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Abstract

We discuss the computation of automorphism groups and normal forms of cones and
polyhedra in Normaliz and indicate its implementation via nauty. The types of
automorphisms include integral, rational, Euclidean and combinatorial, as well as
algebraic for polytopes defined over real algebraic number fields. Examples treated in
detail are the icosahedron and linear-ordering polytopes whose Euclidean
automorphism groups are determined.
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1 Introduction
In this note, we discuss the computation of various types of automorphism groups of
cones and polyhedra in the software package Normaliz [7]. Automorphism groups are
a classical theme, especially for regular polytopes P and polytopes derived from them.
For this class, one wants to understand the groups of rigid motions that map P to itself.
Since the extension of Normaliz to real algebraic number fields, regular polytopes can be
defined, and their Euclidean automorphisms are computable.
For rational polytopes and cones, we are mainly interested in automorphisms defined

overZ.Wehave computed the integral automorphismgroups for polytopes in [2] andused
isomorphism types in the experiments of the project [3]. While these computations were
based onour own routines,Normaliz nowuses nauty [11] as its engine for the computation
of automorphism groups, raising the level of computability and saving computation time
by several orders of magnitude. In addition to our own approach, Normaliz also uses the
method introduced by Bremner et al. [1] for the computation of automorphism groups.
Automorphism groups are not only interesting for their own sake: They can be exploited

in the computation of distinguished lattice points like the Hilbert basis, or enumerative
invariants, for example the (lattice normalized) volume. A special version of Normaliz has
been used to checkWilf’s conjecture for numerical semigroups of multiplicities ≤ 18; see
Brunset al. [4]. This computation would have been impossible without the exploitation of
the group of integral automorphisms of the so-called Kunz polyhedra.
One of the Normaliz algorithms for polytope volumes uses a descent in the face lattice;

see Bruns and Ichim [6]. In version 3.9.0, it has now been refined by the identification of
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isomorphic faces. This requires the computation of integral isomorphism types. Further
applications of integral automorphisms and isomorphism types are in preparation.
All computations of automorphism groups and isomorphism types must be reduced to

the computation of permutations of finitelymany vectors that preserve symmetric bilinear
forms defined on the ambient vector space or the natural evaluation of linear forms on
vectors. Therefore, one needs a distinguished set of vectors and/or linear forms that are
permuted by the automorphisms under consideration. These are not always available, or
perhaps only after an extension of the field of definition. We will explain this obstruction
when it comes up.
One consequence of the necessity to work with a finite set of vectors or linear forms is

that wemust pass from a non-pointed cone to its pointed quotient and from a polyhedron
to its quotient modulo its maximal linear subspace. This passage together with other
simplifying assumptions is explained in Sect. 2. There we also discuss the passage from a
polyhedron to the cone over it.
Section 3 is devoted to integral automorphism groups and isomorphism types, the

most interesting for Normaliz. For enumerative applications, one must restrict oneself
to isomorphisms that respect the degree of vectors, and the passage from a polyhedron
to the cone over it endows the latter with another (possibly additional) linear form that
allows to go backward from the cone to the polyhedron.
In Sect. 4, we outline the computation of rational, algebraic, Euclidean and combinato-

rial automorphisms and mention groups of automorphisms whose computation is based
on the raw input to Normaliz and does not always yield intrinsic data of the cone or
polyhedron defined by the input.
Section 5 explains the preparation of the input to nauty and lists the computation goals

of Normaliz that are available for automorphism groups. Finally, in Sect. 6 we illustrate
the computations of Normaliz by two classical examples, the icosahedron and the linear-
ordering polytopes. The combinatorial automorphism groups of the linear-ordering poly-
topes have been determined by Fiorini [8]. Inspired by Normaliz computations, we deter-
mine the Euclidean automorphism groups.
Data for the computations in this paper (input and output files ofNormaliz) are available

on request from the author.

2 Preliminaries
For the basic terminology of discrete convex geometry, we refer the reader to Bruns and
Gubeladze [5]. In this section, wewant to fix some basic assumptions that computationally
amount to coordinate transformations and thatwill be assumed in the following to simplify
the formalities. Almost all data that will appear are intrinsic and do not depend on the
choice of coordinates.

2.1 Cones

Let C be a cone in R
d . The first assumption is that C is full dimensional, i.e., dimC = d.

While this restriction may seem completely irrelevant, it is not: The definition of the dual
cone C∗ = {λ ∈ (Rd)∗ : λ(x) ≥ 0 for all x ∈ C} depends on it. For the passage to the full-
dimensional case, one simply chooses coordinates in the vector subspace RC generated
by C .
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Let C0 = {x ∈ C : −x ∈ C}. This set of invertible elements of C is a vector subspace
of Rd . The cone C/C0 is the image of C under the natural projection R

d → R
d/C0. It is

pointed, i.e., 0 is its only invertible element. Moreover, one has an isomorphism

C = C0 ⊕ C/C0

of cones. Roughly speaking, the automorphism groups that are our main focus split in the
same way. The passage from C to C/C0 is done by Normaliz. It is inevitable for finiteness
results.
The passage to a full-dimensional pointed cone only concerns the structure as an object

of real convex geometry. Integral data, for example, Hilbert bases or Hilbert series enu-
merating lattice points, are defined with respect to a sublattice L of Zd such that C is
generated as a cone by elements of L. By a further coordinate transformation, we pass to
a Z-basis of L which (if C is full dimensional) is also a basis of the vector space Rd . After
this transformation, we can assume that L = Z

d .
To sum up, we will assume that a cone C ⊂ R

d is full dimensional and pointed. Under
this assumption, C∗ is pointed and full dimensional as well, and C ∼= C∗∗. Moreover, C
and C∗ are generated by their extreme rays.
The lattice of reference is Zd , should it be relevant. The lattice structure defines natural

choices of generators for C and C∗. Each extreme ray of C contains a unique integral
point with coprime coordinates that we call an extreme integral generator of C . The
extreme integral generators of C∗ are called the support forms of C . This terminology is
justified since the support forms σ1, . . . , σs of C define support hyperplanes Hi = {x ∈
R
d : σi(x) = 0} of C , and C is the irredundant intersection of the linear halfspaces

H+
i = {x ∈ R

d : σi(x) ≥ 0}. The intersections C ∩ Hi are the facets of C .

2.2 Polyhedra

By definition a polyhedron, P ⊂ R
d is the intersection of finitely many affine halfspaces.

Theoretically and computationally, one associates a cone C(P) with P, the cone over P,
defined as the closure of the set R+(P × {1}) in R

d+1 if P �= ∅, and C(∅) = {0}. The
dehomogenizing hyperplane isH(P) = {x ∈ R

d+1 : xd+1 = 1}.
The passage from P to C(P) is called homogenization. Normaliz uses the term dehomog-

enization for the linear form δ which defines H(P) by H(P) = {x ∈ R
d+1 : δ(x) = 1}.

So far δ(x) = xd+1, but for flexibility it is necessary to allow any nonzero δ ∈ (Rd+1)∗.
Clearly, as soon as integrality comes into play, δ must take integer values on Z

d+1.
There is a second cone defined by P, its recession cone, namely rec P = {x ∈ C(P) :

δ(x) = 0}. One has recP = {0} if and only if P is a polytope, i.e., a bounded polyhedron.
The vectors in x ∈ rec P satisfy the condition that y + x ∈ P for all y ∈ P. The condition
is also necessary for x to be in rec P if P �= ∅.
This allows us to compute automorphism groups and isomorphism types of polyhedra

in terms of C(P): For the automorphism group, we select the automorphisms that map
H(P) into itself, and for isomorphism types, the hyperplaneH(P) must be encoded in the
normal form.
The coordinate transformations mentioned above are applied to C(P) in order to reach

the full dimension for C(P) and to pass to a pointed quotient. This includes the transfor-
mation of the dehomogenization δ which need no longer be a coordinate function after
the transformation.
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3 Integral isomorphisms and automorphisms
3.1 Rational cones

A rational cone C ⊂ R
d is generated by finitely many vectors with integral coordinates.

The intersection monC = C ∩ Z
d is a finitely generated monoid by Gordan’s lemma. It

has a unique minimal system of generators (if C is pointed), called the Hilbert basis. For
all this, see [5]. A Z-isomorphism (or integral isomorphism) is represented by a matrix
with entries in Z whose inverse has integral entries as well.

Theorem 1 Let C and D be cones in R
d. Then, the following are equivalent for an R-

automorphism φ of Rd:

(1) φ restricts to a Z-isomorphism of C and D;
(2) φ maps HilbC onto HilbD;
(3) φ restricts to an isomorphism of the monoidsmonC andmonD.

In particular, there are only finitely many Z-isomorphisms of C and D.

Proof A Z-isomorphism of C and D maps Zd bijectively onto itself, and C bijectively
onto D. Therefore, it maps monC bijectively onto monD. Since φ is additive, it is an
isomorphism of the two monoids.
The Hilbert bases of C and D are uniquely determined by algebraic conditions on their

elements: They consist of the irreducible elements in monC and monD, respectively.
Both Hilbert bases generate R

d as a vector space. A linear endomorphism of Rd that
contains a system of generators in its image is automatically bijective. Moreover, the cone
generated by HilbC is mapped onto the cone generated by HilbD.
The finiteness of the set of isomorphisms follows immediately from (3.2). �
To simplify language, we will identify φ with its pertaining restrictions in the situation

of Theorem 1.

Corollary 2 With the notation of Theorem 1, the following are equivalent:

(1) φ is a Z-automorphism of C;
(2) φ maps HilbC onto itself;
(3) φ is an automorphism of the monoidmonC.

In particular, there are only finitely many Z-automorphisms of C.

The basic computational tasks are

(1) deciding whether C and D are Z-isomorphic;
(2) computing the group AutZ C .

For these related tasks, it is useful to bring duality into play. Let φ : V → W be a linear
map of vector spaces. The dual φ∗ : W ∗ → V ∗ of φ is defined by (φ∗(λ))(x) = λ(φ(x))
for x ∈ V , λ ∈ W ∗. Finite-dimensional vector spaces are reflexive: The bidual evaluation
〈λ, x〉 = λ(x) for λ ∈ V ∗, x ∈ V induces a natural linear map V → V ∗∗, which is a
functorial isomorphism if V has finite dimension. In particular, one can identify φ∗∗ and
φ if φ is a homomorphism of finite-dimensional vector spaces. For isomorphisms φ, it is
convenient to consider

φ∨ = (φ∗)−1 = (φ−1)∗.
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Note that the pair (φ,φ∨) preserves the bilinear evaluation ofRd × (Rd)∗: For x ∈ R
d and

λ ∈ (Rd)∗, one has

〈φ(x),φ∨(λ)〉 = φ∨(λ)(φ(x)) = λ(φ−1(φ(x))) = λ(x) = 〈x, λ〉.
All this carries over to finite-dimensional cones. Recall that the dual cone of the cone

C ⊂ R
d is

C∗ = {λ ∈ (Rd)∗ : λ(x) ≥ 0 for all x ∈ C},
and that one can naturally identify C and C∗∗. If φ : C → D is an isomorphism, then
φ∨ : C∗ → D∗ is an isomorphism as well.
The following theorem can help in the computation of automorphism groups, as we will

see below. The proof is easy and can be left to the reader.

Theorem 3 The map ∨ : AutZ C → AutZ C∗ is an isomorphism.

The decision whether conesC andD are isomorphic can be based on the comparison of
normal forms. For the definition of the normal form, we use the support forms σ1, . . . , σs
of C . They define the standard embedding of C : It is the map

εC : C → R
s, εC (x) = (σ1(x), . . . , σs(x)).

At this point, we must break our simplifying assumptions: In general εC (C) is not full
dimensional, and its lattice of reference is εC (Zd). (In general, onehas εC (Zd) �= εC (C)∩Zs.
The quotient Zs/εC (Zd) is the class group of monC ; see [5, 4.62].)

Theorem 4 The cones C and D in R
d are Z-isomorphic if and only if they have the same

number s of facets, εC (C) = εD(D) and εC (Zd) = εD(Zd), up to a permutation of the
coordinates of Rs.

Proof By construction, one has Z-automorphisms C ∼= εC (C) and D ∼= εD(D), which
proves the implication⇐=. For the converse implication, let φ : C → D be aZ-isomorph-
ism. Then, φ∨(σ1), . . . ,φ∨(σs) are the support forms ofD if σ1, . . . σs are the support forms
of C . This implies εD(φ(x)) = εC (x) for all x ∈ C , including x ∈ monC which is mapped
isomorphically onto monD. Hence, εC (C) = εD(D) and εC (Zd) = εD(Zd) (if we use the
support forms for C and D in the given order). �
The theorem justifies us in calling the pair (εC (C), εC (Zd)) the Z-normal form of C . It

can be computed in finitely many steps as we will now discuss.
Let x1, . . . , xn be the Hilbert basis ofC . Then, εC (x1), . . . , εC (xn) generate εC (C), and the

matrix S given by

Sij = σj(xi), i = 1, . . . , n, j = 1, . . . , s, (3.1)

determines the isomorphism type of C , and the isomorphism type of C determines S
up to the order of the rows and columns. By the canonical form of S, we denote the
lexicographically greatestmatrix that one canobtain bypermutations of rows and columns
from S where we compare matrices of the same format lexicographically as follows:

(1) a row is lexicographically greater than another row if it is lexicographically greater
under the comparison of coordinates from left to right;

(2) a matrix is lexicographically greater than another matrix if it is lexicographically
greater under the comparison of rows from top to bottom.
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For this choice, the unit matrix is its own canonical form. We let

type
Z
C

denote the canonical form of S.

Theorem 5 Let C and D be cones. Then, the following are equivalent:

(1) C and D are Z-isomorphic;
(2) C∗ and D∗ are Z-isomorphic;
(3) type

Z
C = type

Z
D.

Despite the symmetry of the statements (1) and (2) in the theorem, the construction of
type

Z
C is not symmetric inC andC∗: We use the Hilbert basis ofC , but only the extreme

integral generators of C∗. In order to achieve symmetry, one could use HilbC∗, but there
is no need for this additional complication.
Our observations so far also allow us to identify the Z-automorphism group of C with a

finite group of permutations of a purely combinatorial object. In the following, Sn denotes
the permutation group of {1, . . . , n}.

Theorem 6 Let x1, . . . , xn be the Hilbert basis of C and σ1, . . . , σs the support forms. Then,
AutZ C can be identified with the group of permutations � ∈ Sn for which there exists a
permutation � ∈ Ss such that

〈x�(i), σ�(j)〉 = 〈xi, σj〉, , i = 1, . . . , n, j = 1, . . . , s. (3.2)

This theorem reduces the computation of the isomorphism type and the Z-
automorphism group of a cone C to finitely many steps. Suppose that C is defined by
a system of generators. Then, we have to compute

(1) the support forms of C ,
(2) HilbC ,
(3) type

Z
C as the canonical from of the matrix S, and/or

(4) the group of permutations � in Theorem 6.

Each of these tasks can be expensive, and the Hilbert basis is often the most critical step.
Fortunately, there is a good chance to get awaywithout it, and itmust be avoided if AutZ C
is to be exploited in the computation of HilbC .

3.2 Using only the extreme rays

Let y1, . . . , ym be the extreme integral generators of C . Instead of the full matrix S in (3.1),
we can consider

E = (σj(yi) : i = 1, . . . , m, j = 1, . . . , s). (3.3)

It is a row selection of S since the extreme integral generators belong to the Hilbert basis.
We denote its canonical form by

etype
Z
C.

Proposition 7 Let C and D be cones in R
d.

(1) If C and D are Z-isomorphic, then etype
Z
C = etype

Z
D.
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(2) The converse holds if both the extreme integral generators of C and those of D, respec-
tively, generate Zd.

(3) The converse holds as well if both the support forms of C and those of D, respectively,
generate Zd.

Proof (1) is obvious. For (2), we let M be the monoid generated by the extreme integral
generators of C and N the corresponding monoid for D. The detour via the standard
embeddings shows that they are isomorphic monoids. The isomorphism extends both to
an isomorphism of the cones they generate, namelyC andD, as well as to an isomorphism
of the groups generated by them, which is Zd in both cases. By Theorem 1, the cones C
and D are Z-isomorphic
Note that etype

Z
C = etype

Z
D implies etype

Z
C∗ = etype

Z
D∗ by transposition of

matrices. Thus, C∗ and D∗ are Z-isomorphic by (2) and then C and D are Z-isomorphic
by Theorem 5. This shows (3). �

Corollary 8 Let y1, . . . , ym be the extreme integral generators of C and σ1, . . . , σs its sup-
port forms. Suppose that y1, . . . , ym orσ1, . . . , σs generateZr . Then,AutZ C canbe identified
with the group of permutations � ∈ Sm for which there exists a permutation � ∈ Ss such
that

〈y�(i), σ�(j)〉 = 〈yi, σj〉, i = 1, . . . , m, j = 1, . . . , s. (3.4)

Remark 9 (a) Classical examples of cones C and D with etype
Z
C = etype

Z
D, but

type
Z
C �= type

Z
D, can be derived from “empty” simplices in R

3. These have been clas-
sified by White; see [5, 2.55]. As an explicit case, we take the cones C and D generated by
the row vectors of the following two arrays:

0 0 0 1
0 1 0 1
0 0 1 1
5 1 1 1

0 0 0 1
0 1 0 1
0 0 1 1
5 2 1 1

In both cases, etype
Z
is 5E4 where E4 is the 4 × 4 unit matrix. But for C (on the left), the

Hilbert basis elements have two pairs of equal values under the 4 support forms, whereas
the Hilbert basis elements of D have values 1, 2, 3, 4 under the support forms. Moreover,
AutZ C is the dihedral group D4 of order 8, whereas AutZ D ∼= Z4.
(b) The assumptions about C and C∗ in Corollary 8 are not equivalent: It is possible

that σ1, . . . , σs generate Zr , whereas y1, . . . , ym fail to do this (or vice versa). As a simple
example, one can take C with the extreme rays (0, 0, 1), (0, 1, 1), (2, 0, 1) and (2, 1, 1).

3.3 Another approach to normal forms and automorphism groups

There is another approach to isomorphism classes and automorphism groups introduced
by Bremner et al. [1]. Let v1, . . . , vn be vectors in R

d generating Rd as a vector space. For
i = 1, . . . , n, we form the symmetric d × d-matrix given by

(Mi)jk = vijvik , j, k = 1, . . . , d,

and set

Q =
n∑

i=1
Mi.
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It is not hard to see thatQ defines a positively definite quadratic form onRd . Let R = Q−1,
and set

wij = vTi Rvj, (3.5)

where we consider vectors as d × 1-matrices and T denotes transposition. By [1, Prop.
3.1], the automorphisms of Rd that permute v1, . . . , vn correspond bijectively to the per-
mutations of � ∈ Sn that satisfy

wij = w�(i),�(j), i, j = 1, . . . , n. (3.6)

This approach can be applied to extreme integral generators or the Hilbert basis.

3.4 Graded cones

For enumerative tasks, one often has to consider cones with a grading, i.e., an integral
linear form γ on R

d such that γ (x) > 0 for all x ∈ C , x �= 0. Then, only isomorphisms or
automorphisms are of interest that respect the grading. The matrices S and E in (3.1) and
(3.3) get an extra columnwhich is required to be left fix by passage to the canonical form of
the matrix. In other words, it must be left fix by the column permutations in Corollaries 6
and 8.
If the computation of isomorphisms and automorphisms exchanges C and C∗, then

the extra columns become extra rows, presenting fixed points, to be left invariant in the
computation of canonical forms or the permutation groups and the row permutations in
Corollaries 6 and 8.
The grading is a special linear form on C and a special generator of C∗.

3.5 Rational polyhedra

As pointed out in Sect. 2, computations for polyhedra P ⊂ R
d are done in cone(P) ⊂

R
d+1 and then restricted to the hyperplane H(P) on which the dehomogenization δ has

value 1. This principle is applied to isomorphisms and automorphisms as well: We must
additionally require that the automorphisms and isomorphisms leave the hyperplaneH(P)
stable.
The dehomogenization is treated in the same way as the grading in Sect. 3.4: It is a

special linear form on C and a special generator of C∗.
Additionally, we may have a grading: An integral linear form on R

d defines a grading
on the polyhedron P if it takes only positive values on the nonzero elements of rec P. If
we want to compute isomorphisms or automorphisms of graded polyhedra, then wemust
work with two special linear forms or generators.

4 Other types of automorphisms
4.1 Rational and algebraic automorphisms

Let C ⊂ R
d be a cone. The automorphism group of C , i.e., the group of all R-linear

automorphisms of RC that map C onto itself, is not finite, unless C = 0. In fact, R+ ⊂
AutR C in a natural way. This observation remains true if we replace R by a subfield K ,
such as Q or a real algebraic number field, and C by a cone generated by vectors with
coordinates in K . In particular, AutK C cannot be computed as a subgroup of a finite
group of permutations. (For a discussion of the full group of automorphisms, we refer the
reader to [1].)
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There is no natural replacement of the extreme integral generators if discrete structures
are not involved. However, if C is the cone over a polytope, then every extreme ray of C
has a distinguished point, namely the vertex of the polytope that is contained in it. This
allows us to compute theK -automorphisms of a polytope, provided we can compute inK ,
and this is the case if K = Q or K is a real algebraic number field. We mention algebraic
number fields since Normaliz can compute in them.

4.2 Euclidean automorphisms

A Euclidean automorphism (or rigid motion) of a cone C is a distance preserving (neces-
sarily linear) automorphism of RC that maps C onto itself. In this case, there is a distin-
guished set of points on the extreme rays, namely the points of Euclidean distance 1 from
the origin: a Euclidean automorphism of C permutes them, and is uniquely determined
by this permutation. But now a new difficulty arises: The points of distance 1 usually have
coordinates outside Q or the given algebraic number field. One would have to adjoin a
potentially large number of square roots in order to make the points of distance 1 defined
over the field of reference.
Considering polytopes, wemust be careful: A Euclideanmotion of the hyperplaneH(P),

does in general not extend to a Euclidean automorphism of the cone over the polytope.
But this is not an obstruction to computability: We must find all rational automorphisms
of the polytope that preserve the norms

‖vi − vj‖, i, j = 1, . . . , n,

for the vertices v1, . . . , vn of our polytope. In order to stay in the field of rational numbers
or in an algebraic number field, it is better to use the squares: We search all permutations
� ∈ Sn that satisfy

‖vi − vj‖2 = ‖v�(i) − v�(j)‖2, i, j = 1, . . . , n. (4.1)

Note that the hyperplane of the polytope is automatically preserved if we permute the
vertices of the polytope.
There is one critical aspect regarding coordinate transformations: They must preserve

Euclidean distances if Euclidean automorphisms are to be computed. This cannot be guar-
anteed by Normaliz’ coordinate transformations. Therefore, Euclidean automorphism
groups can only be computed if the input defines a polytope on the nose. The passage to
a quotient makes no sense.

4.3 Combinatorial automorphisms

The combinatorial automorphisms of a polyhedron are the bijective maps of the set of
faces to itself that preserve the partial order by inclusion. This is an abuse of terminology
since combinatorial automorphisms of P need not be automorphisms of P. It is not hard
to see that the combinatorial automorphisms of a polyhedron P can be identified with the
combinatorial automorphisms of C(P) that restrict to combinatorial automorphisms of
the recession cone and therefore permute the faces of the polyhedron.
Every face of a polyhedron is the intersection of the facets in which it is contained, and

every face of a pointed cone is spanned by the extreme rays in it. Let x1, . . . , xn be the
extreme rays of C and F1, . . . , Fs its facets. Then, we set δij = 1 if xi ∈ Fj , and δij = 0 else.
For the group of combinatorial automorphisms, we must find all permutations � ∈ Sn
for which there exists a permutation � ∈ Ss such that
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δ�(i),�(j) = δij , i = 1, . . . , n, j = 1, . . . , s, (4.2)

with the additional requirement in the case of a polyhedron that the incidence of extreme
rays with H(P) is preserved by �. (It makes no sense for combinatorial automorphisms
to respect the grading.)

4.4 Non-intrinsically defined automorphisms

It is often desirable to compute an automorphism group, or at least a subgroup, from
partial information about the cone or polyhedron, namely using only the defining data.
Usually, these are extreme rays or, dually, support forms of the cone (over the polyhe-
dron), potentially augmented by a grading. Normaliz therefore has a computation goal
“input automorphisms.” These are rational automorphisms preserving the set of genera-
tors, and additionally the grading, the dehomogenization or both. Before computing the
input automorphisms, Normaliz prepares the input data as far as possible without the
dualization of the cone. Then, we are exactly in the situation of Sect. 3.3. With notation
introduced there, we must find all permutations of the input vectors v1, . . . , vn that satisfy
the condition

wij = w�(i),�(j), i, j = 1, . . . , n. (4.3)

where wij = vTi Rvj .
An even coarser type is presented by “ambient automorphisms,” namely coordinate

permutations of the ambient space that preserve the input data. Suppose that C is defined
by vectors v1, . . . , vn ∈ R

d . Then, we search all coordinate permutations� ∈ Sn for which
there is a permutation � ∈ Sd such that

v�(i),�(j) = vij , i = 1, . . . , n, j = 1, . . . , d. (4.4)

Additionally, we require that the dehomogenization or the grading or both are preserved.
Let G be the group of ambient automorphisms. The elements of G induce integral as

well as Euclidean automorphisms of the cone or polyhedron, but in general the natural
map from G to the group AutZ C is not surjective, and even injectivity is not guaranteed.

5 Implementation in Normaliz
The automorphism groups that can be computed byNormaliz are realized as permutation
groups. There are two types:

(1) pairs of permutations of vectors and linear forms preserving the evaluation of the
canonical bilinear form on R

d × (Rd)∗, as in (3.2), (3.4), (4.2), (4.4);
(2) permutations of vectors preserving the evaluation of a symmetric bilinear form on

R
d , as in (3.6), (4.1), (4.3).

Both problems can be considered as the computation of the automorphism group of a
weighted graph:

(1) For (1), we choose the complete bipartite graph whose vertices are presented by
the vectors in the first partition and the linear forms in the second. The weight
associated with the edge connecting a vector v and a linear form λ is λ(v).

(2) For (2), we choose the complete graph whose vertices are presented by the vectors,
augmented by edges connecting a vertex to itself. Theweight of the edge connecting
vectors v and w is β(v, w) where β denotes the symmetric bilinear form.
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Thepackagenauty byMcKay andPiperno computes automorphismgroups and canon-
ical formsof undirected graphs. For the application tomore generalweighted graphs, these
are replaced by a tower of graphs with weights 0 and 1 only. The encoding is described in
the nauty manual.
The “raw”weightsλ(v) andβ(v, w) above can be very large numbers. This is often true for

the evaluation of the bilinear form defined by the matrix R appearing in (3.5). Therefore,
it is better to sort the weights first and to replace each weight by its index in the sorting
order, keeping the sorted weights in an extra vector.
nauty allows the subdivision of the vertices of the graph into partitions left stable under

thepermutations that represent the automorphisms.This subdivision isnot onlynecessary
to separate the layers in the tower, but also for our bipartite graphs, and the special linear
forms and vectors that must be accommodated as well. Each of the latter constitutes a
partition in every layer so that they are fixed by the automorphisms.
nauty not only computes the automorphism group as a permutation group, but also

returns the orbits of the vertices of the graph that we can interpret as permutations of
vectors and/or linear forms, for example, as permutations of extreme integral generators
and support forms. Another important result is the canonical order of the vertices, on
which we can base the computation of isomorphism types.
The computation goals of Normaliz are selected by options in the input file or on the

command line. The goal Automorphisms asks for integral automorphisms if the input
is defined over the rational numbers and for algebraic automorphisms in the case of real
algebraic number fields. All other types of automorphism groups are named exactly as in
this note.
Only the computation of integral automorphisms may require several attempts. Nor-

maliz first tries the computation based only on the extreme rays or the support forms,
choosing the smaller cardinality. The matrices of the generators of the automorphism
group are then checked for being defined over Z and having determinant±1. If this is not
the case, the other set of “generators” is used, and if this fails as well, then the Hilbert basis
is computed.

6 Two classical examples
We illustrate the computational potential of Normaliz by two classical examples, the
icosahedron and the linear-ordering polytope.

6.1 The icosahedron
The icosahedron is one of the Platonic solids, a regular polytope of dimension 3 defined
over Q[

√
5], with 12 vertices and 20 facets. We compute the Euclidean automorphisms

and get the following output:
Euclidean automorphism group of order 120 (possibly approximation

if very large)

Integrality not known

******************************************************************

******

3 permutations of 12 vertices of polyhedron

Perm 1: 1 2 4 3 7 8 5 6 10 9 11 12

Perm 2: 1 3 2 5 4 6 7 9 8 11 10 12

Perm 3: 2 1 3 4 6 5 8 7 9 10 12 11
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Cycle decompositions

Perm 1: (3 4) (5 7) (6 8) (9 10) --

Perm 2: (2 3) (4 5) (8 9) (10 11) --

Perm 3: (1 2) (5 6) (7 8) (11 12) --

1 orbits of vertices of polyhedron

Orbit 1 , length 12: 1 2 3 4 5 6 7 8 9 10 11 12

******************************************************************

******

3 permutations of 20 support hyperplanes

Perm 1: 2 1 5 6 3 4 7 8 11 12 9 10 13 14 17 18 15 16 20 19

...

Cycle decompositions

Perm 1: (1 2) (3 5) (4 6) (9 11) (10 12) (15 17) (16 18) (19 20) --

...

1 orbits of support hyperplanes

Orbit 1 , length 20: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20

Thepermutations represent a systemof generators of the automorphismgroup. It is easy to
see that the group of combinatorial automorphisms cannot have order > 120. Therefore,
all intrinsically defined automorphism groups of this classical polyhedron have the same
order 120.
The 120-cell and the 600-cell, regular polytopes of dimension 4 and both defined over

Q[
√
5], have the Coxeter group H4 as their Euclidean automorphism group, and at least

the order 14, 400 can be verified by Normaliz.

6.2 The linear-ordering polytope

Let I = {1, . . . , n}, n ≥ 3. (The case n = 2 is trivial and special.) A relation R on I is a
subset of I × I , and R can be encoded by its incidence vector: It is a 0-1-vector ιR whose
components are labeled by the elements (x, y) of I × I , and ιR(x, y) = 1 if (x, y) ∈ R and
ιR(x, y) = 0 else. The linear-ordering polytope LOn is the convex hull of the incidence
vectors of the linear (or total) orders on I . It has been explored extensively; for example,
see the book [12] by Martí and Reinelt.
The group Sn of permutations of I acts on the set of all incidence vectors by relabeling :

ιπ (R)(x, y) = ιR(π (x),π (y)). This action is a permutation of coordinates that restricts to the
linear-ordering polytope. There is a further permutation of coordinates with this prop-
erty, the duality: ιR∨ (x, y) = ιR(y, x). Evidently dualization is different from all relabelings
and commutes with them. Therefore, AutZ LOn contains a copy of Z2 × Sn. All these
automorphisms are Euclidean as well.
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Expecting that Z2 × S6 is the full group of automorphisms of LO6, we apply Nor-
maliz to it—and get a surprising result: The group of integral automorphisms has order
10, 080 = 2|S7|. It does not change if “integral” is replaced by the more general “ratio-
nal” or “combinatorial.” But if we replace it by “Euclidean,” then the order goes down to
1, 440 = 2|S6|, and the computation confirms that above we have found all Euclidean
automorphisms of LO6. Computations for n = 3, 4, 5, 7 show the same pattern.
It is actually known that the group of combinatorial automorphisms of LOn is isomor-

phic to Z2 × Sn+1. See Fiorini [8]. We complement this result by proving that Z2 × Sn
is the Euclidean automorphism group. To this end, we must understand the action of
Z2 × Sn+1 on LOn. We follow Katthän [9], using his conventions and notation.
The first step is a change of the ambient space: An order relation R is completely

determined by the pairs (x, y) ∈ R, x < y. The corresponding orthogonal projection of
R
n2 to R(

n
2) maps the linear-ordering polytope to an integrally isomorphic copy, and even

the Euclidean structure remains unchanged: All distances between vertices change by
the factor 1/

√
2. We identify LOn with its projection to R(

n
2). It is easy to check that the

vertices of LOn generate the full lattice Z(
n
2), as an affine lattice as well as a subgroup of

Z(
n
2).
To make relabeling and dualization linear—so far they are only affine linear—we apply

the affine linear bijective map

 : R(
n
2) → R(

n
2), (v) = 2v − 1,

where 1 is the vector with all coordinates equal to 1. Moreover, we set ˜LOn = (LOn).

Lemma 10 Let φ be a map of R(
n
2) to itself, and set φ̃ = φ−1.

(1) φ is a Euclidean automorphism of LOn if and only if φ̃ is a Euclidean automorphism
of ˜LOn.

(2) φ(1) = 1 ⇐⇒ φ̃(1) = 1.
(3) Suppose that φ̃ is a Euclidean automorphism of ˜LOn with φ̃(1) = 1. Then, φ̃ permutes

the unit vectors in R(
n
2).

Proof (1) and (2) are obvious. For (3), we start from φ̃ and set φ = −1φ̃ =  . Then, φ
is a Euclidean automorphism of LOn with φ(1) = 1 by (1) and (2). Moreover, φ(0) = 0
since 0 is the uniquely determined vertex of LOn with maximum distance from 1. Hence,
φ is linear (and not only affine linear). Clearly, φ extends to a Euclidean automorphism
of R(

n
2), and it is integral because the vertices of LOn generate the lattice Z(

n
2). An integral

Euclidean automorphism permutes the unit vectors up to sign, and if it fixes 1, it must
permute the unit vectors themselves. That also φ̃ permutes the unit vectors is now an easy
computation. �
Thenext transition is fromorderings to permutations. Forπ ∈ Sn, we define the relation

Rπ by (x, y) ∈ Rπ if and only if π (x) > π (y). It follows that the polytope ˜LOn spanned by
the vectors

(k̃ij(π ) : 1 ≤ i < j ≤ n), π ∈ Sn,

where

k̃ij(π ) =
⎧
⎨

⎩
1 if π (i) > π (j),

−1 if π (i) < π (j).
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Setting k̃ij = −k̃ij for i > j yields an easy description of relabeling by a permutation
σ ∈ Sn: It amounts to the transformation

σ (k̃ij) = k̃σ (i)σ (j).

Dualization is multiplication by −1.
Relabeling makes Sn act on the vector subspaceW of the space of real-valued functions

on Sn generated by the functions k̃ij . Katthän’s crucial insight is to identify W (which
is ŨInv in [9]) with the second exterior power

∧2 V of V = R
n and to observe that W

and
∧2 V are isomorphic representations of the group Sn if we let Sn act on V by the

relabeling of the unit vectors, σ (ei) = eσ (i), and extend this action to
∧2 V in the natural

way. Under the action of Sn, the vector space V is not irreducible: It has a 1-dimensional
subspace of invariants spanned by e1 + · · · + en. The complementary Sn-subspace is the
orthogonal complement of the subspace of invariants since the action of Sn preserves
the standard scalar product. In it, we choose the basis ei − en, i = 1, . . . , n − 1. The
splitting of V induces a splitting of

∧2 V into two summands, one of which has the basis
(ei − en) ∧ (ej − en) = ei ∧ ej − ei ∧ en + ej ∧ en, 1 ≤ i < j < n. The transfer toW shows
that the subspace generated by the functions

w̃ij = k̃ij − k̃in + k̃jn, 1 ≤ i < j < n,

is closed under relabeling. (And it is obviously closed under dualization.)
Let P′ be the polytope spanned by the vectors

(w̃ij(π ) : 1 ≤ i < j < n), π ∈ Sn.

One checks that w̃ij(ζπ ) = w̃ij(π ) for the cyclic permutation ζ , ζ (k) = k + 1 mod n.
Since ζmπ (n) = n for suitablem and the subgroup ofSn formed by the permutation fixing
n can be identified with Sn−1, one gets the desired identification of P′ with ˜LOn−1 plus a
description of the action of Sn on ˜LOn−1.

Theorem 11 For all n ≥ 3, the group of Euclidean automorphisms of ˜LOn is Z2 × Sn
acting by relabeling and dualization.

Proof We know already that Z2 × Sn acts by Euclidean automorphisms. Assume that
φ ∈ Z2×Sn+1 with φ /∈ Z2×Sn, does this as well. Since dualization is the point reflection
at the midpoint of LOn, we can assume φ ∈ Sn+1\Sn. Since Sn acts transitively on the
vertices of LOn, we can even assume that φ(1) = 1. By Lemma 10, we pass to ˜LOn and get
an automorphism if ˜LOn that permutes the unit vectors, equivalently, the coordinates, in
R(

n
2).
Now, ˜LOn can be identified with P′ above after replacing n by n−1. Our assumption on

φ is φ(n) �= n. Since n ≥ 4, we find i, j with 1 ≤ i < j < n and φ(i),φ(j) < n. Relabeling by
φ does not transform w̃ij into another coordinate function w̃uv . This is a contradiction. �
One can use Normaliz to explore further properties of the polytopes LOn for n ≤ 7.

The volumes of these polytopes can be computed by the descent algorithm with the
exploitation of isomorphism types of faces. For n ≤ 6, the Ehrhart series is computable
as well. It is not known whether all linear-order polytopes are normal in the sense of
[5]. Normaliz confirms normality rather quickly for n ≤ 6. A brute force application of
Normaliz in [10] has verified it for n = 7 as well. One of the next releases of Normaliz will
exploit the action of the automorphism group for this computation and accelerate it.
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The facets of LOn are known only for n ≤ 7. (For n = 8, one has a lower bound of their
number and of the number of orbits.) Normaliz can determine them, including their orbits
under the actions of Z2 × Sn+1 and Z2 × Sn. For n = 7, the computation confirms (and
is confirmed by) Tables 6.1 and 6.2 in [12]. The Z2 × Sn+1-orbits are called “Pn

LO-classes”
in [12]. Table 6.1 shows the 19 Z2 × Sn-orbits for n = 7, of which 8 decompose into 2
Sn-orbits.
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