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Abstract
We describe several analytical results obtained in four candidates social choice elections
under the assumption of the Impartial Anonymous Culture. These include the Condorcet and
Borda paradoxes, as well as the Condorcet efficiency of plurality voting with runoff. The
computations are done by Normaliz. It finds precise probabilities as volumes of polytopes
and counting functions encoded as Ehrhart series of polytopes.

Keywords Rational polytope · Volume · Ehrhart series · Social choice · Condorcet
paradox · Borda paradox

Mathematics Subject Classification 52B20 · 91B12

1 Introduction

Lepelley et al. (2008, p. 382) state:

Consequently, it is not possible to analyze four candidate elections, where the total
number of variables (possible preference rankings) is 24. We hope that further devel-
opments of these algorithms will enable the overcoming of this difficulty.

Normaliz (Bruns et al. 2018) is a software tool that (in particular) may be used for the com-
putation of volumes and Ehrhart series of rational polytopes. In the 20 years of its existence
it has found numerous applications. For these, as well for its connections to several computer
algebra systems see Bruns et al. (2018). One of the driving forces for the improvements of
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Normaliz in the past years was the desire to solve the problems raised by Schürmann (2013),
that is to compute the volumes and Ehrhart series of certain polytopes related to social choice.

We believe that the recent development in the algorithms of Normaliz have (partially)
solved the problem raised by Lepelley, Louichi and Smaoui. Brandt et al. (2016, p. 388)
write:

To the best of our knowledge, Normaliz is the only program which is able to compute
polytopes corresponding to elections with up to four alternatives.

This remark applies to the computation of Ehrhart series. For volume computations one has
other choices; see Remark 4. For a very recent preprint in the same spirit as Brandt et al.
(2016), see Brandt et al. (2019).

The model underlying all the election schemes discussed in this paper assumes that every
voter has a linear ranking of the candidates. For n candidates there are N = n! such orders.
The election profile is the collection of the N numbers (v1, . . . , vN )where vi is the number of
voters that have decided for the i-th ranking. The election scheme then ranks the candidates
based on the profile. The first person in this ranking is declared winner and the last is the
loser of the election.

In this paper we present several results of our own computational experiments with
four candidates elections under the assumption of the Impartial Anonymous Culture (IAC)
(Gehrlein and Fishburn 1976) [the (IAC) assumes that all election profiles have the same
probability for a fixed number of voters]. The background of these experiments, motivated
by social choice theory and its connection with the polytope theory, may be found in Gehrlein
and Lepelley (2011, 2017), Lepelley et al. (2008), Schürmann (2013) orWilson and Pritchard
(2007). For discrete convex geometry we refer the reader to Bruns and Gubeladze (2009).

TheCondorcetwinner is a candidatewho is preferred by amajority of voters in all pairwise
comparisons with the other candidates. Condorcet observed that a Condorcet winner need
not exist: pairwise comparison is not transitive. This phenomenon is called the Condorcet
paradox. As an introductory example we discuss this paradox whose (IAC) probability of
331/2048 ≈ 16.2% for four candidates has been known for quite a while (Gehrlein 2001).
This probability and almost every other we present is actually the limit of the probabilities
for a finite number k of voters as k goes to infinity.

If the ideal result of an election is the Condorcet winner, provided such exists, then the
conditional probability with which the Condorcet winner is selected as the winner of an
election is a strong quality measure for the election scheme. This probability is called the
Condorcet efficiency. In Gehrlein and Lepelley (2011), it has been studied extensively by
Gehrlein and Lepelley. Therefore we continue with the Condorcet efficiency of plurality
voting (see Schürmann 2013) and complement it by the Condorcet efficiency of plurality
elections with runoff. While plurality voting has Condorcet efficiency 74.3%, a runoff ballot
of two candidates increases it to 91.2%. The gain is substantial and justifies runoff ballots
that are part of many voting procedures (in this introduction we content ourselves with
approximate probabilities; precise rational numbers will be given later on).

Another problem discussed in Schürmann (2013) is “plurality versus runoff”, namely the
probability of 75.5% that the plurality winner also wins the runoff.

Next follows a discussion of the four types of antisymmetric relations between four can-
didates that can arise from comparisons in majority, and their probabilities. As we will see,
the case (i) of a linear order is the most likely one by far. The other three cases, namely that
(ii) there exists a Condorcet winner, but not a loser, (iii) a loser, but not a winner, and (iv)
neither a winner, nor a loser, have small probabilities < 10%.
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We conclude the list of voting outcomes with the Borda paradoxes. The strict Borda
paradox occurs if the outcome of the pairwise majority comparison is a linear order and
the plurality outcome completely reverses it. For four candidates its conditional probability
is approximately 0.156%. The strong Borda paradox [also known as the Condorcet loser
paradox (Brandt et al. 2016)] has two variants, namely (i) that the Condorcet loser wins the
plurality, and (ii) that the Condorcet winner is the last in plurality. As to be expected, their
conditional probabilities are considerably larger, namely about 2.268% and 2.379%. Though
one would intuitively expect that these probabilities agree, they are not equal.

All these events are discussed together with their defining inequalities in Sect. 2. We
would like to point out that Normaliz not only computes the volumes of the polytopes in
all cases, but also their Ehrhart series, and therefore precise numbers of election profiles
that represent the events under discussion, depending on the number of voters. We give the
complete numerics only for the Condordet paradox, but all data can be obtained by request
from the authors.

Ehrhart series (see Sect. 3) are more easily to compute for closed polytopes than for the
ones that arise if one excludes ties. However, in many cases the Ehrhart series of the semiopen
polytope can be computed from that of its closure (and conversely). The crucial condition is
that all inequalities, except the sign conditions, defining the semiopen polytope are strict, and
they are satisfied with equality by the election profile in which every preference order has the
same number of voters; see Theorem 5. This follows from a variant of Ehrhart reciprocity
[for example, see Bruns and Gubeladze (2009, Th. 6.51)]. From the Ehrhart series of the
semiopen polytope one can also read the minimal number of voters that can realize the event
under consideration; see Remark 8.

Normaliz can do all computations in dimension 24 (the number of preference orders
for four candidates), but the the computation times range from seconds (for the Condorcet
paradox) to a few days (for the Condorcet efficiency of the runoff scheme) on a fast machine
that allows 32 parallel threads (see Sect. 5.3 for the technical details). Schürmann (2013)
made the elegant observation that many computations can be enormously accelerated if one
uses the symmetry that is inherent in many polytopes. Only two of the polytopes discussed
in this paper do not allow this approach, namely linear order and (consequently) the strict
Borda paradox. Symmetrization, which requires the computation of weighted Ehrhart series,
shrinks computation times from days to hours, minutes, or even tenths of seconds, depending
on the example. Symmetrization is discussed in Sect. 4, and all relevant computation data
are listed in Sect. 5.

The reader who is interested in a deeper understanding of the mathematics and algorithms
of Normaliz is refereed to the articles by Bruns and Koch (2001), Bruns and Ichim (2010),
Bruns et al. (2011, 2016, 2017) and Bruns and Söger (2015).

2 Polytopes in four candidates elections and their volumes

2.1 Voting schemes and volumes of rational polytopes

We briefly sketch the connection between rational polytopes and social choice, referring the
reader to Gehrlein and Lepelley (2011), Lepelley et al. (2008), Schürmann (2013) or Wilson
and Pritchard (2007) for details and a more extensive treatment. As an introductory example
we first consider the well-known Condorcet paradox. The polytopes P associated to it and
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Fig. 1 The unit simplex in R
3

to other voting events are semiopen: P is the bounded set of solutions of a system of linear
equations and inequalities in which some of the inequalities may be strict.

Consider an election in which each of the k voters fixes a linear preference order of n
candidates. In other words, voter i chooses a linear order j1 �i · · · �i jn of the candidates
1, . . . , n. There are N = n! such linear orders that we list lexicographically. The election
profile is the N -tuple (v1, . . . , vN ) in which vp is the number of voters that have chosen the
preference order p. Then v1 + · · · + vN = k, and (v1, . . . , vN ) can be considered as a lattice
point in the positive orthant R

N+ of R
B , more precisely, as a lattice point in the simplex

U
(n)
k = R

N+ ∩ Ak = k
(
R

N+ ∩ A1
) = kU(n)

where Ak is the hyperplane defined by v1 + · · · + vN = k, and U(n) = U
(n)
1 is the unit

simplex of dimension N − 1 naturally embedded in N -space (U(n) is the convex hull of the
unit vectors; see Fig. 1).

As mentioned in the introduction, the further discussion is based on the Impartial Anony-
mousCulture (IAC). It assumes that all lattice points in the simplexU(n)

k have equal probability
of being the outcome of the election.

We fix a specific outcome v = (v1, . . . , vN ). By the majority rule candidate j beats
candidate j ′ in the election with profile v if

#{i : j �i j ′ : i = 1, . . . , k} > #{i : j ′ �i j : i = 1, . . . , k}. (2.1)

As theMarquis de Condorcet (1785) observed, the relation “beats” is nontransitive in general,
and one must ask for the probability of Condorcet’s paradox, namely an outcome without a
Condorcet winner, where candidate j is aCondorcet winner if j beats all other candidates j ′.
The Condorcet winner will sometimes be denoted CW in the following. Given the number k
of voters, let p(n, j)

CW (k) denote the probability that candidate j is the Condorcet winner, and

p(n)
CW(k) the probability that there is a Condorcet winner at all. By symmetry and by mutual

exclusion, p(n)
CW(k) = n · p(n, j)

CW (k).
Now, if we assume that the number k of voters is very large, then we are mainly interested

in the limit

p(n)
CW = lim

k→∞ p(n)
CW(k) = n lim

k→∞ p(n, j)
CW (k) = n · p(n, j)

CW .

Let us fix candidate 1. It is not hard to see that the n−1 inequalities (2.1) for j = 1 and j ′ =
2, . . . , n constitute homogeneous linear inequalities in the variables v1, . . . , vN . Together
with the sign conditions vi ≥ 0 they define a semi-open subpolytope C(n)

k of U(n)
k . Then
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Table 1 Inequalities for C and E

λ1: 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

λ2: 1 1 1 1 1 1 1 1 − 1 − 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1

λ3: 1 1 1 1 1 1 1 1 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

λ4: 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0

λ5: 1 1 1 1 1 1 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0

λ6: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1

p(n,1)
CW = lim

k→∞
#(C(n)

k ∩ Z
N )

#(U(n)
k ∩ ZN )

= volC(n)
1

volU(n)
1

= volC
(n)

(2.2)

where denotes closure and C(n) = C
(n)
1 . For the validity of (2.2) note that we work with

the lattice normalized volume in which the unit simplex has volume 1.
In the case of two candidates, Concordet’s paradox cannot occur (if one excludes draws),

and for three candidates the relevant volume is not hard to compute, even without a computer
(see Gehrlein and Fishburn 1976).

The situation changes significantly for four candidates since C(4) has dimension 23 and
234 vertices. From now on we will simplify our notation and omit often the superscript (4)
when dealing with four candidates. As a subpolytope of U, C is cut out by the inequalities
λi (v) > 0, i = 1, 2, 3 whose coefficients are in the first 3 rows displayed in Table 1. For
the assignment of indices the preference orders are listed lexicographically, starting with
1 � 2 � 3 � 4 and ending with 4 � 3 � 2 � 1.

Normaliz computes

volC = 1717

8192

in less than a second (the combinatorial data of all polytopes discussed and the computation
times are listed in Sect. 5). It follows that pCW = 1717/2048 ≈ 0.8384. This value was first
determined by Gehrlein (2001).

2.2 Plurality rule and runoff

Avery simple way out of the dilemma that there may not exist a Condorcet winner is plurality
voting: candidate j is the plurality winner if j has more first places in the preference orders of
the voters than any of the other n−1 candidates. A problem discussed in Schürmann (2013) is
plurality voting versus plurality runoff. It goes as follows. In the first round of the election the
two top candidates in plurality are selected, and in the second round the preference orders are
restricted to these two candidates. In order to model this situation by inequalities one must fix
an outcome of the first round of plurality voting, for example we may assume that candidate
1 is the winner of the first round and candidate 2 is placed second after the first round. The
chosen outcome gives rise to n − 1 inequalities. Then the n-th inequality expresses that 1
is also the winner of the second round. The volume of the corresponding polytope gives the
probability of this event. By mutual exclusion and symmetry, we must multiply the volume
by n(n−1) in order to obtain the probability for the event that the winner of the first plurality
round wins after runoff.

As a subpolytope of U, the polytope Q is defined by the inequalities in Table 2.
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Table 2 Inequalities for Q

1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1

1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

The volume is

volQ = 9185069468583833

146081389744226304
.

The total probability of the event that the winner of the first plurality round wins after runoff
is

12 · volQ = 9185069468583833

12173449145352192
≈ 0.7545.

Therefore, the probability of the failure of the winner of the first round to win the runoff is

1 − 9185069468583833

12173449145352192
≈ 0.2455,

in accordance with the results of Schürmann (2013) for a similar model. This computation
was first performed by De Loera et al. (2013), where LattE Integrale (Baldoni et al. 2013)
was used for the volume computation.

2.3 Condorcet efficiency

The last problem discussed in Schürmann (2013) is the Condorcet efficiency of plurality
voting. It is the conditional probability that the Condorcet winner, provided that such exists,
is elected by plurality voting, as k → ∞ (similarly one defines the Condorcet efficiency of
other voting schemes). Therefore onemust compute the probability of the event that candidate
j is both the Condorcet winner and the plurality winner. By symmetry, one can assume j = 1.
The semi-open polytope E

(n)
k , whose lattice points represent this expected outcome, is cut

out from C
(n)
k by n − 1 further inequalities saying that 1 has more first places than any of the

other n − 1 candidates. Thus one obtains

n volE(n)

p(n)
CW

as the Condorcet efficiency of plurality voting where E(n) = E
(n)
1 .

The extra three inequalities λi (v) > 0, i = 4, 5, 6, given in the last three lines of Table 1
increase the complexity of the polytope E enormously in comparison to C. Nevertheless,
Normaliz computes the volume in moderate time. We have obtained

volE = 10658098255011916449318509

68475651442606080000000000
,

so that the Condorcet efficiency of plurality voting turns out to be

4 volE

pCW
= 10658098255011916449318509

14352135440302080000000000
≈ 0.7426,

in perfect accordance with Schürmann (2013).
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Table 3 Inequalities for F

λ1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

λ2 1 1 1 1 1 1 1 1 − 1 − 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1

λ3 1 1 1 1 1 1 1 1 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

λ5 1 1 1 1 1 1 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0

λ6 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1

−λ4− 1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Remark 1 Schürmann (2013) used variants of the polytopes Q and E. Our choices (which are
demanding slightly more computational resources) avoid inclusion–exclusion calculations
that would come up in Sect. 3.

It is interesting to compare theCondorcet efficiency of plurality voting to the theCondorcet
efficiency of the runoff voting scheme. In other words, given that there exists a Condorcet
winner, what is the probability that she or he is at least second in plurality?

As above, let us assume that candidate 1 is the Condorcet winner. Then there are n possible
cases. The first case is when candidate 1 is the plurality winner as well, and this case was
studied above. The other n − 1 cases are associated to the event that candidate j wins or ties
candidate 1 in plurality (where j 	= 1), while candidate 1 wins the plurality voting against all
other candidates. By symmetry, these n − 1 cases are identical and yield the same volume.
The n cases are mutually disjoint and exhaust all the possibilities (disjointness is important in
Sect. 3 for avoiding complicated inclusion–exclusion calculations). The semi-open polytope
F

(n)
1, j , whose lattice points represent the outcome of the cases j = 2, . . . , n, is cut out fromC

(n)
k

by the closed condition that candidate j wins against or ties with candidate 1 in plurality and
by n − 2 inequalities saying that 1 has more first places than the remaining n − 2 candidates.
Thus one obtains

n volE(n) + n(n − 1) volF(n)

p(n)
CW

as the Condorcet efficiency of the runoff, where F(n) = F
(n)
1,2. In fact, there are n choices for

the candidate that is simultaneously the Condorcet and the plurality winner, and there are
n(n − 1) choices for the pair of candidates (A, B) in which A is the plurality winner and B
is the CW, but only second in plurality.

As a subpolytope of U, the polytope F is defined by the inequalities in Table 3, where the
last line should be interpreted as −λ4(v) ≥ 0, expressing the condition that candidate 1 does
not beat candidate 2 in plurality.

The volume is

volF = 7280153240719060220104571

616280862983454720000000000
.

Finally, the Condorcet efficiency of the runoff is

4 volE + 12 volF

pCW
= 19627224002877404784030049

21528203160453120000000000
≈ 0.9117.
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2.4 Condorcet classification

In this subsection we classify the asymmetric relations between four candidates given by
the majority rule. To the best of our knowledge the computations of the probabilities of the
classes is new.

Let us first outline a duality argument that will be used several times below. Consider
an election profile v = (v1, . . . , vN ) for n candidates, where N = n!, the N preference
orders π1, . . . , πN are listed in some order, and vi is the number of voters of πi . Each
preference order has an inverse c(π) that ranks the candidates in inverse order relative to
π : the inverse order to 1 � 2 � 3 � 4 is 4 � 3 � 2 � 1 etc. The assignment π → c(π)

defines a permutation of the sequence 1, . . . , N , sending i to the index of c(πi ). The induced
permutation of the coordinates of R

N is called inversion of preference orders. It inverts all
comparisons in majority. In particular it turns a Condorcet winner into a Condorcet loser,
and conversely.

The results of the n candidates elections may be classified in two main categories:

(A) There exists a Condorcet winner. As seen above, in the case of four candidates elections
the results fall into this category with probability

P(∃ Condorcet Winner) = 1717/2048 ≈ 0.8384.

(B) There exists no Condorcet winner. For four candidates elections the results fall into this
category with probability

P(� Condorcet Winner) = 1 − 1717/2048 = 331/2048 ≈ 0.1616.

Werefer the reader toGehrlein andLepelley (2011, Section 3.2.1) orGehrlein andLepelley
(2010) for a discussion of the three candidates situation. Note that in the three candidates
scenario the event that there exists a linear order on the result of the majority voting is the
same as the event that there exists a Condorcet winner, since the other two candidates are
automatically ordered. This no longer true for four or more candidates. Even if a Condorcet
winner exists, the remaining candidates need not to be linearly ordered. Therefore, we need to
further refine our classification. Precise results for small numbers of voters would have to take
into account ties between the candidates. For simplicity we neglect ties in our classification
that applies only if the number of voters goes to infinity.

We discuss the case of four candidates in detail:

(A) Assume that a Condorcet winner (CW) does exist. This situation must be split into two
subcategories:

(1) The result of the majority voting defines a linear order of the candidates. This fur-
ther implies (independently of the number of candidates n) that there also exists a
Condorcet loser (CL).

(2) There exist no linear order on the result of the majority voting. In the (particular)
case of four candidates elections this is equivalent to saying that there exists a cycle
of length three among the lower candidates (i.e., the three candidates Condorcet
Paradox) or that there exists no Condorcet loser.

(B) Now assume the case that a Condorcet winner does not exist. This situation must also
be split into two subcategories:

(1) There exists a cycle of order three among the candidates and a Condorcet loser.
Inversion of preference orders turns this case into (A2). In particular they have the
same probability.
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Fig. 2 Oriented graphs representing the Condorcet classes of four candidates with respect to the relation given
by the majority rule

(2) There exists a cycle of length four among the candidates or (equivalently) there
exists no Condorcet loser. This condition defines only 4 of the 6 relations between
the candidates, but it easy to check that all 4 possibilities for the remaining 2 relations
are equivalent up to a renaming of the candidates.

The four cases of the classification are illustrated by their directed graphs in Fig. 2. In order
to compute the probabilities of the 4 classes, we consider the polytope T which corresponds
to the event that candidate 1 beats candidates 2, 3, 4, candidate 2 beats candidates 3, 4 and
candidate 3 beats candidate 4. In other words, T represents the linear order. As a subpolytope
ofU, the polytopeT is defined by the inequalities in Table 4 (note thatβi = λi for i = 1, 2, 3).
We have obtained

volT = 5507086513

173946175488
,

Since a set of 4 elements admits 24 possible linear orders, the probability to have a linear
order on the result of the majority voting is

P(∃ CW, ∃ CL) = 5507086513

7247757312
≈ 0.7598.

It follows that the probability that a Condorcet winner does exists, and still there exist no
linear order on the result of the majority voting is

P(∃ CW, � CL) = 1717

2048
− 5507086513

7247757312
= 569280335

7247757312
≈ 0.07855.

By the duality argument observed in the case (B1) the probability that a Condorcet loser does
exists, but no Condorcet winner, is

P(� CW, ∃ CL) = 569280335

7247757312
≈ 0.07855

as well. The probability of the remaining class (B2), the existence of a 4-cycle, is

Table 4 Inequalities for T

β1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

β2 1 1 1 1 1 1 1 1 − 1 − 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1

β3 1 1 1 1 1 1 1 1 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

β4 1 1 − 1 − 1 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 − 1 1 1 − 1 − 1

β5 1 1 1 − 1 − 1 − 1 1 1 1 1 1 1 1 − 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

β6 1− 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1
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Table 5 Inequalities for K

β1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

β4 1 1 − 1 − 1 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 − 1 1 1 − 1 − 1

β6 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1

κ − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 1 1 1 1 1 1 1 1 1

P(� CW, � CL) = 1 − 5507086513

7247757312
− 2 ∗ 569280335

7247757312
= 602110129

7247757312
≈ 0.0831.

As a test for the correctness of the algorithm, we have nevertheless computed the prob-
ability of a 4-cycle directly. To this end, we consider the polytope K corresponding to the
event that candidate 1 beats candidate 2, candidate 2 beats candidate 3, candidate 3 beats
candidate 4 and candidate 4 beats candidate 1. As a subpolytope of U, the polytope K is
defined by the inequalities in Table 5.

We have obtained

volK = 602110129

43486543872
,

Since a set of 4 elements admits 6 possible cycles of length four among the elements (if we
fix one element there are 6 possible linear orders among the remaining three elements), one
obtains exactly the same probability for the class (B2) that was computed indirectly above.

2.5 Borda paradoxes

In this subsection we study a family of voting paradoxes, first introduced by Chevalier de
Borda (1781). To the best of our knowledge all volume computations in this subsection are
new.

The strict Borda paradox appears in a voting situation when there is a complete reversal
of the ranking of candidates given by the majority voting and plurality voting. In order to
model this situation by inequalities one must first assume that there exists a linear order on
the result of the majority voting that involves all n candidates, say 1, . . . , n in this order (there
are n! possible outcomes). The chosen outcome gives rise to

n(n − 1)

2

inequalities. Then one must add n − 1 inequalities expressing that the order was completely
reversed by the plurality voting. The volume of the corresponding polytope gives the proba-
bility of this event. By mutual exclusion and symmetry, we must multiply the volume by n!
and then take the conditional probability under the hypothesis that such a linear order exists.

As a subpolytope of U, the polytope BSt is defined by the inequalities in Table 6. Note
that the first six inequalities describe the event that the result of the majority voting yields a
linear order. We have obtained

volBSt = 1281727528386311499990911876166511

25940255058441281524973174784000000000
.

Finally, conditioned by the assumption that there exists a linear order on the result of
the majority voting, we get the probability of the strict Borda paradox for large numbers of
voters,
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Table 6 Inequalities for BSt

β1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1

β2 1 1 1 1 1 1 1 1 − 1 − 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1

β3 1 1 1 1 1 1 1 1 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

β4 1 1 − 1 − 1 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1 − 1 1 1 − 1 − 1

β5 1 1 1 − 1 − 1 − 1 1 1 1 1 1 1 1 − 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

β6 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1

β7 −1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

β8 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 1 0 0 0 0 0 0

β9 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 1

BSt = 24 · volBSt

24 · volT = 1281727528386311499990911876166511

821261107784328041072841984000000000
≈ 0.00156.

Remark 2 (a) The inequalities defining the strict Borda paradox have an obvious property,
which we only state since it does not hold in the case of the strong Borda paradox discussed
below: it does not matter if one considers the inequalities in Table 6 or the inequalities defined
by the same linear forms multiplied by −1. In fact, the multiplication by −1 reverses the
linear order on the candidates both for majority and plurality, and thus amounts to a renaming
of the candidates.

(b)Onemay ask, as inGehrlein andLepelley (2010), what happens if the negative plurality
rule is used instead of the plurality rule. The negative plurality rule requires the voters to
cast a vote against their least preferred candidate. It is not difficult to see that inversion of
the preference orders as discussed in Sect. 2.4 above, maps an event representing the strict
Borda paradox for plurality to an event representing the strict Borda paradox for negative
plurality. Therefore no new computation is necessary.

(c) With the notation used in Gehrlein and Lepelley (2010, Formula 19), we have

BSt = PPR
StBR(4, k, IAC) = PNPR

StBR(4, k, IAC) for k → ∞.

We note that the probability of observing the strict Borda paradox in four candidates elec-
tions (under the Impartial Anonymous Culture hypothesis) is significantly smaller than the
probability of observing the strict Borda paradox in three candidates elections, which was
computed in Gehrlein and Lepelley (2010, Formula 19) and is 1/90 ≈ 0.0111.

The strong Borda paradox is the voting situation in which there is an inversion between the
winner or the loser from the majority voting to plurality voting. Under the name Condorcet
loser paradox it is intensively studied in Brandt et al. (2016). It appears that de Borda was
primarily concerned with the outcome that plurality voting might elect the majority voting
loser (Chevalier deBorda 1781). In the followingwe say that the strongBorda paradox occurs
if the Condorcet loser is the winner of the plurality voting. Let us assume that candidate 1
is the Condorcet loser. Next, by assuming that 1 wins the plurality we obtain n − 1 new
inequalities. Each candidate may fulfill these conditions, so by symmetry the result must be
multiplied by n. Finally, the conditional probability has to be computed.

As a subpolytope of U, the polytope BSg is defined by the inequalities in Table 7.
One gets

volBSg = 325451674835828550681491

68475651442606080000000000
.
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Table 7 Inequalities for BSg

−β1 −1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 − 1 1 1 − 1 1

−β2 −1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 − 1 1 1 1 1 1 1 1 − 1 − 1 − 1 1 1 1

−β3 −1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 − 1 1 1 1 1 1 1 1 1 1

β10 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0

β11 1 1 1 1 1 1 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0

β12 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1

Combined with the previous computations, we obtain the probability of the strong Borda
paradox for large numbers of voters:

BSg = 4 · volBSg

pCW
= 325451674835828550681491

14352135440302080000000000
≈ 0.02268.

(we have used that the probability that there exists a Condorcet loser equals the probability
that there exists a Condorcet winner).

The situation when the Condorcet winner is the loser of the plurality voting presents
also interest, in which case we say that the reverse strong Borda paradox appears. This
situation is easy to model: we simply have to multiply the linear forms of Table 7 by −1.
In other words, as a subpolytope of U, the polytope BSgRev is defined by the inequalities
β1, β2, β4,−β10,−β11,−β12. Its volume is given by

volBSgRev = 104898234852130241

21035720123168587776
.

Combined with the previous computations, we get the probability of the reverse strong
Borda paradox for large numbers of voters

BSgRev = 4 · volBSgRev

pCW
= 104898234852130241

4408976007260798976
≈ 0.02379.

The difference between the two forms of the strong Borda paradox may seem surprising,
but there is less symmetry than one might assume naively: preference reversal turns the
Condorcet winner into the Condorcet loser and conversely, but such exchange does not exist
between the plurality winner and the plurality loser. Already the minimal number of voters
that can realize the paradoxa differ; see Remark 8(d).

Remark 3 (a) Again one may ask what happens if the negative plurality rule (NPR) is used
for the strong Borda paradox (BP) and its reverse variant. In total we then have 4 variants. But
the 2 new variants are isomorphic to those considered above via the inversion of preference
orders:

reverse BP with NPR ∼= BP, BP with NPR ∼= reverse BP. (2.3)

In fact, the inversion of preference orders turns an event representing the strongBorda paradox
for plurality into an event for the reverse strong Borda paradox with negative plurality.
Similarly it exchanges the events within the other pair.

(b) With the notation used in Gehrlein and Lepelley (2010, Formula 20), we have

BSg = PPR
SgBR(4, k, IAC) and

BSgRev = PNPR
SgBR(4, k, IAC) for k → ∞.
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We note that the probability of observing the strong Borda paradox in four candidates elec-
tions under the plurality rule (respectively the negative plurality rule) is smaller, but still of
the same magnitude, with the probability of observing the strong Borda paradox in three can-
didates elections under the plurality rule (respectively the negative plurality rule), which was
computed in Gehrlein and Lepelley (2010, Formula 20) and is 4/135 ≈ 0.0296 (respectively
17/540 ≈ 0.0315).

Remark 4 After the initial submission of this paper, Lepelley informed us by e-mail that
several volume computations in El Ouafdi et al. (2018) can also be done by a combination of
the software packages LattE (Baldoni et al. 2013) and lrs (Avis 2018). The authors obtained
precisely the same results as we. This is a good test for the correctness of all algorithms
involved.

In addition to LattE and lrs the El Ouafdi et al. (2018) also used the descent algorithm of
Normaliz (Bruns and Ichim 2018) that was developed after the submission of this paper.

3 Computations of Ehrhart series and quasipolynomials arising in four
candidates elections

While the probability for very large numbers of voters of a certain type of election result, for
example the Condorcet paradox, can be computed as the volume of a polytope (or the sum of
such volumes), one can use the polyhedral method also to find the exact number of election
profiles of the given type for a specific number k of voters. For example, if C is the semiopen
polytope defined by the condition that candidate 1 is the Condorcet winner, then the number
of election profiles for k voters with Condorcet winner 1 is

E(C, k) = #(kC ∩ Z
N+).

The function E(C, k) is called theEhrhart functionofC. The best approach to its computations
uses the generating function

EP(t) =
∞∑

k=0

E(C, k)tk .

This Ehrhart series is the power series expansion of a rational function at the origin. It is
computed as a rational function, and in the following we will always represent Ehrhart series
in the form numerator/denominator. The numerator is a polynomial with integer coefficients.
The denominator can always be written as a product of d terms 1 − t g , d = dimP + 1:

EP(t) = h0 + h1t + · · · + hsts

(1 − t g1) · · · (1 − t gd )
, hi ∈ Z.

Note that in general there exists no canonical representation in this form; see Bruns et al.
(2016, Section 4) for a brief discussion of this problem. If P is closed, then h0 = 1, and
the denominator can be chosen in such a way that all hi are nonnegative. In the semiopen
case such a representation may not exist. The theory of Ehrhart series is developed in several
books, for example in Bruns and Gubeladze (2009). For a treatment under the aspect of social
choice we refer the reader to Lepelley et al. (2008).

For closed polytopes P, the Ehrhart function E(P, k) itself is given by a quasipolynomial
qP for all k ≥ 0. Roughly speaking, this means that qP(k) is a polynomial whose coefficients
dependperiodically on k. The period is a divisor of the least commonmultiple of the exponents
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g in the factors 1 − t g in the denominator. In the Normaliz output the period is always
exactly the least common multiple. In the semiopen case one has E(P, k) = qP(k) only for
sufficiently large k. More precisely, if r is the degree of EP(t) as a rational function, then
E(P, r) 	= qP(r), but E(P, k) = qP(k) for all k > r .

For n = 4 the Ehrhart series of C has the numerator

6t1 + 15t2 + 481t3 + 890t4 + 12346t5 + 17845t6

+ 152891t7 + 180850t8 + 1113216t9 + 1111974t10 + 5320122t11

+ 4580485t12 + 17837843t13 + 13415068t14 + 43770180t15 + 28993857t16

+ 80758791t17 + 47336170t18 + 113925878t19 + 59177761t20 + 123966919t21

+ 56990048t22 + 104272000t23 + 42243510t24 + 67509138t25 + 23917200t26

+ 33268048t27 + 10182887t28 + 12235441t29 + 3176870t30 + 3255226t31

+ 697232t32 + 596834t33 + 100915t34 + 69821t35 + 8655t36

+ 4581t37 + 363t38 + 133t39 + 5t40 + t41.

The Ehrhart series of C has the numerator

1 + 5t1 + 133t2 + 363t3 + 4581t4

+ 8655t5 + 69821t6 + 100915t7 + 596834t8 + 697232t9

+ 3255226t10 + 3176870t11 + 12235441t12 + 10182887t13 + 33268048t14

+ 23917200t15 + 67509138t16 + 42243510t17 + 104272000t18 + 56990048t19

+ 123966919t20 + 59177761t21 + 113925878t22 + 47336170t23 + 80758791t24

+ 28993857t25 + 43770180t26 + 13415068t27 + 17837843t28 + 4580485t29

+ 5320122t30 + 1111974t31 + 1113216t32 + 180850t33 + 152891t34

+ 17845t35 + 12346t36 + 890t37 + 481t38 + 15t39 + 6t40.

Both have the same denominator

(1 − t)(1 − t2)14(1 − t4)9.

Numerator and denominator are coprime, but in general one cannot find a coprime represen-
tation if one insists on a denominator that is a product of terms 1 − t g .

If we write the numerator of C as
∑40

i=0 ai t
i , then the numerator of C is

∑40
i=0 a40−i t i+1:

up to a shift in degree, they are palindromes of each other. This rather unexpected relationship
is not an accident, and is explained by the following theorem.

Theorem 5 Let λ1, . . . , λm be linear forms on R
d , and let 1 ∈ R

d be the vector with the
entry 1 at all coordinates. Suppose that λi (1) = 0 for all i = 1, . . . ,m. Set C = {x ∈ R

d+ :
λi (x) ≥ 0, i = 1 . . . ,m}, and

D = {x ∈ R
d+ : λi (x) > 0, i = 1 . . . ,m}.

Define the he semiopen polytope P by

P =
{
x ∈ D :

∑
xi = 1

}
.

If dimP = d − 1 (the maximal dimension), then the following hold:
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(1) J = I − 1, where J is the set of lattice points in D and I is the set of interior lattice
points of C.

(2)

EP(t) = (−1)d t−d EP(t−1).

(3) Suppose that

EP(t) = h0 + h1t · · · + hsts

(1 − t g1) · · · (1 − t gd )
.

Then the Ehrhart series of P has the numerator polynomial

hs t
w + · · · + h0t

w+s, w =
d∑

i=1

gi − d − s,

over the same denominator.

Proof The crucial observation is (1). Since dimP = d − 1, the interior of C is

{x : xi > 0, i = 1, . . . , d, λ j (x) > 0, j = 1, . . . ,m}.
For lattice points x ∈ Z

d these inequalities amount to xi ≥ 1 and λ j (x) ≥ 1. Thus x belongs
to the interior of C if and only if x − 1 satisfies the inequalities xi ≥ 0 for i = 1, . . . , d , and
λ j (x) > 0 for j = 1, . . . ,m. This proves J = I − 1.

By Ehrhart reciprocity (for example, see Bruns and Gubeladze 2009, Th. 6.51) the Ehrhart
series of the interior of P is (−1)d EP(t−1). In view of (1) we have to multiply this series by
t−d to obtain the Ehrhart series of P. This gives (2).

Part (3) is now an elementary transformation. ��
Remark 6 (a) The condition λi (1) = 0 in Theorem 5 is equivalent to the natural assumption
that it only depends on the differences vi − v j whether a voting profile (v1, . . . , vd) belongs
to the event defined by the inequalities.

(b) We have formulated Theorem 5 for the grading by total degree. It can easily be
generalized to other gradings.

In the case of our polytopes we have d = 24. So, for C we obtain
∑d

i=1 gi − d − s =
65 − 24 − 40 = 1, as observed. Theorem 5 is applicable to all polytopes in Sect. 2 with the
exception of F. Nevertheless we have computed both Ehrhart series in each case since the
comparison is an excellent test of the Normaliz algorithm. For F the formula in Theorem 5
does indeed not hold.

The Ehrhart quasipolynomials of C and C have period 4. Moreover, they are equal for an
odd number of voters k and have the same expression

#(Ck ∩ Z
N ) = #(Ck ∩ Z

N ) = R1,3(k) ∗ (12 + k) ∗ ∏23
i=1,i odd (i + k)

23! ∗ 131072

(for k ≡ 1, 3 mod 4), where

R1,3(k) = 261812975764725 + 308449567353120k + 165347938576012k2

+ 50600971266720k3 + 9607752151310k4 + 1183838427360k5

+ 96296973756k6 + 5130593760k7 + 172122725k8 + 3296640k9 + 27472k10.
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Let us reformulate this result in terms of probabilities. With the notation introduced at the
beginning of Sect. 2, we have

p(4)
CW(k) = 4p(4,1)

CW (k),

where

p(4,1)
CW k(k) = #(Ck ∩ Z

N )

#(Uk ∩ ZN )
.

Since

#(Uk ∩ Z
N ) =

∏23
i=1(i + k)

23!
we get

p(4)
CW(k) = R1,3(k) ∗ (12 + k)

32768 ∗ ∏23
i=1,i even (i + k)

if k ≡ 1, 3 mod 4.

This is exactly the same formula as the one computed first by Gehrlein Gehrlein (2001). For
the case of even k we set

R0(k) = 4981367114669230129152000 + 11069309139290261311979520k

+ 11286725167650172468985856k2 + 6970525765323041332002816k3

+ 2896901556002851225731072k4 + 857336679021412589010944k5

+ 187293111169997407690752k6 + 30935327102400429176832k7

+ 3923664152075008433664k8 + 385511913998009006208k9

+ 29422431828810359328k10 + 1738486466127164288k11+
+ 78715287099505056k12 + 2678620940814672k13 + 66260942646564k14

+ 1124326347564k15 + 11698573833k16 + 56262656k17

and

R2(k) = 9794451243189989376000 + 921057250987916963020800k

+ 1705900639387417842032640k2 + 1489106767895973053595648k3

+ 792353026020511342854144k4 + 284373446368099671547904k5

+ 72772788665361422238720k6 + 13747699097527641501696k7

+ 1960073323091557035648k8 + 213683286033339310848k9

+ 17913763440866689440k10 + 1153396601212907264k11

+ 56538334354261872k12 + 2071748534241792k13 + 54936786331200k14

+ 995421043392k15 + 11023421961k16 + 56262656k17,

then we get

p(4)
CW(k) =

⎧
⎪⎨

⎪⎩

R0(k)∗k
67108864∗∏5

i=0(1+4∗i+k)(2+4∗i+k)(3+4∗i+k)
if k ≡ 0 mod 4;

R2(k)∗k
67108864∗∏5

i=0(4∗i+k)(1+4∗i+k)(3+4∗i+k)
if k ≡ 2 mod 4.
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Fig. 3 Probabilities for a small
number of voters

Fig. 4 Probabilities for a large
number of voters

To the best of our knowledge the above formula for an even number of voters has not been
computed before our computations with Normaliz.

In Fig. 3 we present the graph of p(4)
CW(k) and in Fig. 4 we present the graph of p(4)

CW(k2)

for k = 0, . . . , 48. The difference between the values of p(4)
CW for even and odd numbers of

voters is due to the fact that in the case of an even number of voters ties do occur. The graphs
are drawn using the software package R, see R Core Team (2013).

Remark 7 With the notation used in Gehrlein and Lepelley (2011, Formula 1.27 and 1.29),
we have

p(4)
CW(k) = PS

PMRW(4, k, IAC) for all k ∈ Z+.

For the other eight polytopes, since the numerators of the Ehrhart series are very long, we
only list the denominators for a representation similar to the one given above for C and C

(with non-coprime numerators):

Q,Q : (1 − t)(1 − t2)2(1 − t4)5(1 − t12)16,

E,E,F,F,BSg,BSg : (1 − t)(1 − t2)2(1 − t4)5(1 − t12)4(1 − t24)(1 − t120)11,

T,T : (1 − t)(1 − t2)14(1 − t4)5(1 − t12)3(1 − t24),
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K,K : (1 − t)(1 − t2)14(1 − t4)5(1 − t12)4,

BSt,BSt : (1 − t)(1 − t2)2(1 − t4)5(1 − t12)4(1 − t24)(1 − t120)4

(1 − t840)2(1 − t2520)2(1 − t27720)2(1 − t55440),

BSgRev,BSgRev : (1 − t)(1 − t2)2(1 − t4)6(1 − t12)3(1 − t24)12.

The denominators have 24 factors. All computed data is available and will be provided by
the authors on request.

The reciprocity between EP(t) and EP(t) in Theorem 5 can be recast into a relation
between the Ehrhart quasipolynomials. In terms of quasipolynomials, Ehrhart reciprocity
says qrelintP(k) = (−1)d−1qP(−k) for all k ≥ 1 (for example, see Bruns and Gubeladze
2009, Th. 6.51), and in view of Theorem 5 this implies

qP(�) = (−1)d−1(−� − d).

It follows that under the conditions of Theorem 5 one has E(P, k) = qP(k) for all k > −d ,
and therefore for all k > 0.

Remark 8 (a) In Table 8 we summarize the essential data of the numerators of the Ehrhart
series of the polytopes (with the exception of F), according to the notations introduced in
Theorem5. The last column represents the period of the associated Ehrhart quasipolynomials.

(b) The numerator of F is a polynomial of degree 1386 whereas the numerator of F has
degree 1389. They are not related by Theorem 5, so the Ehrhart series must be computed
separately by Normaliz. The Ehrhart quasipolynomials of F and F have period 120.

(c) The numberw in Table 8 is the smallest number of voters that can realize the respective
election outcome since it is the initial degree of the Ehrhart series, i.e., the lowest exponent of
t that appears in the Ehrhart series (when written as a power series). It is also the coefficient
of the smallest power of t in the numerator polynomial of the Ehrhart series when written
as a rational function. In fact, one obtains the series expansion by multiplying the numerator
polynomial with the power series expansion of 1/q(t) where q is the polynomial in the
denominator, and this power series has constant coefficient 1.

Future versions of Normaliz may contain a function that allows the computation of the
initial degree without the computation of the full Ehrhart series. The latter is much more
difficult.

(d) The values of w can be checked by elementary arguments, independently from the
Ehrhart series computation. We explain it for the strong Borda paradox. Let candidate A be
the plurality winner. Then he has got more first places, say m, than any of the three other

Table 8 Data for the numerators
of the Ehrhart series and
quasipolynomials

Polytope d s
∑

gi w Period

C 24 40 65 1 4

Q 24 190 217 3 12

E 24 1392 1417 1 120

T 24 84 109 1 24

K 24 70 97 3 12

BSt 24 118,144 118,177 9 55,440

BSg 24 1388 1417 5 120

BSgRev 24 326 353 3 24
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Table 9 Minimal profiles
realizing some paradoxa D C B A A B C D B C D

A A A B B C D B A A A

B B C C C D B C C B B

C D D D D A A A D D C

4 3 2 1 1 1 1 1 1 1 1

Strict Borda Strong Borda Reverse strong Borda

candidates. On the other hand, he is the Condorcet loser, and therefore must be behind any of
the other candidates in at least m + 1 preference orders. Another candidate, for example B,
gets first place in at least one of these m + 1 preference orders. Then m > 1, so m ≥ 2. For
the total number of voters k it follows that k ≥ 2m + 1 ≥ 5. The strong Borda paradox can
indeed be realized with 5 voters; see Table 9 where the numbers in the last lines indicate the
number of voters that have the preference ranking above them. Note that the same argument
works for any number of candidates, with the exception of the three candidates situation
where the minimal number of voters is 7. Similarly one can see that, for four candidates
elections, the strict Borda paradox needs 9 voters, whereas the reverse strong Borda paradox
requires only 3 of them, as shown in Table 9.

4 The exploitation of symmetry

The elegant approach of Schürmann Schürmann (2013) for the computation of the volumes
of C and variants of Q and E uses the high degree of symmetries of these polytopes. Suppose
that a polytope P ⊂ R

d is defined by the sign inequalities xi ≥ 0, i = 1, . . . , d , and further
inequalities λi (x) ≥ 0 (or > 0). If certain variables xi1 , . . . , xiu occur in all of the linear
forms λi with the same coefficient (that may depend on i), then any permutation of them acts
as a symmetry on the corresponding polytope, and the variables xi1 , . . . , xiu can be replaced
by their sum y j = xi1 +· · ·+ xiu in the λi (the polytopes may have further symmetries). The
substitution can be used for a projection into a space of much lower dimension, mapping the
polytope P to a polytope Q (this requires that the grading affine hyperplane A1 is mapped
onto an affine hyperplane by the projection). Instead of counting the lattice points in kP one
counts the lattice points in kQ weighted with their number of preimage lattice points in kP .
This amounts to the consideration of a weighted Ehrhart function

k �→
∑

y∈kQ∩Zd

f (y).

The polynomial f is easily determined by elementary combinatorics: if y j , j = 1, . . . ,m,
is the sum of u j variables xi , then

f (y) =
(
u1 + y1 − 1

u1 − 1

)
· · ·

(
um + ym − 1

um − 1

)
.

The theory of weighted Ehrhart functions has recently been developed in several papers;
see Baldoni et al. (2011, 2012) and Bruns and Söger (2015). In Schürmann (2013), only the
leading form of the polynomial f is used. Integration of the leading form with respect to
Lesbesgue measure yields the volume.
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In the case of the Condorcet polytope C for four candidates the symmetrization yields a
polytope of dimension 7: there are two groups of 6 variables each that can be replaced by their
sums, and 6 groups of two variables each. We leave it to the reader to spot them. Fortunately
Normaliz finds them automatically. The polynomial f , also computed automatically, is

f (y) =
(
y1 + 5

5

)
(y2 + 1)(y3 + 1)(y4 + 1)(y5 + 1)(y6 + 1)(y7 + 1)

(
y8 + 5

5

)

in this case. Among our polytopes, only T and BSt do not allow any symmetrization.
Before Version 3.2.0 of Normaliz called its offspring NmzIntegrate behind the scenes

for the symmetrized computation of volumes and weighted Ehrhart series. From version
version 3.3.0 on, NmzIntgerate is included in Normaliz itself and no longer exist as a separate
program. The algorithmic approach of NmzIntegrate is developed in Bruns and Söger (2015).
For polynomial arithmetic Normaliz uses CoCoALib by Abbott et al. (2018).

5 Computational report

In this section we want to document the use of Normaliz and computations performed with
it during the preparation of this work.

5.1 Use of Normaliz

Normaliz is distributed as open source under the GPL. In addition to the source code, the
distribution contains executables for the major platforms Linux, Mac and Windows. We
include some details on the use of Normaliz in order to show that the input files have a
transparent structure and that the syntax of the execution command is likewise simple.

The polytope C has the following input file:

amb_space 24
excluded_faces 3
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1
1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
nonnegative total_degree
HilbertSeries
NoExtRaysOutput NoSuppHypsOutput

The first line amb_space 24 sets the ambient space to
R
24. The 3 excluded_faces represent the strict inequalities λi > 0, i = 1, 2, 3

of Table 1 (the input type of non-strict inequalities is inequalities). The key-
word nonnegative indicates that all 24 coordinates are to be taken nonnegative,
whereas total_degree defines the grading in which each coordinate has weight 1.
HilbertSeries indicates that we want to compute the Hilbert series. The last two lines
NoExtRaysOutput and NoSuppHypsOutput suppress output data that do not interest
us for the Hilbert series. Let us suppose the file is called Condorcet.in.

In Normaliz the simplest command for the computation is

normaliz Condorcet

Depending on the installation, it may be necessary to prefix normaliz or Condorcet
by a path. Often one adds the option -c to get terminal output showing the progress of
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the computation. If one is only interested in the volume, one replaces HilbertSeries
by Multiplicity or Volume (without any explicit computation goal, Normaliz would
compute both the Hilbert series and Hilbert basis by default). The number of parallel threads
can be limited by adding the option -x=<N> to the command line where <N> stands for
the number of threads.

The computation results are contained in Condorcet.out. We display the relevant
part:

......
multiplicity = 1717/8192

Hilbert series:
0 6 15 481 890 12346 ... 4581 363 133 5 1
denominator with 24 factors:
1: 1 2: 14 4: 9

degree of Hilbert Series as rational function = -24
......
Hilbert quasi-polynomial of period 4:
0: 0 ... 15074333193 56262656
1: 2034750310223351797008092160000 ... 15528493056 56262656
2: 6516052523069436132065280000 ... 15074333193 56262656
3: 2034750310223351797008092160000 ... 15528493056 56262656
with common denominator = 6939597901822221635907747840000

The volume we are interested in is called multiplicity because of its algebraic inter-
pretation. Hilbert series is followed by the numerator polynomial of the rational func-
tion.Thedenominator is (1−t)(1−t2)14(1−t4)9. TheHilbert quasi-polynomial
is printed by residue classes modulo the period. All coefficients must be divided by the
common denominator.

As will be apparent from the terminal output (obtained with -c on the command line or
Verbose in the input file), Normaliz successfully tries symmetrization. One should note
that Normaliz does automatic symmetrization only if the cone D defined by image Q has
dimension≤ 2 dim(C)/3whereC is the cone over the polytopeP to be computed. The bound
has been introduced since one cannot expect a saving in computation time if the dimension
does not drop enough. However, the user can force Normaliz to use symmetrization.

Remark 9 (a) Normaliz has an input type strict_inequalities. While it seems a
natural choice and will yield the same results as excluded_faces, its use for the com-
putations of this paper is not advisable since the algorithmic approach does not (yet) allow
symmetrization, and even for cases without symmetrization it is usually significantly slower
than excluded_faces.

(b) A graphical interface called jNormaliz (Almendra and Ichim 2018) is also available
in the Normaliz package. For its use Java must be installed on the system.

5.2 Overview of the examples

The columns of Table 10 contain the values of characteristic numerical data of the examples
studied, namely: #vertices is the number of the vertices of the polytope, and #supp the number
of its support hyperplanes. #Hilb is the size of the Hilbert basis of the Ehrhart cone over the
polytope [see Bruns and Ichim (2010) for more details]. These data are invariants of the
polytope.
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Table 10 Numerical data of test examples

Polytope #vertices #supp #Hilb #triangulation #Stanley dec

C 234 27 242 1,344,671 1,816,323

Q 2418 28 12,948 343,466,918,256 2,217,999,266,634

E 4644 30 31,308 464,754,352,804 1,661,651,089,155

F 4572 30 26,325 1,009,992,718,827 3,400,149,589,030

T 491 30 546 2,852,958 5,635,927

K 262 28 362 1,346,894 2,694,560

BSt 6363 33 21,137 30,399,162,846 75,933,588,203

BSg 3216 30 24,816 149,924,230,551 858,660,657,413

BSgRev 3432 30 9,548 366,864,865,269 1,141,025,866,136

Table 11 Numerical data of symmetrized polytopes

Polytope Dim #vertices #supp #triangulation #Stanley dec

C 8 16 11 17 33

Q 6 12 8 14 14

E 13 170 18 18,208 19,999

F 13 163 18 23,738 41,963

K 14 63 18 1035 2070

BSg 13 100 18 3696 6025

BSgRev 13 115 19 10,342 26,024

The last two columns list the number of simplicial cones in the triangulation and the
number of components of the Stanley decomposition [see Bruns et al. (2016) for details on
these numbers]. These data are not invariants of the polytope. The information is included to
show the complexity of the computations if symmetrization is not used. Normaliz can do all
computations without symmetrization, but then some of them will take days, even those with
a high degree of symmetry. The size of the lexicographic triangulation depends on the order
in which the extreme rays are processed. The polytopes in the table above are defined by
their support hyperplanes, and therefore Normaliz first computes the extreme rays from them.
Moreover, bottom decomposition, see Bruns et al. (2017), is used automatically if the ratio
of the largest degree among the generators and the smallest is ≥ 10. This further influences
the data contained in the last two columns.

Of all our polytopes, only T and BSt cannot be symmetrized. The combinatorial data of
the symmetrized polytopes are contained in Table 11.

We remark that, for Hilbert basis computations, the dual algorithm of Normaliz (see Bruns
and Ichim 2010) is much faster than the primal algorithm for the examples of this paper, and
all computations run in a few seconds. This is by no means always the case (see Bruns et al.
2016).

5.3 Hardware characteristics

Almost all computations were run on a compute server with operating system CentOS 7.3, 4
Intel Xeon E5-2660 at 2.20GHz (a total of 32 cores) and 192GB of RAM.With the exception

123



Annals of Operations Research (2019) 280:241–265 263

Table 12 Computation times for
volumes

Polytope Symmetrize Laptop 4x Server 30x

C Yes 0.100 s 0.591 s

Q Yes 0.33 s 0.76 s

E Yes 1:11:39 h 8:41 m

F Yes 1:48:57 h 15:06 m

T No 7.200 s 10.455 s

K Yes 0.660 s 1.940 s

BSt No – 3:57:26 h

BSg Yes 14:51 m 1:39 m

BSgRev Yes 44:54 m 4:17 m

Table 13 Efficiency of
parallelization in volume
computations

# threads 1 5 10 20 30

Real time (s) 10,367 2380 1245 656 521

Efficiency (%) 100 88 83 79 66

of BSt, all computations were also done on a standard laptop with operating system Ubuntu
16.04, an Intel i5-4200MCPU at 2.5 GHz and 12 GB RAM. In parallelized computations we
have limited the number of threads used to 30. In Tables 12 and 14, 4x and 30x indicates
parallelization with 4 and 30 threads, respectively. As the large examples below show, the
parallelization scales efficiently; see also Table 13. The version that we have used exchanges
data via files. The laptop has an SSD, but the server has only hard disks, and it is not a local
hard disk of the machine, but the files must go through the NFS, the network file system.

Normaliz needs relatively little memory. All computations mentioned in this paper run
stably with < 0.5 GB of RAM for each thread used.

5.4 Volumes

Table 12 contains the computation times for the volumes of the studied polytopes, as obtained
with version 3.2.1. Since version 3.5.2 Normaliz has a second algorithm for the computation
of volumes that is very often significantly faster. It was developed after the submission of
this paper; see Bruns and Ichim (2018).

The input for all these examples is given in the form of inequalities. When one runs
Normaliz on such examples, it first computes the extreme rays of the cone and uses them as
generators. This small extra time is also included in the reported times below (it is also
apparent and not surprising that small examples profit from a small number of parallel
threads).

In order to measure the parallelization we have run the volume computation of E with
varying number of threads. Table 13 shows that Normaliz is very efficiently parallelized.

Remark 10 The volume of the polytope C was first computed by Gehrlein (2001). The vol-
umes of variants of the polytopes Q and E had been computed by Schürmann (2013) with
LattE integrale (Baldoni et al. 2013). This information was very useful for checking the
correctness of Normaliz.
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Table 14 Computation times for Ehrhart series and quasipolynomials

Polytope Symmetrize Laptop 4x Server 30x

Closed Semi-open Closed Semi-open

C Yes 1.730 s 1.940 s 1.925 s 2.077 s

Q Yes 4.400 s 7.64 s 7.010 s 8.440 s

E Yes 4:50:55 h 4:45:24 h 28:36 m 41:01 m

F Yes 12:02:42 h 12:47:03 h 1:45:15 h 1:39:19 h

T No 16.230 s 28.260 s 24.050 s 34.136 s

K Yes 16.770 s 25.810 s 3.156 s 7.967 s

BSt No – – 10:08:50 h 37:03:26 h

BSg Yes 1:34:23 h 1:36:16 h 9:01 m 14:13 m

BSgRev Yes 5:56:18 h 5:53:38 h 45:13 m 47:22 m

Table 15 Efficiency of
parallelization in Ehrhart series
computations

# threads 1 5 10 20 30

Real time (s) 15,959 398 1230 635 553

Efficiency (%) 100 94 130 126 96

5.5 Ehrhart series and quasipolynomials

The experimental times obtained for computation of Ehrhart series and quasipolynomials are
contained in Table 14. As above, the presented times include the time used by Normaliz for
computing the extreme rays of the cone. Moreover, the Ehrhart quasipolynomials are com-
puted from the Ehrhart series (see Bruns and Ichim 2010). This requires for some examples
like BSt a significant extra time, which has likewise been included. We have also measured
the parallelization for the Ehrhart series computation of BSt; see Table 15. Somewhat sur-
prisingly, the efficiency is > 100% for certain numbers of threads, an effect that can only be
explained by the memory management of the system.
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