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Abstract

We study local cohomology of rings of global sections of sheafs on the Alexandrov space of a partially
ordered set. We give a criterion for a splitting of the local cohomology groups into summands determined
by the cohomology of the poset and the local cohomology of the stalks. The face ring of a rational pointed
fan can be considered as the ring of global sections of a flasque sheaf on the face poset of the fan. Thus
we obtain a decomposition of the local cohomology of such face rings. Since the Stanley–Reisner ring
of a simplicial complex is the face ring of a rational pointed fan, our main result can be interpreted as a
generalization of Hochster’s decomposition of local cohomology of Stanley–Reisner rings.
 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study local cohomology of rings of global sections of sheafs on the Alexan-
drov space of a partially ordered set. Before we introduce the concepts needed to state our main
results, we describe some consequences.

Recall that a simplicial complex ∆ on a finite vertex set V is a collection ∆ of subsets of V

closed under inclusion, that is, if F ⊆G and G ∈∆, then F ∈∆. A rational pointed fan Σ in Rd
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is a finite collection of rational pointed cones in Rd such that for C′ ⊆ C with C ∈Σ we have
that C′ is a face of C if and only if C′ ∈Σ , and such that if C,C′ ∈Σ , then C ∩C′ is a common
face of C and C′. The face poset P(Σ) of Σ is the partially ordered set of faces of Σ ordered
by inclusion. The face ring K[Σ] of Σ over a field K is defined as follows: As a K-vector space
K[Σ] has one basis element xa for each a in the intersection of Zd and the union of the faces
of Σ . Multiplication in K[Σ] is defined by

xaxb =
{

xa+b if a and b are elements of a common face of Σ ,
0 otherwise.

A simplicial complex ∆ on the vertex set V = {1, . . . , d − 1} has an associated rational fan
Σ(∆) with one cone C(F) for each face F of ∆. The cone C(F) is equal to the set of vectors
in Rd

!0 = {(x1, . . . , xd): x1, . . . , xd ! 0} with xd = ∑d−1
i=1 xi and xi = 0 for i ∈ V \ F . The face

ring K[Σ(∆)] is called the Stanley–Reisner ring K[∆] of ∆.
Stanley observed in [13, Lemma 4.6] that the face ring K[Σ] of a rational pointed fan Σ is

a Cohen–Macaulay ring if the Stanley–Reisner ring K[∆(P (Σ))] of the order complex of the
face poset of Σ is a Cohen–Macaulay ring. Stanley reduces the proof of this observation to a
theorem of Yuzvinsky [18, Theorem 6.4]. Theorem 1.2 below generalizes Yuzvinsky’s theorem,
and Stanley’s observation is a direct consequence of it.

We consider every poset P as a topological space with the Alexandrov topology, that is, the
topology where the open sets are the lower subsets (also called order ideals) of P . If T is a sheaf
of K-algebras on P , then for every x ∈ P there is a restriction homomorphism H 0(P,T )→Tx

from the zeroth cohomology group of P with coefficients in T to the stalk Tx of T at x. Given
an ideal I in a commutative ring R and an R-module M we denote the local cohomology groups
of M by Hi

I (M) for i ! 0. The following is our decomposition of local cohomology.

Theorem 1.1. Let K be a field, let T be a sheaf of K-algebras on a finite poset P and let I be
an ideal of the zeroth cohomology group H 0(P,T ) of P with coefficients in T . For x ∈ P we
let dx denote the Krull dimension of the stalk Tx of T at x and we assume that:

(i) H 0(P,T ) is a Noetherian ring and Hi(P,T ) = 0 for every i > 0,
(ii) Hi

I (Tx) = 0 for every x ∈ P and every i (= dx ,
(iii) if x < y in P then dx < dy .

Then there is an isomorphism

Hi
I

(
H 0(P,T )

)∼=
⊕

x∈P
H̃ i−dx−1((x,1P̂ );K

)
⊗K H

dx
I (Tx)

of K-modules, where H̃ i−dx−1((x,1P̂ );K) denotes the reduced cohomology of the partially
ordered set (x,1P̂ ) = {y ∈ P : x < y} with coefficients in K . If T is a sheaf of Zd -graded
K-algebras, the above isomorphism is an isomorphism of Zd -graded K-modules.

The zeroth cohomology ring H 0(P,T ) is naturally identified with the ring of global sections
of T . Under this name it was studied by Yuzvinsky [18,19] and Caijun [8]. The following im-
mediate corollary of Theorem 1.1 generalizes the results [8, Theorem 2.4] and [18, Theorem 6.4]
of Caijun and Yuzvinsky.
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Theorem 1.2. Suppose in the situation of Theorem 1.1 that there exists a unique graded maximal
ideal m in H 0(P,T ) which is maximal considered as an ideal of H 0(P,T ). If the assump-
tions of Theorem 1.1 are satisfied by the ideal m, then the ring H 0(P,T ) is Cohen–Macaulay
if and only if there exists a number n such that the reduced cohomology H̃ ∗(∆((x,1P̂ )),K)

of the simplicial complex ∆((x,1P̂ )) associated to the poset (x,1P̂ ) is concentrated in degree
(n− dx − 1) for every x ∈ P with Tx (= 0.

Let us return to the situation where P = P(Σ) is the face poset of a rational pointed fan
Σ in Rd . There is a unique flasque sheaf T of Zd -graded K-algebras associated to Σ with
stalks TC = K[C] given by the monoid algebras on the cones of Σ , with a natural isomorphism
K[Σ] ∼= H 0(P,T ) between the face ring of Σ and the ring of global sections of T and with
restriction homomorphisms H 0(P,T ) ∼= K[Σ]→ K[C] ∼= TC acting by the identity on xa if
a ∈ C and taking xa to zero otherwise (see [3, Theorem 4.7]). Note that the face ring K[Σ] is
Noetherian, Zd -graded and has a unique maximal Zd -graded ideal m. The K-algebras K[C] are
normal and thus Cohen–Macaulay of Krull dimension dC = dim(C). Hence the following result
is a direct consequence of Theorem 1.1 since every flasque sheaf of rings on a poset satisfies
assumption (i).

Theorem 1.3. Let Σ be a rational pointed fan in Rd with face poset P , K be a field and m be
the graded maximal ideal of the face ring K[Σ]. Then there is an isomorphism

Hi
m

(
K[Σ]

)∼=
⊕

C∈P
H̃ i−dim(C)−1((C,1P̂ );K

)
⊗K H dim(C)

m

(
K[C]

)

of Zd -graded K-modules.

If Σ =Σ(∆) for a simplicial complex ∆, then the posets (C,1P̂ ) = (C(F ),1P̂ ) in the above
formula are isomorphic to the face posets P(lk∆F)\∅ of the links in ∆. Thus the above theorem
generalizes Hochster’s decomposition of local cohomology of Stanley–Reisner rings (see [7]).
Just like Reisner’s topological characterization of the Cohen–Macaulay property of Stanley–
Reisner rings is a consequence of Hochster’s decomposition of local cohomology of Stanley–
Reisner rings, the observation [13, Lemma 4.6] of Stanley mentioned above is a consequence of
Theorem 1.2.

Sheaves on a poset P can be described in a different way. More precisely, let R be a com-
mutative ring, then a sheaf T of R-algebras on P is described by a unique collection (Tx)x∈P
of R-algebras and homomorphisms Txy :Ty → Tx for x " y in P with the property that Txx is
the identity on Tx and that Txy ◦ Tyz = Txz for every x " y " z in P . Moreover, every such col-
lection describes a unique sheaf on P , and we have that H 0(P,T ) is the (inverse) limit limTx .
In the body of this paper we call T = (Tx, Txy) an RP -algebra, and we work with RP -algebras
instead of with sheaves. One reason for this change of perspective is that homological algebra of
RP -algebras is more accessible than sheaf cohomology. In fact, Theorem 1.1 is a consequence
of general homological arguments.

Algebras of type limT for an RP -algebra T appear at many places in commutative algebra
and combinatorics. For example, Bruns and Gubeladze studied such algebras in a series of papers
[5,6]. Brun and Römer considered the relationship between initial ideals of the defining ideal of
the face ring of a rational fan and subdivisions of that fan in [3].
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This paper is organized as follows. In Section 2 we recall definitions and notations related to
posets and abstract simplicial complexes. In Section 3 we introduce RP -algebras and give exam-
ples from commutative algebra and combinatorics. In Section 4 we study the local cohomology
of limits of RP -algebras. In particular, we prove Theorem 1.1. In Section 5 we present further
applications.

The proof of Theorem 1.1 uses homological algebra over a poset P . We recollect in Sections 6
and 7 some notation and basic facts needed in the proof. Perhaps apart from Proposition 6.6 the
results in Sections 6 and 7 are well known. We have included these sections as a bridge between
the questions considered in this paper and the literature on homological algebra of functor cat-
egories. They are also intended as a soft introduction to the language of functor categories for
the reader who is not very familiar with category theory. More detailed accounts of the concepts
introduced here can be found in the papers of Baues–Wirsching [2] and of Mitchell [11]. Sec-
tions 8 is the technical heart of the paper. Here we use the theory collected in Sections 6 and 7 to
study the local cohomology of RP -modules.

2. Prerequisites

In this paper P = (P,") always denotes a partially ordered set (poset for short). Given P ,
the opposite poset P op = (P,#) has the same underlying set as P and the opposite partial order
#, that is, y # x if and only if x " y. We write x < y if x (= y and x " y. We also consider a
poset as a category “with morphisms pointing down,” that is, for x, y ∈ P there is a unique arrow
y→ x if and only if x " y. If P contains a unique maximal element, then this element is called
the initial element of P , and it will be denoted 1P . Analogously a unique minimal element of P

is called a terminal element of P and it is denoted 0P . The poset P̂ = (P̂ ,") associated with P

has underlying set P̂ = P ∪ {0P̂ ,1P̂ } obtained by adding a terminal element 0P̂ and an initial
element 1P̂ to P (in spite of a terminal or an initial element which may already exist in P ). The
closed interval [x, y] of elements between x and y in P is the set [x, y] = {z ∈ P : x " z " y}
considered as a sub-poset of P . The half-open interval [x, y), the half-open interval (x, y] and
the open interval (x, y) are described similarly. Note that if x ∈ P̂ and y ∈ P , then (x, y] is a sub-
poset of P . A finite poset P is called a graded poset, if all maximal chains (i.e. totally ordered
subsets) of P have the same length rank(P ). In this situation it is possible to define a unique rank
function on P such that for x ∈ P we have that rank(x) is the common length of maximal chains
in P ending at x.

The Alexandrov topology [1] on a poset P is the topology where the open subsets are the
lower subsets (also called order ideals), that is, the subsets U such that y ∈U and x " y implies
x ∈ U . The subsets of the form (0P̂ , x] form a basis for this topology. (Sometimes, e.g. in [18],
this is called the order topology on P op.)

The poset P is locally finite if every closed interval of the form [x, y] for x, y ∈ P is finite and
it is topologically finite if every interval of the form (0P̂ , x] for x ∈ P is finite. Note that locally
finite does not imply topologically finite but the converse is true and that P is topologically finite
if and only if every element of P has a finite neighborhood in the Alexandrov topology.

If a simplicial complex ∆ on a finite vertex set V is non-empty, then the empty set is a terminal
element in the face poset, that is, in the partially ordered set P(∆) = (∆,⊆) of elements in ∆

ordered by inclusion. The elements F of ∆ are called faces. If F contains d + 1 vertices, that is,
d + 1 elements of V , then F is called a d-dimensional face, and we write dimF = d . The empty
set is a face of dimension −1. The dimension dim∆ is the supremum of the dimensions of the
faces of ∆.
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Above we constructed a poset P(∆) associated to every simplicial complex ∆. Conversely,
the order complex ∆(P ) of P is the simplicial complex on the vertex set P consisting of the
chains in P ordered by inclusion.

Recall that if F is a face of a simplicial complex ∆ then the link lk∆F of F in ∆ is the
simplicial complex lk∆ F = {G\F : G ∈∆ and F ⊆G}. It is easy to see that the correspondence
G \ F .→G = (G \ F)∪ F defines an order-preserving bijection

P(lk∆F)
∼=−→ [F,1

P̂ (∆)
).

Thus the barycentric subdivision ∆(P (lk∆ F) \ ∅) of lk∆ F has the same reduced simplicial
(co-)homology as ∆((F,1

P̂ (∆)
)). This fact will be used several times in this paper.

For more details on simplicial complexes and posets see, for example, the corresponding
chapters in the books of Bruns–Herzog [7] and Stanley [14,15].

3. Examples of RP -algebras

Fix a commutative ring R and a poset (P,"). An RP -algebra T is a system (Tx)x∈P of
R-algebras and homomorphisms Txy :Ty → Tx for x " y in P with the property that Txx is
the identity on Tx and that Txy ◦ Tyz = Txz for every x " y " z in P . The (inverse) limit of
T is the subring limT of

∏
x∈P Tx consisting of sequences r = (rx)x∈P with the property that

Txy(ry) = rx for every x " y in P . In particular, an RP -algebra is an RP -module in the sense
explained in Section 6 and we can apply the theory developed in that section. The RP -algebra T

is called cyclic if the homomorphism R→ Tx is surjective for every x ∈ P . We call T an RP -
algebra of Zd -graded RP -algebras if the R-algebras Tx are Zd -graded, and the homomorphisms
Txy :Ty → Tx and R→ Tx are homogeneous of degree zero for x " y. In this case limT is a
Zd -graded R-algebra. Similarly, we call T an RP -algebra of Cohen–Macaulay rings, if all Tx

are Cohen–Macaulay rings.
The following examples motivate the study of RP -algebras in commutative algebra and alge-

braic combinatorics. For a field K and a set F we let K[F ] = K[xi : i ∈ F ] be the polynomial
ring with one indeterminate for each i ∈ F .

Example 3.1 (Stanley–Reisner ring). Let K be a field, ∆ be a simplicial complex on the ver-
tex set V = {1, . . . , d} and P = P(∆). For F ∈ P define TF = K[F ]. For G ⊆ F , we define
TGF :K[F ]→K[G] to be the natural projection. If we let R = K[⋃F∈P F ], then T is a cyclic
RP -algebra and

limT ∼= R/I∆,

where I∆ is generated by all squarefree monomials
∏

i∈G xi for G⊆ V,G /∈∆. Hence limT is
the usual Stanley–Reisner ring in this case.

Note that the polynomial algebra R = K[x1, . . . , xd ] is Zd -graded and T is a cyclic RP -
algebra of Zd -graded R-algebras.

Example 3.2 (Toric face rings). We consider a rational pointed fan Σ in Rd , that is, a collection
of rational pointed cones in Rd such that for C′ ⊆ C with C ∈Σ we have that C′ is a face of C

if and only if C′ ∈Σ , and if C,C′ ∈Σ , then C ∩C′ is a common face of C and C′. Let P be the
face poset of Σ ordered by inclusion. For a rational pointed cone C ∈ P we let TC be the monoid
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ring K[C ∩Zd ] over a field K . The homomorphisms TC′C :TC→ TC′ are induced by the natural
face projection. Then T is a Zd -graded KP -algebra. For a suitable polynomial ring R over K

the homomorphisms R→ TC are all surjective and Zd -graded. Then T is a cyclic RP -algebra
of Zd -graded R-algebras. In any case, limT is the toric face ring of Σ . This examples goes back
to a construction of Stanley in [13]. It was generalized, and these rings were studied by Brun–
Römer in [3]. The limits limT of such algebras were intensively studied by Bruns–Gubeladze
(see [5,6]).

Note that Stanley–Reisner rings of simplicial complexes are covered by this example: Let ∆
be a simplicial complex on the vertex set V = {1, . . . , d − 1}. To a subset F of V we associate
the pointed cone CF in Rd generated by the set of elements of the form ei + ed for i ∈ F . Here
ei denotes the standard basis vector ei = (0, . . . ,0,1,0, . . . ,0) of Rd . If Σ denotes the fan in Rd

consisting of the cones CF for F ∈ ∆, then the face posets of ∆ and of Σ are isomorphic and
the RP -algebras of Examples 3.1 and 3.2 correspond to each other via this isomorphism.

Borrowing notation from the theory of sheaves we call an RP -algebra T flasque if limT |U →
limT |V is surjective for all open sets V ⊆ U of the poset P . In the third example we present a
general construction to produce flasque RP -algebras. (See also [18].)

Example 3.3. Let R be a commutative ring and D a distributive lattice of ideals in R (with
respect to sum and intersection). Moreover, let P be a finite subset of D such that I + J ∈ P for
all I, J ∈ P , and consider P as a poset with I ! J if I ⊆ J . Let T be the RP -algebra given by
TI = R/I for all I ∈ P and TJI the natural epimorphism R/I→R/J . For I1, . . . , In in P let U

be the smallest open subset of P containing I1, . . . , In. We claim that

limT |U = R/(I1 ∩ · · ·∩ In).

In fact, clearly limT |U is the kernel of the map

Φ :R/I1 × · · ·×R/In→
∏

i<j

R/(Ii + Ij ),

where Φ(ā1, . . . , ān) = (āi − āj : i < j) and ¯ denotes the residue class with respect to the
appropriate ideal. For n = 2 the claim is proved by the classical exact sequence

0→R/(I1 ∩ I2)→R/I1 ×R/I2→R/(I1 + I2)→ 0.

By induction we can assume that an element in the kernel of Φ has the form (ā, . . . , ā, b̄), and it
remains to show that the sequence

0→R/
(
(I1 ∩ · · ·∩ In−1)∩ In

)
→ (R/I1 ∩ · · ·∩ In−1)×R/In

Φ ′−→
n−1∏

i=1

R/(Ii + In)

is exact. By the case n = 2, it is enough that the target of Φ ′ can be replaced by R/(I1 ∩ · · · ∩
In−1) + In, and this follows immediately from distributivity. Finally, it is now immediate that T

is flasque.
Distributive lattices of ideals in rings (with respect to sum and intersection) appear naturally

in commutative algebra. For example, let S = K[x1, . . . , xn] be the polynomial ring. Assume that
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we have fixed a standard K-basis S of S and D is the set of ideals which have a subset of D
as a K-basis. Then D is a distributive lattice. If S is the set of usual monomials in S, then D
is the set of monomial ideals. Choosing a finite set P of monomial prime ideals closed under
summation of ideals gives back the example of Stanley–Reisner rings.

Example 3.3 is in fact quite general. First let us note that if T is a flasque RP -algebra on
a finite poset P with the property that the homomorphism R→ limT is surjective, then the
kernel of this homomorphism is given by the intersection of the kernels Ix of the compositions
R→ limT → Tx for x ∈ P . Indeed, the homomorphism R/

⋂
x∈P Ix → limT is surjective,

and it is injective since the composition R/
⋂

x∈P Ix → limT →∏
x∈P Tx is injective. Next

note that if Q denotes the poset consisting of nonzero sums of ideals of the form Ix for x ∈ P ,
with order given by reverse inclusion, there is an order-preserving map P →Q taking x ∈ P

to Ix ∈Q. Since Tx
∼= R/Ix , there is a canonical homomorphism limI∈Q R/I → limT . Since

the kernel of R→ limI∈Q R/I is equal to the kernel of R→ limT , we have an isomorphism
limI∈Q R/I ∼= limT . Finally, let us note that the map P →Q is injective if and only if x < y

in P implies that the homomorphism Ty → Tx has a nonzero kernel. For further examples of
RP -algebras see [4].

4. Decomposition results

This section contains our main results on the local cohomology of the limit of an RP -
algebra T . The following theorem is our most general decomposition of local cohomology
groups. The proof will be given in Section 8.

Theorem 4.1. Let R be a Noetherian commutative algebra over a field K and I ⊂R an ideal. Let
P be a finite poset and let T be an RP -algebra. For x ∈ P we let dx denote the Krull dimension
of Tx and we assume that:

(i) Hi
I (Tx) = 0 for every x ∈ P and every i (= dx ,

(ii) ExtiRP (R,T ) = 0 for every i > 0,
(iii) if x < y in P then dx < dy .

Then there is an isomorphism

Hi
I (limT )∼=

⊕

x∈P
H̃ i−dx−1((x,1P̂ );K

)
⊗K H

dx
I (Tx)

of K-modules.
If R is a Noetherian commutative Zd -graded algebra over a field K , I ⊂ R is a graded

ideal and T is an RP -algebra of Zd -graded R-algebras, then the above isomorphism is an
isomorphism of Zd -graded K-modules.

Recall that a graded maximal ideal in a Zd -graded ring R is a graded ideal m that is maximal
among the proper graded ideals in R, and that R is graded local if it contains a unique graded
maximal ideal. In the next section we give applications of the following (graded) version of
Theorem 4.1.
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Corollary 4.2. Let R be a Noetherian Zd -graded local commutative algebra over a field K with
graded maximal ideal m which is maximal considered as an ideal of R. Let P be a finite poset
and let T be a cyclic RP -algebra of Zd -graded R-algebras. For x ∈ P we let dx denote the Krull
dimension of Tx and we assume that:

(i) Tx is a Cohen–Macaulay ring for every x ∈ P ,
(ii) ExtiRP (R,T ) = 0 for every i > 0,

(iii) if x < y in P then dx < dy .

Then there is an isomorphism

Hi
m(limT )∼=

⊕

x∈P
H̃ i−dx−1((x,1P̂ );K

)
⊗K Hdx

m (Tx)

of Zd -graded K-modules.

Proof. We first note that under the given assumptions Tx is Cohen–Macaulay if and only if (Tx)m
is Cohen–Macaulay. (See [7, Exercise 2.1.27].) By Grothendieck’s Vanishing Theorem on local
cohomology modules (see [7, Theorem 3.5.7]) this is the case if and only if condition (i) of
Theorem 4.1 is satisfied. The other conditions of Theorem 4.1 are part of our assumptions. !

5. Applications

In this section we explain how the results of Section 4 generalize the Hochster formulas for
local cohomology. Let P be a poset and let R be a commutative ring. The following lemma is a
consequence of Lemma 7.3.

Lemma 5.1. Let R be a commutative ring and let P be a poset. If T is a flasque RP -algebra,
then ExtiRP (R,T ) = 0 for all i > 0.

Using Corollary 4.2 it is possible to study several properties of the ring limT . The next result
generalizes results of Yuzvinsky [18, Theorem 6.4] and Caijun [8, Theorem 2.4] in the graded
situation.

Corollary 5.2. Let R be a Zd -graded local Noetherian algebra over a field K with unique graded
maximal ideal m which is maximal considered as an ideal of R. Assume that T is a flasque cyclic
RP -algebra of Zd -graded Cohen–Macaulay R-algebras such that x < y in P implies dx < dy .
The following statements are equivalent:

(i) limT is a Cohen–Macaulay ring,
(ii) H̃ p((x,1P̂ );K) = 0 for x ∈ P and p (= dim(limT )− dx − 1.

Proof. Recall that by standard arguments limT is a Cohen–Macaulay ring if and only if
Hi

m(limT ) = 0 for i (= dim(limT ). The equivalence of (i) and (ii) is a direct consequence of
Corollary 4.2 and Lemma 5.1. !



218 M. Brun et al. / Advances in Mathematics 208 (2007) 210–235

We need the following result.

Lemma 5.3. Let T be a KP -algebra. Assume that there exists x ∈ P with the following proper-
ties:

(i) Ty = Tx for every y ∈ [x,1P̂ ),
(ii) Txy is the identity homomorphism on Tx for every y ∈ [x,1P̂ ),

(iii) Ty = 0 if y /∈ [x,1P̂ ).

Then T is a flasque KP -algebra.

Proof. If U is an open subset of P then T |U = 0 if x /∈U , and otherwise limT |U ∼= Tx . If V ⊆U

is an inclusion of open subsets of P then the natural projection limT |U → limT |V is isomorphic
to the identity on Tx if x ∈ V , and otherwise limT |V = 0. Thus T is a flasque KP -algebra. !

The following result generalizes an observation of Yuzvinsky [18, Proposition 7.6].

Proposition 5.4. Let Σ be a rational pointed fan in Rd with face lattice P . The Zd -graded KP -
algebra T of Example 3.2 is flasque and if D ⊂ C in P , then the Krull dimension of TD is strictly
less than the Krull dimension of TC . In particular, for every simplicial complex ∆, the Zd -graded
KP(∆)-algebra of Example 3.1 is flasque.

Proof. T has the decomposition T = ⊕
a∈Zd T (a), where T (a)C = K if a ∈ C and T (a)C = 0

otherwise.
Let D = ⋂

C∈P : a∈C C. Then T (a)C = 0 unless D ⊆ C, and in this case T (a)C = K and the
map T (a)DC is the identity map on K . It follows from 5.3 that T is a direct sum of flasque
KP -algebras, and this implies that T is a flasque KP -algebra.

The statement about Krull dimensions holds since the Krull dimension of the monoid ring
K[C ∩Zd ] is equal to the dimension of the cone C. !

Let ∆ be a simplicial complex with face lattice P . We have observed that for every F ∈ P the
posets P(lk∆ F) and [F,1P̂ ) are isomorphic. Considering the rational pointed fan induced by a
simplicial complex as in Example 3.2, and using the barycentric subdivision homeomorphism,
the following theorem recovers Hochster’s decomposition of the local cohomology of Stanley–
Reisner rings.

Theorem 5.5. Let Σ be a rational pointed fan in Rd with face lattice P . If K[Σ] denotes the
toric face ring of Σ over a field K and if m denotes the graded maximal ideal of K[Σ], then
there is an isomorphism

Hi
m

(
K[Σ]

)∼=
⊕

C∈P
H̃ i−dimC−1((C,1P̂ );K

)
⊗K H dimC

m

(
K

[
C ∩Zd

])

of Zd -graded K-modules. In particular, K[Σ] is a Cohen–Macaulay ring if and only if
H̃ p((C,1P̂ );K) = 0 for C ∈ P and p (= dim(K[Σ])− dC − 1.
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Proof. Let T be the KP -algebra of Example 3.2. We have that

Hi
m

(
K[Σ]

)∼= Hi
m(limT ).

For C ∈ P the ring TC = K[C ∩ Zd ] is a normal monoid ring of Krull dimension dC = dimC.
Thus it is Cohen–Macaulay (see [7, Theorem 6.3.5]). By Proposition 5.4 the KP -algebra T is
flasque and dD < dC for D ⊂ C in P . Since TC is a Cohen–Macaulay ring for every C ∈ P it
follows from 4.2 that there is an isomorphism

Hi
m

(
K[Σ]

)∼=
⊕

C∈P
H̃ i−dimC−1((C,1P̂ );K

)
⊗H dimC

m

(
K

[
C ∩Zd

])

of Zd -graded K-modules for every i ! 0. !

Remark 5.6. Reisner’s Cohen–Macaulay criterion for a simplicial complex ∆ states that K[∆]
is a Cohen–Macaulay ring if and only if

H̃ i(lk∆ F ;K)∼= H̃i(lk∆ F ;K) = 0 for all F ∈∆ and all i < dim lk∆ F.

This criterion is a direct consequence of Hochster’s decomposition of the local cohomology of
Stanley–Reisner rings. In particular, since H̃ p(lk∆ F ;K) ∼= H̃ p((F,1

P̂ (∆)
);K) for F ∈∆ and

all p, it is a consequence of Theorem 5.5.

The following corollary of Theorem 5.5 is an observation of Stanley in [13].

Corollary 5.7. Let Σ ⊂ Rd be a rational pointed fan, let P be the face poset of Σ and let T

be the KP -algebra considered in Example 3.2. If ∆(P ) is K-Cohen–Macaulay, then limT is
Cohen–Macaulay.

Proof. If ∆(P ) is Cohen–Macaulay, then

H̃ p
(
(C,1P̂ );K

)
= 0 for C ∈ P and p (= dim∆(C,1P̂ ),

where the intervals (C,1P̂ ) are taken as sub-posets of P . It is known that P is a graded poset,
i.e. all maximal chains of P have the same length. We prove by induction on rankP − rankC

that dim∆(C,1P̂ ) = dim(limT )−dC −1 for C ∈ P . This will conclude the proof by the remark
of 5.5.

If rankC = rankP , then C is a maximal face and it is easy to see that Ker(limT → TC) is a
minimal prime ideal of limT . Hence

dim∆(C,1P̂ )− 1 = dim(limT )− dimTC − 1 = dim(limT )− dimC − 1

and we are done in this case. If rankC < rankP , then it is well known that there exists a face
C′ ∈ P such that dimC′ = dimC + 1 and C ⊆ C′. Thus by the induction hypothesis

dim∆(C,1P̂ ) = dim∆(C′,1P̂ ) + 1 = dim(limT )− dimC′ = dim(limT )− dimC − 1. !
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The next goal will be to find a result similar to 5.2 for Buchsbaum rings, at least in the
Z-graded case. Assume that K is a field and let R = K[x1, . . . , xd ] be an N-graded polyno-
mial ring (i.e. R is Z-graded such that R0 = K and Ri = 0 for i < 0) with graded maximal
ideal m = (x1, . . . , xd). Recall that a finitely generated graded R-module N is called a Buchs-
baum module if the Sm-module Nm is Buchsbaum as defined in [16]. If K is an infinite field
and R is generated in degree 1, then N is Buchsbaum if and only if dimN = 0 or dimN > 0
and every homogeneous system of parameters y1, . . . , ydimN of N is a weak N -sequence, i.e.
(y1, . . . , yi−1)N :yi = (y1, . . . , yi−1)N :m for i = 1, . . . ,dimN. If N is a Buchsbaum module,
then dimK Hi

m(N) <∞ for i = 1, . . . ,dimN − 1. In general the converse is not true. But if
there exists an r ∈ Z such that Hi

m(N)j = 0 for j (= r and i = 1, . . . ,dimN − 1, then N is
Buchsbaum (see [12, Satz 4.3.1]). For more details on the theory of Buchsbaum modules we
refer to Schenzel [12] and Stückrad and Vogel [16].

Corollary 5.8. Let R = K[x1, . . . , xd ] be the N-graded polynomial ring over a field K . Let P be
a finite poset with a terminal element 0P and let T be a cyclic flasque RP -algebra of Z-graded
Cohen–Macaulay R-algebras such that dx = dimTx < dy = dimTy for x < y in P . Assume that
T0P = K . Then the following statements are equivalent:

(i) limT is a Buchsbaum ring,
(ii) for all x ∈ P \ {0P } we have H̃ p((x,1P̂ );K) = 0 for p (= dim(limT )− dx − 1.

Proof. Note that dx > 0 for x > 0P . If limT is Buchsbaum, then it follows from Corollary 4.2
that for all x ∈ P such that x (= 0P we have

H̃ p
(
(x,1P̂ );K

)
= 0 for p (= dim(limT )− dx − 1,

because otherwise Hi
m(limT ) is not a finitely generated K-vector space since we have

dimK H
dx
m (Tx) =∞ for x (= 0p .

If condition (ii) holds, then we have that Hi
m(limT )j = 0 for i < dim(limT ) and j (= 0. Thus

limT is a Buchsbaum ring. !

6. AP -modules

In the following sections we give proofs of the results in Section 4. Let A be an associative
and unital ring and let P be a poset. A left AP -module M is a system (Mx)x∈P of left A-modules
and homomorphisms Mxy :My→Mx for x " y in P with the property that Mxx is the identity
on Mx and that Mxy ◦Myz = Mxz for every x " y " z in P . A homomorphism f :M → N

of left AP -modules consists of homomorphisms fx :Mx → Nx of left A-modules for x ∈ P

with the property that fx ◦Mxy = Nxy ◦ fy for every x " y in P . We denote the abelian group of
homomorphisms from M to N by HomAP (M,N). The category-minded reader recognizes that a
left AP -module is a functor from P to the category of left A-modules, and that a homomorphism
of left AP -modules is a natural transformation of such functors. We denote the category of left
AP -modules by AP -Mod.

More generally, for every small category C enriched in the category of abelian groups we
could consider the category C -Mod of enriched functors from C to the category of abelian
groups. Everything we do in this section and in Section 7 in the category AP -Mod can also
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be done in the category C -Mod. Since we are interested in certain particular properties of the
categories AP -Mod we focus on these.

A homomorphism f :M → N of left AP -modules is a monomorphism if fx :Mx → Nx is
injective for every x ∈ P , and it is an epimorphism if fx is surjective for every x ∈ P . A left
AP -module L is projective if for every epimorphism f :M → N and every homomorphism
g :L→N of left AP -modules there exists a homomorphism g :L→M with f ◦g = g. Dually a
left AP -module I is injective if for every monomorphism f :M→N and every homomorphism
g :M → I of left AP -modules there exists a homomorphism g :N → I with g ◦ f = g. The
category AP -Mod of left AP -modules is an abelian category.

Example 6.1.

(i) To an order-preserving map f :P → Q of posets and a left AQ-module M there is an
associated left AP -module f ∗M with (f ∗M)x = Mf (x) and (f ∗M)xy = Mf (x)f (y). We
shall write M instead of f ∗M when it is clear from the context that we are working with
left AP -modules.

(ii) If Q is the one element poset, then the category of left AQ-modules is isomorphic to the
category of left A-modules.

(iii) Given a poset P there is a unique order-preserving map f :P → Q from P to the one
element poset Q. Thus we can consider a left A-module E firstly as an AQ-module and
secondly as an AP -module f ∗E. Again, when it is clear from the context we write E

instead of f ∗E. Note that f ∗E is the constant left AP -module with constant value E, that
is, f ∗Ex = E for x ∈ P and f ∗Exy = idE for x " y in P .

(iv) For z ∈ P there is a left AP -module AP z represented by z. The left AP -module AP z takes
x to AP z

x = A if x " z and to 0 otherwise. The homomorphism AP z
xy is the identity on A

if x " y " z and otherwise it is the zero homomorphism. If M is another left AP -module,
then the abelian group of homomorphisms from AP z to M is isomorphic to the underlying
abelian group of Mz. In particular, AP z is a projective left AP -module.

(v) To a family (Mi)i∈I of left AP -modules we can associate left AP -modules
⊕

i∈I Mi and∏
i∈I Mi with

(⊕

i∈I
Mi

)

x

=
⊕

i∈I
(Mi)x and

(∏

i∈I
Mi

)

x

=
∏

i∈I
(Mi)x for x ∈ P.

Definition 6.2. The limit of a left AP -module M is the left A-submodule limM of
∏

x∈P Mx

consisting of sequences m = (mx)x∈P with the property that Mxy(my) = mx for every x " y

in P .

We call a left AP -module M finitely generated is there exists an epimorphism of the form⊕
i∈I AP zi →M for some finite index set I . Note that a finitely generated left AP -module is

projective if and only if it is a direct summand of a finitely generated left AP -module
⊕

i∈I AP zi

for some finite set I . A left AP -module M is called Noetherian if every increasing sequence
M1 ⊆M2 ⊆ · · · of left sub-AP -modules of M stabilizes. Recall that a poset P is topologically
finite if (0P̂ , x] is finite for every x ∈ P .

Lemma 6.3. Suppose that A is a left Noetherian ring and that P is a topologically finite poset.
Then AP z is a Noetherian left AP -module for every z ∈ P .
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Proof. A left sub-AP -module of AP z is uniquely determined by a family of left ideals I (x) of
A for x " z in P with the property that I (y)⊆ I (x) if x " y " z. By our assumptions this is a
finite family of left ideals of a left Noetherian ring. !

It is well known that if A is left Noetherian, then every left submodule of a finitely generated
free A-module is finitely generated. This also holds in the category of left AP -modules in the
following way:

Proposition 6.4. If AP z is a Noetherian left AP -module for every z ∈ P , then every submodule
of a left AP -module

⊕
i∈I AP zi for some finite set I is finitely generated.

Remark 6.5. If P is finite and A is a commutative ring, then we can consider the incidence
algebra I (P,A) of P over A, that is, the A-algebra with underlying A-module

I (P,A) =
⊕

x"y

A · ex"y

and with multiplication defined via (ex"y)(ey"z) = ex"z and with (ex"y)(ex′"y′) = 0 if y (= x′.
(See [15, Definition 3.6.1] or [11, p. 33].) Note that

∑
x∈P ex"x is the multiplicative unit in

I (A,P ) and that the elements ex"x are idempotent in I (A,P ).
Given a left module M over the ring I (A,P ), we obtain A-modules Mx := ex"xM for every

x ∈ P , and A-linear homomorphisms Mxy :My→Mx given by

(ey"y)m .→ (ex"y)(ey"y)m = (ex"y)m = (ex"x)(ex"y)m

for every x " y in P . In this situation the A-modules (Mx)x∈P and the A-homomorphisms Mxy

form a left AP -module. Conversely, if M is a left AP -module, then the direct sum
⊕

x∈P Mx

of the A-modules can be given the structure of a left module over the ring I (A,P ) by defining
ex"ymy = Mxy(my) for my ∈My and ex"ym = 0 if m /∈My . This correspondence shows that
the category of left modules over the ring I (A,P ) is equivalent to the category of left AP -
modules. This justifies the above terminology and it shows that in the case where P is finite the
concept of AP -modules is really nothing new. However, as we shall see, many left I (A,P )-
modules become more transparent when considered as left AP -modules.

Observe that the left AP -modules AP z correspond to the ideals I (P,A)ez"z. The module
I (P,A) corresponds to the left AP -module

⊕
z∈P AP z.

The next result is well known to specialists. Since we did not find a proof in the literature we
include it for the sake of completeness.

Proposition 6.6. Let P be a poset and let A be an associative and unital ring. The category of left
AP -modules is equivalent to the category of sheaves of left A-modules on P with the Alexandrov
topology.

Proof. Let F be a sheaf of left A-modules on P . We let Φ(P ) denote the left AP -module with
Φ(P )x = F ((0P̂ , x]) for x ∈ P and with Φ(P )xy equal to the restriction homomorphism asso-
ciated to the inclusion (0P̂ , x]⊆ (0P̂ , y] for x " y. This defines a functor Φ from the category
of sheaves of left A-modules on P to the category of left AP -modules.
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Let M be a left AP -module. For U ⊆ P open define

Ψ (M)(U) =
{
(sx) ∈

∏

x∈U
Mx : sx = Mxy(sy) for x " y

}
= limM|U . (1)

Given an inclusion ι:V ⊆U of open subsets of P , the restriction map Ψ (M)(U)→ Ψ (M)(V ) is
the natural restriction map of limits. Using that (0P̂ , x] is contained in every neighborhood of x

it is straightforward to check that Ψ (M) is isomorphic to its associated sheaf of left A-modules
on P . (Compare [9, Proposition-Definition II.1.2].) Thus Ψ (M) is a sheaf of left A-modules
on P . We have defined a functor Ψ from the category of left AP -modules to the category of
sheaves of left A-modules on P .

If M is a left AP -module, then the homomorphism

My→Φ
(
Ψ (M)

)
y

= limM|(0P̂ ,y]

induced by the structure maps Mxy :My→Mx is an isomorphism.
Conversely, if F is a sheaf of left A-modules on P and U is an open subset of P , then the

intervals (0P̂ , x] for x ∈U form an open cover of U . Since the homomorphism

F
(
(0P̂ , y]

)
→ Ψ

(
Φ(M)

)(
(0P̂ , y]

)
= lim

x∈(0P̂ ,y]
F

(
(0P̂ , x]

)

is an isomorphism for every y ∈ P , the sheaf condition on F ensures that the homomorphism

F (U)→ Ψ
(
Φ(F )

)
(U) = lim

x∈U
F

(
(0P̂ , x]

)

is an isomorphism for every open subset U of P . This concludes the proof. !

We will also need to consider right AP -modules. A right AP -module is a system (Mx)x∈P
of right A-modules and homomorphisms Mxy :Mx → My for x " y in P with the property
that Mxx is the identity on Mx and that Myz ◦Mxy = Mxz for every x " y " z in P . A ho-
momorphism f :M→ N of right AP -modules consists of homomorphisms f x :Mx → Nx of
right A-modules for x ∈ P with the property that f y ◦Mxy = Nxy ◦ f x for every x " y in P .
(In other words, a right AP -module is a left AopP op-module.) The category Mod-AP of right
AP -modules is also an abelian category.

Example 6.7. For x ∈ P there is a right AP -module APx represented by x. The right AP -module
APx takes z to AP z

x = A if x " z and to 0 otherwise. The homomorphism AP
yz
x is the identity

on A if x " y " z and otherwise it is the zero homomorphism. If M is another left AP -module,
then the abelian group of homomorphisms of right AP -modules from M to APx is isomorphic
to the underlying abelian group of Mx . In particular, APx is a projective right AP -module.

If P = (P,") is a poset we let (P,=) denote the poset with the same elements as P and with
the partial order where no distinct elements are comparable. Given a right AP -module M and a
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left AP -module N the tensor product M ⊗A(P,=) N of M and N over A(P,=) is the abelian
group M ⊗A(P,=) N = ⊕

x∈P Mx ⊗A Nx . For every x ∈ P there is a homomorphism

N∗ :APx ⊗A(P,=) N =
⊕

y∈P
AP

y
x ⊗A Ny→Nx

induced by the unique homomorphisms AP
y
x ⊗A Ny→ Nx taking 1⊗ n to Nxy(n) for n ∈ Ny

and x " y. Similarly, there is a homomorphism

M∗ :M ⊗A(P,=) AP y =
⊕

x∈P
Mx ⊗A AP

y
x →My.

The tensor product M ⊗AP N of M and N over AP is the abelian group given by the cokernel
of the homomorphism

⊕

x,y∈P
Mx ⊗A AP

y
x ⊗A Ny

M∗⊗A1−1⊗AN∗−−−−−−−−−−−→
⊕

x∈P
Mx ⊗A Nx.

Given posets P and Q and associative and unital rings A and B , an AP -BQ-bimodule is a
system (Mu

x )x∈P,u∈Q of A-B-bimodules together with a left AP -module structure on (Mu
x )x∈P

for every u ∈Q and a right BQ-module structures on (Mu
x )u∈Q for every x ∈ P subject to the

condition that Mv
xy ◦Muv

y = Muv
x ◦Mu

xy for x " y in P and u " v in Q. A homomorphism
f :M→ N of AP -BQ-bimodules consists of homomorphisms f u

x :Mu
x → Nu

x for u ∈Q and
x ∈ P such that for every x ∈ P the homomorphisms (f u

x )u∈Q form a homomorphism of right
BQ-modules and for every u ∈Q the homomorphisms (f u

x )x∈P form a homomorphism of left
AP -modules. We denote by HomAP -BQ(M,N) the abelian group of homomorphisms of AP -
BQ-bimodules from M to N . If P is a one-point poset, then we say that M is an A-A′Q-
bimodule instead of saying that it is an AP -A′Q-bimodule. Similarly, if Q is a one-point poset,
then we say that M is an AP -A′-bimodule.

Example 6.8. For every poset P and every associative unital ring A we can consider the AP -
AP -bimodule AP with AP

y
x = A if x " y and AP

y
x = 0 otherwise.

Let P,Q and R be posets and let A,A′ and A′′ be associative and unital rings. If M is an
A′Q-AP -bimodule and N is an AP -A′′R-bimodule, then the tensor product M ⊗AP N inherits
the structure of an A′Q-A′′R-bimodule. Observe that if P is a one-point poset, then this is the
A′Q-A′′R-bimodule M ⊗A N induced by (M ⊗A N)

y
x = Mx ⊗A Ny .

If further L is an AP -A′Q-bimodule, then we let HomAP (L,N) denote the A′Q-A′′R-
bimodule with HomAP (L,N)au given by the set of AP -homomorphisms from Lu = (Lu

x)x∈P
to Na = (Na

x )x∈P , and with structure homomorphisms induced from those of L and N . Ob-
serve that if P is a one-point poset, then this is the A′Q-A′′R-bimodule HomA(L,N) induced
by HomA(L,N)au = HomA(Lu,Na). Note also that HomAP (L,N) is a left A′-module in the
particular case where Q and R are one-point posets and A′′ = Z.

Suppose that A and A′ are algebras over a commutative ring K , that is, there are given ring-
homomorphism from K to the centers of A and A′. If M is a right AP -module and M ′ is a right
A′P ′-module, then the tensor product M⊗K M ′ of M and M ′ over K is the right (A⊗K A′)(P ×
P ′)-module with (M⊗K M ′)(x,x′) = Mx⊗K M ′x

′
. Similarly, if N is a left AP -module and N ′ is
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a left A′P ′-module, then N⊗K N ′ is the left (A⊗K A′)(P ×P ′)-module with (N⊗K N ′)(x,x′) =
Nx ⊗K N ′x′ .

Proposition 6.9. Suppose that A and A′ are associative and unital algebras over a commutative
ring K . If M is a finitely generated projective left AP -module and M ′ is a finitely generated
projective left A′P ′-module, then for every left AP -module N and every left A′P ′-module N ′

the Hom-⊗ interchange homomorphism

HomAP (M,N)⊗K HomA′P ′(M
′,N ′)→Hom(A⊗KA′)(P×P ′)(M ⊗K M ′,N ⊗K N ′),

(f ⊗ f ′) .→
(
m⊗m′ .→ f (m)⊗ f ′(m′)

)

is an isomorphism.

Proof. Since every retract of an isomorphism is an isomorphism we can without loss of gener-
ality assume that M and M ′ are left AP -modules of the form

⊕
i∈I AP zi for some finite set I .

By direct sums, the statement is now reduced to the case M = AP y and M ′ = A′P ′y
′
. In this

case

M ⊗K M ′ ∼= (A⊗K A′)(P × P ′)(y,y′).

We have that

HomAP (M,N)⊗K HomA′P ′(M
′,N ′)

= HomAP

(
AP y,N

)
⊗K HomA′P ′

(
A′P ′y

′
,N ′

)

∼= Ny ⊗K N ′y′ = (N ⊗K N ′)(y,y′)

∼= Hom(A⊗KA′)(P×P ′)
(
(A⊗K A′)(P × P ′)(y,y′),N ⊗K N ′

)

∼= Hom(A⊗KA′)(P×P ′)(M ⊗K M ′,N ⊗K N ′),

where we used the fact (the Yoneda lemma) that the homomorphisms

HomAP

(
AP y,N

)
→Ny,

ϕ .→ ϕy(1A)

and

Hom(A⊗KA′)(P×P ′)
(
(A⊗K A′)(P × P ′)(y,y′),N ⊗K N ′

)
→ (N ⊗K N ′)(y,y′),

ϕ .→ ϕ(y,y′)(1A⊗KA′)

are isomorphisms. !

We leave the proof of the following lemma to the reader.
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Lemma 6.10. Let A, A′ and A′′ be commutative rings and let P , P ′ and P ′′ be posets. Given
an AP -A′P ′-bimodule X, an A′P ′-A′′P ′′-bimodule Y and an AP -A′′P ′′-bimodule Z the ho-
momorphism

HomAP -A′′P ′′(X⊗A′P ′ Y,Z)→HomA′P ′-A′′P ′′
(
Y,HomAP (X,Z)

)
,

f .→
(
y .→

(
x .→ f (x ⊗ y)

))

is an isomorphism.

7. Homological algebra

A chain complex C of left AP -modules is a collection (Cn)n∈Z of left AP -module together
with homomorphisms d = dn :Cn→ Cn−1 with the property that d ◦ d = 0. We call a chain
complex C positive if Cn = 0 for n < 0 and we call it negative if Cn = 0 for n > 0. The
homology H∗(C) of a chain complex C is the collection (Hn(C))n∈Z of the left AP -modules
Hn(C) = ker(d :Cn→ Cn−1)/ Im(d :Cn+1→ Cn). A homomorphism f :C→D of chain com-
plexes of left AP -modules is a collection of homomorphisms fn :Cn→Dn of left AP -modules
with the property that dfn = fnd . We denote the category of chain complexes of left AP -modules
Ch(AP -Mod).

A positive resolution of a left AP -module M is a positive chain complex C with the proper-
ties that H0(C) ∼= M and that Hn(C) = 0 for n (= 0. A projective resolution of M is a positive
resolution C of M with the property that Cn is a projective left AP -module for every n.

Proposition 7.1. If AP z is a Noetherian left AP -module for every z ∈ P , then there exists a
(homological) degreewise finitely generated projective resolution of every finitely generated left
AP -module M .

Proof. There exists a short exact sequence of the form

0→G0→ F0→M→ 0,

where F0 is a finitely generated left AP -module of the form
⊕

i∈I AP zi for some finite set I .
By Proposition 6.4 G0 is finitely generated, and proceeding by induction we obtain a resolution
F →M , with Fi a finitely generated and projective left AP -module for every i ! 0. !

A negative resolution of a left AP -module M is a negative chain complex C with the prop-
erties that H0(C)∼= M and that Hn(C) = 0 for n (= 0. An injective resolution of M is a negative
resolution of M consisting of injective left AP -modules. Every left AP -module has a projective
resolution, so the category AP -Mod is an abelian category with enough projectives. The usual
argument showing that module categories are categories with enough injectives (see [17]) also
shows that every left AP -module has an injective resolution. This fact can also be deduced from
Proposition 6.6 and the fact that the category of sheaves of left A-modules on P has enough in-
jective objects (see [9, Proposition 2.2]). The above observations also apply to right AP -modules
and to AP -LQ-bimodules.

Suppose that A is an algebra over a commutative ring K . The functor

⊗AP :AP -Mod×Mod-AP →K-Mod, (M,N) .→M ⊗AP N
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is additive and right exact in both M and N and it can be extended to a functor

⊗AP : Ch(AP -Mod)×Ch(Mod-AP)→ Ch(K-Mod), (C,D) .→ C ⊗AP D.

More precisely, (C ⊗AP D)n = ⊕
r+s=n Cr ⊗AP Ds and if m ∈ (Cr)

x and n ∈ (Ds)x , then the
differential takes the element in Cr ⊗AP Ds represented by m⊗ n ∈ (Cr)

x ⊗A (Ds)x to the sum
of the elements in (C ⊗AP D)n−1 represented by dm⊗ n and (−1)rm⊗ dn.

If CM is a projective resolution of M and CN is a projective resolution of N , then the
TorAP

n (M,N) denotes the isomorphism class of

Hn(CM ⊗AP N)∼= Hn(M ⊗AP CN).

It is a well-known fact of homological algebra that the above homology groups are universal
δ-functors and that they are naturally isomorphic by a unique isomorphism. See, for example,
Weibel [17]. Similarly, the functor

HomAP :AP -Mod×AP -Mod→K-Mod, (M,N) .→HomAP (M,N)

is additive in both its entries. It is left exact in M and in N and it can be extended to a functor

HomAP : Ch(AP -Mod)×Ch(AP -Mod)→ Ch(K-Mod), (C,D) .→HomAP (C,D)

with HomAP (C,D)n = ∏
−r+s=n HomAP (Cr,Ds) and with df given by (df )(c) = f (dc) −

d(f (c)) for f ∈ HomAP (C,D)n. If DM is a projective resolution of M and CN is an injective
resolution of N , then the functors ExtnAP (M,N) denotes the isomorphism class of

ExtnAP (M,N) = H−n

(
HomAP (DM,N)

)
= H−n

(
HomAP (M,CN)

)
.

Again it is a well-known fact of homological algebra that the above homology groups are uni-
versal δ-functors and that they are naturally isomorphic by a unique isomorphism.

Remark 7.2. Given a sheaf F of left A-modules let Hn(P,F ) denote the sheaf cohomology.
For a left AP -module M we have that

Ext0AP (A,M)∼= Hom0
AP (A,M)∼= H 0(P,Ψ (M)

)
,

where Ψ (M) is the sheaf associated to M as constructed in (1) in the proof of 6.6. Using Propo-
sition 6.6 we see that if M is injective then Ψ (M) is an injective sheaf on P . It follows that there
is a natural isomorphism

ExtnAP (A,M)∼= Hn
(
P,Ψ (M)

)

for every n. The above groups are isomorphic to the Hochschild–Mitchell cohomology groups
Hn(P,M) of P with coefficients in M . More precisely, the Hochschild–Mitchell complex is the
chain complex HomAP (BK(AP,AP,A),M), where BK(AP,AP,A) is a particular projective
resolution of A over AP called the bar-construction (see [2,11]). If M is a left A-module consid-
ered as a constant AP -module, that is, Mxy is the identity on M for every x " y in P , then we
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can consider the cohomology Hn(∆(P ),M) of the simplicial complex ∆(P ) with coefficients
in M . In this case the chain complex HomAP (BK(AP,AP,A),M) is isomorphic to the chain
complex computing Hn(∆(P ),M). Thus there are natural isomorphisms

Hn
(
∆(P ),M

)∼= Hn(P,M)∼= ExtnAP (A,M)∼= Hn
(
P,Ψ (M)

)
. (2)

Furthermore McCord has shown that the cohomology groups Hn(P,M) are isomorphic to the
singular cohomology groups of P with the Alexandrov topology and with coefficients in M [10].

Borrowing notation from the theory of sheaves we call a left AP -module M flasque
if limM|U → limM|V is surjective for all open sets V ⊆ U of the poset P . Note that
HomAP (A,M) ∼= limM is isomorphic to the group of global sections of the sheaf associated
to M under the equivalence of categories between left AP -modules and sheaves of A-modules
on P of Proposition 6.6. Since the higher cohomology groups of a flasque sheaf vanish (see [9,
Proposition III.2.5]) we have:

Lemma 7.3. Let A be an associative and unital ring and let P be a poset. If M is a flasque left
AP -module, then ExtiAP (A,M) = 0 for all i > 0.

Proposition 7.4. Suppose that A and A′ are associative and unital algebras over a commutative
ring K . If C is a positive chain complex of finitely generated projective left AP -modules and
C′ is a positive chain complex of finitely generated projective left A′P ′-modules, then for every
negative chain complex D of left AP -modules and every negative chain complex D′ of left A′P ′-
modules the Hom-⊗ interchange homomorphism

HomAP (C,D)⊗K HomA′P ′(C
′,D′)→Hom(A⊗KA′)(P×P ′)(C ⊗K C′,D⊗K D′),

(f ⊗ f ′) .→
(
m⊗m′ .→ (−1)|f

′||m|f (m)⊗ f ′(m′)
)

is an isomorphism of chain complexes.

Proof. This is a direct consequence of Proposition 6.9. !

Note that Lemma 6.10 also holds for chain complexes.

8. Local cohomology

Let R be a commutative ring, let I be a finitely generated ideal in R and let N be an R-module.
The natural projections R/In+1 → R/In induce maps ExtqR(R/In,N)→ ExtqR(R/In+1,N).
Our model for the qth local cohomology group of N with respect to I is the colimit

H
q
I (N) = colim ExtqR

(
R/In,N

)
.

Proposition 8.1. Let I be a finitely generated ideal of a commutative ring R, let P be a poset and
let M be a left RP -module. Suppose that there exist a degreewise finitely generated projective
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resolution of R over RP and a degreewise finitely generated free resolution of R/In over R. If
ExtqRP (R,M) = 0 for q > 0, then there is a natural isomorphism

H
q
I (limM)∼= colim ExtqRP

(
R/In,M

)
of R-modules for every q ! 0.

Proof. Let E be a degreewise finitely generated projective resolution of R over RP and let
Fn→R/In be a degreewise finitely generated free resolution of R/In over R. We may consider
Fn⊗R E as a projective resolution of R/In over RP . The vanishing of ExtqRP (R,M) implies that
the homomorphism E→ R induces a quasi-isomorphism HomRP (R,M)→ HomRP (E,M).
Applying this quasi-isomorphism, ⊗-Hom-interchange and basic isomorphisms of the form
limM ∼= HomR(R, limM) and R ⊗R N ∼= N and noting that HomR(Fn,R) is a degreewise
free R-module, we obtain the following chain of isomorphisms and quasi-isomorphisms:

HomRP (Fn ⊗R E,M)∼= HomR⊗RR(∗×P)(Fn ⊗R E,R⊗R M)

∼= HomR(Fn,R)⊗R HomRP (E,M)

2HomR(Fn,R)⊗R HomRP (R,M)

∼= HomR(Fn,R)⊗R limM

∼= HomR(Fn,R)⊗R HomR(R, limM)

∼= HomR(Fn ⊗R R,R⊗R limM)

∼= HomR(Fn, limM).

Taking cohomology we get the natural isomorphism

ExtqRP

(
R/In,M

)∼= ExtqR
(
R/In, limM

)

of R-modules. Forming the colimit of these isomorphism we obtain the isomorphism

colim ExtqRP

(
R/In,M

)∼= colim ExtqR
(
R/In, limM

)
= H

q
I (limM). !

In our applications we need a graded version of the above result. If R is a Zd -graded commuta-
tive ring and N and N ′ are Zd -graded R-modules, then the group Homgr

R (N,N ′) of homogeneous
homomorphisms from N to N ′ is a Zd -graded R-module. Choosing a projective resolution E of
N in the category of Zd -graded R-modules and homogeneous homomorphisms of degree zero
we obtain a chain complex Homgr

R (E,N ′) of Zd -graded R-modules.
If F is a finitely generated free Zd -graded R-module, then HomR(F,N ′) is isomorphic to

Homgr
R (F,N ′) for every Zd -graded R-module N ′. Since both HomR(−,N ′) and Homgr

R (−,N ′)
are left exact functors it follows for every finitely presented Zd -graded R-module N that
Homgr

R (N,N ′) and HomR(N,N ′) are isomorphic for every Zd -graded R-module N ′. In par-
ticular, a finitely generated projective Zd -graded R-module is also projective considered as a
nongraded R-module. If R is Noetherian and N is a finitely generated Zd -graded R-module, we
obtain a Zd -grading of

ExtqR(N,N ′)∼= H−q

(
Hom(E,N ′)

)
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for every q ! 0. Here E is a degreewise finitely generated projective resolution of the Zd -graded
R-module N . In this case we obtain a grading of H

q
I (N) if I is a finitely generated graded ideal

in R.
Recall that for a poset P a Zd -graded left RP -module is a left RP -module M together with

gradings of the R-modules Mx such that the homomorphisms Mxy :My→Mx are homogeneous
of degree zero for every x " y in P . The proof of Proposition 8.1 can easily be modified to a
proof of the following result.

Proposition 8.2. Let I be a finitely generated graded ideal of a commutative Zd -graded ring R,
let P be a poset and let M be a Zd -graded left RP -module. Suppose that there exist a degree-
wise finitely generated Zd -graded projective resolution of R over RP and a degreewise finitely
generated Zd -graded free resolution of R/In over R. If ExtqRP (R,M) = 0 for q > 0, then there
is a natural isomorphism

H
q
I (limM)∼= colim ExtqRP

(
R/In,M

)

of Zd -graded R-modules for every q ! 0.

Definition 8.3. Let P be a poset and R a commutative ring. For x ∈ P and q ∈ Z, the left RP -
skyscraper chain complex R(x, q) is the left RP -module with R(x, q)y = 0 for y (= x and with
R(x, q)x = R[q] equal to the chain complex consisting of a copy of R in homological degree−q .

In the following a zig-zag chain of quasi-isomorphisms between complexes C and D consists
of chain complexes E0, . . . ,E2n with E0 = C, E2n = D, of quasi-isomorphisms E2k−1→E2k−2
and of quasi-isomorphisms E2k−1→E2k for k = 1, . . . , n.

Recall the discussion about bimodules after Example 6.8. For example we need the following.
Assume that K→ R is a homomorphism of commutative rings, F an R-module, P a poset and
M a left RP -module. Then M is also an R-KP op-bimodule. Hence HomR(F,M) has a R-
KP op-bimodule structure and thus a left RP -module structure induced by HomR(N,M)x =
HomR(N,Mx) for x ∈ P . This gives also an RP -module structure on ExtR(N,M).

Theorem 8.4. Let K→ R be a homomorphism of commutative rings, let I be a finitely gener-
ated ideal of R, let P be a poset and let M be a left RP -module. Suppose that E is a positive
chain complex of finitely generated projective left KP -modules and that we have degreewise
finitely generated free resolutions Fn→ R/In of R/In over R together with homomorphisms
Fn+1 → Fn inducing the natural projections R/In+1 → R/In in homology. Assume that the
following conditions are satisfied:

(i) there exists a zig-zag chain of quasi-isomorphisms between the chain complex of left KP -
modules colim HomR(Fn,M) and the chain complex of left KP -modules H−∗I (M) :=
colim Ext−∗R (R/In,M) with H−∗I (M)x = H−∗I (Mx) for x ∈ P ,

(ii) for every x < y in P the homomorphism H−∗I (My)→H−∗I (Mx) is the zero-homomorphism.

Then there is a natural zig-zag chain of quasi-isomorphisms of chain complexes of K-modules
of the form

colim HomRP (Fn ⊗K E,M)2
⊕

x∈P

⊕

q!0

HomKP

(
E,K(x, q)

)
⊗K H

q
I (Mx).
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Proof. The asserted weak equivalence is the composition of the following homomorphisms:

colim HomRP (Fn ⊗K E,M)∼= colim HomR-KP op(Fn ⊗K E,M)

∼= colim HomK-KP op
(
E,HomR(Fn,M)

)

∼= HomKP

(
E, colim HomR(Fn,M)

)

2HomKP

(
E,H−∗I (M)

)

∼= HomKP

(
E,

⊕

x∈P

⊕

q!0

K(x,q)⊗K H
q
I (M)

)

∼=
⊕

x∈P

⊕

q!0

HomKP

(
E,K(x, q)⊗K H

q
I (M)

)

∼=
⊕

x∈P

⊕

q!0

HomKP

(
E,K(x, q)

)
⊗K H

q
I (M).

Here the first isomorphism is clear, the second isomorphism is given by Lemma 6.10 and the
third isomorphism is due to the facts that E is positive and degreewise finitely generated and
that HomR(Fn,M) is negative. The zig-zag of quasi-isomorphism on the fourth line exists by
condition (i) and the fact that HomKP (E,−) preserves quasi-isomorphisms between negative
chain complexes. The isomorphism on the fifth line is a direct consequence of condition (ii). The
isomorphism on the sixth line is again due to the fact that E is positive and degreewise finitely
generated and that K(x,q) is concentrated in one homological degree. The last isomorphism is
a direct application of Proposition 7.4. !

For reference we state a Zd -graded version of the above result. It is proved in exactly the same
way.

Theorem 8.5. Let K → R be a homomorphism of Zd -graded commutative rings. Let I be a
finitely generated graded ideal in R, let P be a poset and let M be a Zd -graded left RP -module.
Suppose that E is a positive chain complex of finitely generated Zd -graded projective left KP -
modules and that we have degreewise finitely generated Zd -graded free resolutions Fn→ R/In

of R/In over R together with homomorphisms Fn+1 → Fn inducing the natural projections
R/In+1→R/In in homology. Assume that the following conditions are satisfied:

(i) there exists a zig-zag chain of homogeneous quasi-isomorphisms of degree zero between
the chain complex of left KP -modules colim HomR(Fn,M) and the chain complex of left
KP -modules H−∗I (M) with H−∗I (M)x = H−∗I (Mx) for x ∈ P ,

(ii) for every x < y in P the homomorphism H−∗I (My)→H−∗I (Mx) is the zero-homomorphism.

Then there is a natural zig-zag chain of homogeneous quasi-isomorphisms of chain complexes of
Zd -graded K-modules of the form

colim HomRP (Fn ⊗R E,M)2
⊕

x∈P

⊕

q!0

HomKP

(
E,K(x, q)

)
⊗K H

q
I (Mx).
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Proposition 8.6. Let P be a finite poset, let K be a field and let C be a chain complex of
left KP -modules. Suppose that for every x ∈ P there exists nx ∈ Z such that H∗(Cx) is con-
centrated in degree nx and that x < y implies nx > ny . Then there exists a zig-zag chain of
quasi-isomorphisms between the chain complexes of left KP -modules C and H∗(C).

Proof. Let ∂ be the differential of C and

Bk(C) = Im(∂k+1)⊆ Ck, Zk(C) = Ker(∂k)⊆ Ck

for all k. We define a chain complex C′ of left KP -modules with

(
C′x

)
k
=

{
(Cx)k, k > nx,

Bk(Cx)⊕Hk(Cx), k = nx,

0, k < nx.

For k > nx + 1 the boundary d : (C′x)k→ (C′x)k−1 is the boundary map of Cx , for k = nx + 1 it
is the map (d,0) : (Cx)nx+1→ Bnx (Cx)⊕Hnx (Cx), and for k " nx it is the zero map. We give
C′ the structure of a chain complex of left KP -modules, where the map (C′xy)k : (C′y)k→ (C′x)k
is the map (Cxy)k : (Cy)k→ (Cx)k for k > nx , the zero map for k < nx and the map

(Cy)k
(Cxy)k−−−−→ (Cx)k→ Bk(Cx)⊕Hk(Cx)

for k = nx . Here (Cx)nx → Bnx (Cx) is a (chosen) retract of the inclusion Bnx (Cx)→ (Cx)nx .
Similarly, the map (Cx)nx → Hnx (Cx) is the composition (Cx)nx → Znx (Cx)→ Hnx (Cx),
where (Cx)nx → Znx (Cx) is a (chosen) retract of the inclusion Znx (Cx)→ (Cx)nx . Note that
these retracts exist since K is a field.

There is a quasi-isomorphism f :C→ C′ with (fx)k equal to the identity on (Cx)k if k > nx ,
the zero map if k < nx and the map (Cx)k→ Bk(Cx)⊕Hk(Cx) defined above for k = nx .

On the other hand, the inclusion H∗(C)→ C′ is a quasi-isomorphism of chain complexes of
left KP -modules. Thus there are quasi-isomorphisms C→ C′ ←H∗(C). !

Lemma 8.7. Let P be a poset, let x ∈ P and let q ! 0. For every n there is a natural isomorphism

H̃ n−q−1((x,1P̂ );R
)∼= ExtnRP

(
R,R(x, q)

)
.

Proof. Let F = RP y for y ∈ P , that is, Fx = R if x " y and Fx = 0 otherwise. Given a left
RP -module M , the so-called Yoneda lemma provides an isomorphism

HomR(x,1P̂ )(F |R(x,1P̂ ),M|R(x,1P̂ ))∼=
{

My if x < y,

0 otherwise.

If x < y then the above isomorphism takes ϕ :F |R(x,1P̂ )→M|R(x,1P̂ ) to ϕy(1), where 1 is the
unit of R = RP

y
y . Similarly, there are isomorphisms

HomR[x,1P̂ )(F |R[x,1P̂ ),M|R[x,1P̂ ))∼=
{

My if x " y,

0 otherwise,

and
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HomRP

(
F,R(x, q)

)∼=
{

R[q] if x = y,

0 if y (= x.

Let E be a projective resolution of R as a left RP -module. Since the above isomorphisms are
natural in the projective left RP -module F , there is a short exact sequence of left RP -modules
of the form

0→HomR(x,1P̂ )

(
E|R(x,1P̂ ),R[q]

)
→HomR[x,1P̂ )

(
E|R[x,1P̂ ),R[q]

)

→HomRP

(
E,R(x, q)

)
→ 0.

Note that E|R(x,1P̂ ) is a projective resolution of R over R(x,1P̂ ) and that E|R[x,1P̂ ) is a projective
resolution of R over R[x,1P̂ ). Thus the long exact sequence associated to the above short exact
sequence of chain complexes is of the form

Extn−1
RP

(
R,R(x, q)

)
→ Extn−q

R(x,1P̂ )(R,R)→ Extn−q
R[x,1P̂ )(R,R)→ ExtnRP

(
R,R(x, q)

)
→ · · · .

The result now follows from the fact that [x,1P̂ ) is contractible since by Eq. (2) in Remark 7.2
we have ExtjRQ(R,R)∼= Hj(Q,R) for any poset Q. !

Now we are able to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Since P is finite, K is a finitely generated KP -module and it follows
from Lemma 6.3 and Proposition 7.1 that K has a degreewise finitely generated projective res-
olution E over KP . All the rings R/Ik have free resolution Fk over R which are degreewise
finitely generated. By Proposition 8.1 there is an isomorphism

Hi
I (limT )∼= colim ExtiRP

(
R/Ik, T

)
.

By the assumption (i) on Tx we have Hi
I (Tx) = 0 for i (= dx . By Proposition 8.6 there exists a

zig-zag chain of quasi-isomorphisms between the left KP -modules colim HomR(Fk,T ) and

H
.
I (T ) := colim Ext−.

R

(
R/Ik, T

)∼= H.
(
colim HomR(Fk,T )

)
.

(Here we used the fact that homology and filtered colimits commute.) Since x < y implies
dx < dy the homonorphism Hi

I (Ty)→Hi
I (Tx) is the zero-homomorphism. Hence Theorem 8.4

implies that there is a natural zig-zag chain of quasi-isomorphisms of the form

colim HomRP (Fn ⊗K E,T )2
⊕

x∈P

⊕

q!0

HomKP

(
E,K(x, q)

)
⊗K H

q
I (Tx).

Since K is a field we obtain the isomorphism

Hi
I (limT )∼= colim ExtiRP

(
R/Ik, T

)∼=
⊕

x∈P

⊕

0"q"i

ExtiKP

(
K,K(x, q)

)
⊗K H

q
I (Tx)
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of K-modules. Lemma 8.7 implies that

Hi
I (limT )∼=

⊕

x∈P

⊕

0"q"i

H̃ i−q−1((x,1P̂ );K
)
⊗K H

q
I (Tx).

By the assumption (i) we obtain

Hi
I (limT )∼=

⊕

x∈P
H̃ i−dx−1((x,1P̂ );K

)
⊗K H

dx
I (Tx).

The Zd -graded version can be proved in exactly the same way since Proposition 8.1 and Theo-
rem 8.4 have Zd -graded versions. This concludes the proof. !

Remark 8.8. Some of the results in this section can be interpreted in terms of Grothendieck
spectral sequences. Given abelian categories A , B and C with enough injectives and left ex-
act functors G :A → B and F :B → C the Grothendieck spectral sequence with E2-term
E

p,q
2 (A) = (RpF)(RqG(A)) given by composed right derived functors converges to the right

derived functor (Rp+q(FG))(A) of FG for every object A of A .
The qth local cohomology H

q
I (N) of an R-module N is the qth right derived of the ze-

roth local cohomology H 0
I (N) :R-Mod→ R-Mod and the group ExtqRP (R,M) is the qth right

derived functor of the functor limx∈P = HomRP (R,−) :RP -Mod→ R-Mod. Writing out the
definition of H 0

I we see that the composed functor H 0
I ◦ HomRP (R,−) is isomorphic to the

functor colimn HomRP (R/In,−). Proposition 8.1 also follows from this isomorphism and the
Grothendieck spectral sequence. On the other hand, since filtered colimits commute with finite
limits, there is an isomorphism H 0

I ◦HomRP (R,−)∼= HomRP (R,−) ◦H 0
I . Suppose under the

assumptions of Theorem 8.4 that E is a projective resolution of K considered as an KP -module.
The Grothendieck spectral sequence for the composition HomRP (R,−) ◦H 0

I then has E2-term

E
p,q
2 (M) =

(
Rp HomRP (R,−)

)((
RqH 0

I

)
(M)

)

= H−p HomRP

(
R⊗K E,H

q
I (M)

)

∼= H−p

(⊕

x∈P
HomKP

(
E,K(x,0)

)
⊗K H

q
I (Mx)

)
.

The statement of Theorem 8.4 implies that this spectral sequence collapses at E2.
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