w(f)$	initial term (or form) of f w.r.t. weight w , 26
Ins(r)	standard tableau obtained from sequence r by insertion,
	117
$I^{[p]}$	Frobenius power of ideal I , 234
$I^{[p^e]}$	iterated Frobenius power of ideal I, 243
$I^{\{r\}}$	rth secant ideal of I , 140
$I^{(\sigma)}, I^{(\sigma)}$	ideal generated by all bitableaux of shape $\geq \sigma$ and $> \sigma$
	resp., 95
I^{σ}	product $I_{s_1} \cdots I_{s_u}$, 90
$I^{(\Sigma)}$	ideal defined by the shapes in Σ , 380
I_{Σ}	GL-invariant ideal associated to a set of shapes Σ , 451
$\vec{I_{\sigma}}$	GL-invariant ideal associated to a shape σ , 449
$\mathcal{I}^{(\sigma)}, \ \mathcal{I}^{(\Sigma)}$	sheaf of ideals defined by shape, 393
,	tight closure of ideal I , 245
$I^*_{I_t^{(k)}}$	kth symbolic power of I_t , 90
$L L(\mathbf{X})$	ideal generated by <i>t</i> -minors (of matrix X), 70
$\mathcal{I}_{I}, \mathcal{I}_{I}(\mathcal{I})$ $\mathcal{I}_{I}^{(\sigma)}$	quotient of sheaves of ideals defined by shape, 396
$egin{array}{ll} I_t, I_t(X) \ \mathcal{J}_l^{(\sigma)} \ J_l^{(\sigma)} \end{array}$	
	quotient of ideals defined by shape, 380
$J_{\sigma,l}$	quotient of GL-invariant ideals, 453
$J_t^{\min}(m,n), J_t^{\min}$	\mathbb{G} -module representing minimal generators of $J_t(m, n)$,
	$\frac{202}{100}$
$J_t(m,n), J_t$	defining ideal of $A_t(m, n)$, 199

$(m, n), J_t$	defining ideal of $A_t(m, n)$, 199	
$\kappa(b)$	residue field at the point b , 329	

$K[\Delta]$	Stanley–Reisner ring of simplicial complex Δ , 48
Ker	kernel of a homomorphism
$K_{\lambda,\mu}$	Kostka number of partitions λ , μ , 151
K[M]	monoid algebra, 172
$K[\mathcal{M}_{\tau}]$	coordinate ring of flag variety, 79
λ^*	dual of shape λ , 119
Λ_t	map taking a linear map to its <i>t</i> th exterior power, 208
$\bigwedge_{d} \mathcal{E}$	exterior power of locally free sheaf, 328
$\bigwedge^{d} \mathcal{E} \\ \bigwedge^{d} V \\ \bigwedge^{d} V^{\vee}$	exterior power of a free module (or vector space) exterior power of U^{\vee} also duel of the exterior power
/\ V	exterior power of V^{\vee} , also dual of the exterior power of V , 327
lcm	least common multiple
$\mathcal{L}_i^\mathcal{E}$	tautological line bundle, 332
$L_{\sigma}, {}_{\sigma}L$	subspaces generated by all right resp. left initial
	bitableaux, 95
$\ell(\sigma)$	length of a permutation σ , 416
\mathfrak{m}_b	maximal ideal of $\mathcal{O}_{\mathbf{B},b}$, 329
M^G	G-invariants of M , 356
m_G	multiplication for an algebraic group G , 350
$M^{(i,*)}$	<i>i</i> th homogeneous component of M w.r.t. $(1, 0)$ -grading,
	288
$M^{(*,j)}$	jth homogeneous component of M w.r.t. (0, 1)-grading,
	288
$M_{\geq j}$	truncated module $\bigoplus_{i \ge j} M_i$, 283
Mon(R)	set of monomials in $R, 2$
M_{σ}	irreducible \mathbb{G} -representation, 98
$\mathcal{M}_{\sigma}(\mathcal{F}_1,\mathcal{F}_2)$	a direct summand of $\operatorname{Sym}^{d}(\mathcal{F}_{1} \otimes \mathcal{F}_{2})$ (in characteristic
1.4	zero), 435
$\mathcal{M}_{ au}$	set of bitableaux generating coordinate ring of flag vari-
$M(\mathbf{V})$	ety, 79 set of t minors of X_{-70}
$\mathcal{M}_t(X)$	set of <i>t</i> -minors of <i>X</i> , 70 minimal number of generators of module M_{225}
$\mu(M)$	minimal number of generators of module M , 225 monomial μ_1 precedes μ_2 in monomial order, 3
$\mu_1 \le \mu_2$ $\mathrm{mult}_{(\sigma \tau)}$	multiplicity of bi-shape ($\sigma \tau$) in $P_t(m, n)$, 201
$\operatorname{mult}_{(\sigma \tau)}(E)$	multiplicity of bi-shape $(\sigma \tau)$ in $T_1(m, n)$, 201 multiplicity of bi-shape $(\sigma \tau)$ occurring in E , 201
$\mathcal{M}(X)$	set of nonempty minors, 70
\mathbb{N}	set of nonnegative integers
$\mathbb{N}_{>0}$	set of positive integers
$v_e^I(\mathfrak{a})$	$\sup\{r \in \mathbb{N} : \mathfrak{a}^r(I^{[p^e]}] : I) \not\subset \mathfrak{m}^{[p^e]}\}, 265$
$\mathcal{O}_{\mathbf{B}}$	structure sheaf of a variety \mathbf{B}
$\mathcal{O}_{\mathbf{B},b}$	local ring at the point b , 329
$\mathcal{O}_{\mathbb{F}_{\mathbf{B}}(\mathcal{E})}^{\mathcal{E}}(\underline{y})$	line bundle associated to the weight $y \in \mathbb{Z}^n$, 332
$\omega_R^{\mathbb{F}_B(\mathcal{C})}, \omega(\overline{R})$	(graded) canonical module of R , 136
$\omega_{\mathbb{F}_{\mathbf{B}}(\mathcal{E})/\mathbf{B}}$	relative canonical sheaf for a complete flag bundle, 333
$\omega_{\mathbb{G}_{\mathbf{B}}(l;\mathcal{E})/\mathbf{B}}$	relative canonical sheaf for a Grassmann bundle, 330

sheaf of relative differentials for a Grassmann bundle, $\Omega_{\mathbb{G}_{B}(l;\mathcal{E})/B}$ 330 sheaf of relative differentials for a projective bundle, $\Omega_{\mathbb{P}_{\mathbf{B}}(\mathcal{E})/\mathbf{B}}$ 330 relative canonical sheaf $\omega_{X/Y}$ number of families of nonintersecting paths from \mathcal{P} to $Paths(\mathcal{P}, \mathcal{Q})$ Q, 131generating function of families of paths from \mathcal{P} to \mathcal{Q} , Paths($\mathcal{P}, \mathcal{Q}, z$) 134 $\mathbb{P}_{\mathbf{B}}(\mathcal{E})$ projective bundle, 329 $\mathcal{P}(d)$ set of partitions of d \mathbb{G} -stable prime ideal in A_t , 212 \mathfrak{p}_i Π_2 simplicial complex defined by initial ideal of I_2 , 108 simplicial complex defined by initial ideal of I_t , 128 Π_t valuation on A_t , 212 π_i set of shapes with parts of size $\leq m$, 382 \mathcal{P}_m $P \leq Q$ partial order of paths, 112 proj dim M projective dimension of module M Proj relative Proj, 329 $P_t(m,n), \overline{P_t}$ polynomial ring in indeterminates representing the *t*minors, 198 Q often ideal $(X_1, ..., X_n)$, 277 ideal of $R^{(0,*)}$ generated by $R_{(0,1)}$, 287 ideal of $R^{(*,0)}$ generated by $R_{(1,0)}$, 287 $Q_{(0,1)}$ $Q_{(1,0)}$ $\begin{pmatrix} u \\ v \end{pmatrix}_q$ q-binomial coefficient, 465 \mathfrak{q}_k G-stable prime ideal in A_t , 212 $\mathcal{Q}_l^{\mathcal{E}}$ tautological rank l quotient sheaf, 330 Q_R ideal generated by R_1 , 276 (R|C)bitableau with row tableau R and column tableau C, 71 semi-invariants of R for character χ , 220 R_{χ} R° set of elements of R not in any minimal prime ideal, 243 set of relevant faces of simplicial complex Δ , 148 $R(\Delta)$ Rees algebra of filtration \mathcal{F} , 260 $\mathcal{R}(\mathcal{F})$ $\mathcal{R}(I)$ Rees algebra of ideal I, 183 $\mathcal{R}(I, M)$ Rees module of ideal I and module M, 296 $\mathcal{R}(I_1,\ldots,I_m)$ multi-Rees algebra of ideals $I_1, \ldots, I_m, 301$ $\mathcal{R}(I_1,\ldots,I_m,M)$ multi-Rees module of ideals I_1, \ldots, I_m and module M, 302 $\widehat{\mathcal{R}}(I) \\ \mathcal{R}^{\text{symb}}(I_t)$ extended Rees algebra of ideal I, 186 symbolic Rees algebra of ideal I_t , 187 reg M regularity of module M (generalized on p. 276), 39

$\operatorname{reg}_{(0,1)} M$	regularity of M with respect to the $(0, 1)$ -grading, 288
$\operatorname{reg}_{(1,0)} M$	regularity of M with respect to the $(1, 0)$ -grading, 288
relint(C)	relative interior of cone C , 175
$R^{\mathcal{F}}$	completion of ring R w.r.t. filtration \mathcal{F} , 53
$\widehat{R_{\mathfrak{m}}}$	completion of $R_{\mathfrak{m}}$ w.r.t. ideal $\mathfrak{m}R_{\mathfrak{m}}$, 54
$ ho_N(v)$	supremum of degrees i of nonvanishing components
	$N_{(i,v)}, 290$
$R^i f_*$	higher direct image functor, 334
(R_k)	Serre condition, 35
$\mathcal{R}^{\mathcal{E}}_{l_i,l_j}$	tautological subquotient sheaf, 331
R(m,n)	$K[X]$ for $m \times n$ matrix X, 199
$\mathcal{R}_{n-l}^\mathcal{E}$	tautological rank $(n - l)$ subsheaf, 330
R # S	Segre product of graded algebras R and S , 107
$RSK(\Sigma)$	monomial (or 2-line array) obtained from Σ by RSK, 115
RSK(f)	value of f under linear map RSK, 116
RSK(I)	image of ideal I under linear map RSK, 122
$R^{(i,*)}$	<i>i</i> th homogeneous component of R w.r.t. (1, 0)-grading,
	288
$R^{(*,j)}$	<i>j</i> th homogeneous component of R w.r.t. (0, 1)-grading,
	288
$R^{(*,0)}$	subring $\bigoplus_i R_{(i,0)}$ of bigraded ring, 287
$R^{(0,*)}$	subring $\bigoplus_{i} R_{(0,j)}$ of bigraded ring, 287
sat(I)	saturation of ideal <i>I</i> , 299
\mathfrak{S}_d	symmetric group
sign	sign of permutation
shape	recursive function to generate shapes in $\mathcal{Z}(\Sigma)$, 390
$\sigma \leq \tau$	σ precedes τ in dominance order, 78
$\sigma(c)$	truncation of the shape σ , 382
$\Sigma_d(V)$	submodule of symmetric power, 326
σ_G	coinverse on $K[G]$, 351
Σ^{sat}	saturation of a set of shapes in $\mathcal{P}(d)$, 393
$\Sigma_{\sigma,l}$	set of rectangular shapes associated to (σ, l) , 457
$(\sigma \tau)$	bi-shape, 201
(S_k)	Serre condition, 35
SL(r, K)	group of $r \times r$ matrices of determinant 1, 220
Spec	relative Spec, 329
$\overline{\sqrt{I}}$	radical of I
$sr(\psi)$	small rank of ψ , 209
$\mathfrak{succ}^{\leq}(\sigma, l)$	another notation for $\mathfrak{succ}(\sigma, l)$, 453
$\mathfrak{succ}(\sigma, l)$	<i>l</i> -successors of the shape σ with respect to \leq , 380
$\mathfrak{succ}^{\subset}(\sigma, l)$	<i>l</i> -successors of σ with respect to \subset , 453
$\operatorname{supp}(f)$	set of monomials with nonzero coefficient in $f, 2$
$\operatorname{supp}_{\mathbb{G}}(H)$	set of shapes in \mathbb{G} -module H , 213
	· ·

$\mathbb{S}_v(-)$	Schur functor associated to the weight \underline{v} , 362
$\operatorname{Sym}^{\bullet}(\mathcal{E})$	symmetric algebra of locally free sheaf, 329
$\operatorname{Sym}^{\bullet}(V)$	symmetric algebra of free module, 326
$\operatorname{Sym}^d \mathcal{E}$	symmetric power of locally free sheaf, 328
$\operatorname{Sym}^d V$	symmetric power of free module, 325
$t_0(M)$	minimum degree needed to generate module M , 277
$T^d \mathcal{E}$	tensor power of locally free sheaf, 327
$(T^d V)_{\mathfrak{S}_d}$	coinvariants for the symmetric group action on tensors,
	325
$T^d V$	tensor power of free module, 325
$\Theta_d(V)$	submodule of tensor power, 326
$t_i(M)$	largest degree in <i>i</i> th Koszul homology of M , 279
\mathbf{T}_n	algebraic group of upper triangular matrices (group
	scheme), 354
Tr	distinguished map $F_*R \rightarrow R$, 236
U(I)	open subset of spectrum defined by ideal I , 50
\mathbf{U}_n	unipotent group (group scheme), 354
$U^+(n, K)$	upper unipotent $n \times n$ matrices, 97
$U^{-}(n, K)$	lower unipotent $n \times n$ matrices, 97
\mathbb{U}	$U^{-}(m, K) \times U^{+}(n, K), 98$
V^{ee}	dual of a free module, 327
V(I)	closed subset of spectrum defined by ideal I , 50
$v_{\mathfrak{p}}$	valuation defined by prime ideal p, 88
$\underline{v}(r,s;\alpha,\beta)$	weight used to describe syzygies of determinantal ide-
	als, 471
$\mathcal{V}^{(\sigma)}, \mathcal{V}^{(\Sigma)}$	sheaf defined by shape, 393
\mathcal{W}	Weyl algebra, 468
X(G)	character group of G , 353
$X_t, X_t(m, n)$	Zariski closure of Y_t , 208
$Y_t, Y_t(m, n)$	set of exterior powers of linear maps, 208
$\mathcal{Z}(I^{(\Sigma)}), \ \mathcal{Z}(\Sigma)$	combinatorial set indexing a natural filtration on $S/I^{(\Sigma)}$,
~	382
$\mathcal{Z}(I_{\Sigma}), \ \mathcal{Z}^{\subset}(\Sigma)$	combinatorial set indexing a natural filtration on S/I_{Σ} , 454
$\mathbb{Z}^n_{\mathrm{dom}}$	set of dominant weights, 341
$egin{array}{c} \mathbb{Z}_{ ext{dom}}^n \ \mathbb{Z}_p^{(d)} \ rac{\underline{z}(r)}{\mathbb{Z}^{\leq}(\Sigma)} \end{array}$	special notation for the set $\mathcal{Z}(I_p^{(d)})$, 391
z(r)	modification of the weight z , 436
$\mathcal{Z}^{\leq}(\Sigma)$	another notation for $\mathcal{Z}(I^{(\Sigma)})$, 454