COMPUTING THE INTEGRAL CLOSURE OF AN AFFINE SEMIGROUP

by Winfried Bruns and Robert Koch

1. Introduction. An affine semigroup S is a finitely generated subsemigroup of a finitely generated free abelian group (or lattice) \mathbb{Z}^n. (We use the term ‘semigroup’ as a synonym for ‘monoid’; so all our semigroups have a neutral element 0.) Let L be a sublattice of \mathbb{Z}^n containing S. Then the integral closure of S in L is the set

$$\bar{S}_L = \{ x \in L : mx \in S \text{ for some } m \in \mathbb{N}, m > 0 \}.$$

In the special case where L coincides with the group $\text{gp}(S)$ of differences of S, one calls $\bar{S}_L = \bar{S}$ the normalization of S. Obviously \bar{S}_L is a subsemigroup of L.

The integral closure can be described geometrically. Let $C(S)$ be the cone generated by S in the vector space \mathbb{R}^n, i.e., the set of all linear combinations of elements of S with non-negative real coefficients. It is an elementary fact that $\bar{S}_L = C(S) \cap L$. Note that $C(S)$ is finitely generated by rational vectors since S is so. It follows (and is in fact equivalent) that $C(S)$ is the intersection of finitely many rational vector halfspaces H_i, $i = 1, \ldots, r$. Moreover, \bar{S}_L is itself finitely generated by Gordan’s lemma.

We call S positive if $x, -x \in S$ is possible only for $x = 0$. It is not hard to show that a positive affine semigroup can be embedded into a positive orthant \mathbb{Z}_+^s for some s (actually the smallest possible value $s = \text{rank } \text{gp}(S)$ suffices). It then follows that every element of S can be written as the sum of irreducible elements, and since S is finitely generated, it can have only finitely many irreducibles. The finite set of irreducibles is the unique minimal generating set of S. We call this set the Hilbert basis, Hilb(S), of S.

The authors have developed the computer program Normaliz [5] for the
calculation of Hilb(\overline{S}_L) (evidently \overline{S}_L is positive if S is). Normaliz has already
proved very useful in various investigations; see Villarreal [10]. In particular
it has played a crucial role in finding a counterexample to the unimodular
covering conjecture and the discrete Carathéodory property of normal affine
semigroups (Bruns and Gubeladze [2], Bruns et al. [3]). It is the purpose of
this article to explain the algorithm used by normaliz. Most likely, all the ideas
involved have appeared elsewhere, and we do not claim originality for them.

Because of the embedding $S \to \mathbb{Z}_n^+$, each positive affine semigroup can
be graded, i.e., there exists a semigroup homomorphism $\deg: S \to \mathbb{N}$ such
that $\deg(x) = 0$ if and only if $x = 0$. Then $K[S]$ is a positively graded K-
algebra (under the canonical extension of the degree function, where K is an
arbitrary field). If \deg is the restriction of a \mathbb{Z}-linear form on L (and it always
is after multiplication by a positive integer), then S is a graded subsemigroup
of \overline{S}_L. If, in addition, S is generated by all $x \in S$ with $\deg(x) = 1$, then
we say that S is homogeneous with respect to L (and simply homogeneous if
$L = \text{gp}(S)$). In this case normaliz can compute the Hilbert function of \overline{S}_L
given by $H(\overline{S}_L, i) = \text{card}\{x \in \overline{S}_L \; \text{deg}(x) = i\}$. Since \overline{S}_L is a finite module over a
homogeneous semigroup, we call it almost homogeneous.

Note that our nomenclature is consistent with its use in commutative al-
gebra. Let K be a field. Upon the choice of a basis e_1, \ldots, e_n we can identify
the group algebra $K[L]$ with the Laurent polynomial ring $K[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$, and the semigroup ring $K[S]$ with a monomial subalgebra. Then $K[\overline{S}_L]$ is the
integral closure of $K[S]$ in $K[L]$ (or its field of fractions). In particular, $K[\overline{S}_L]$ is
the normalization of $K[S]$. The Hilbert function of a graded semigroup S
coincides with the Hilbert function of the semigroup algebra $K[S]$.

Affine semigroup rings are the coordinate rings of (not necessarily normal)
toric varieties, and homogeneous such rings are the homogeneous coordinate
rings of projective toric varieties. Therefore normaliz has applications in com-
mutative algebra and algebraic geometry.

In its present version normaliz requires the generators of S as input and
allows only the choices $L = \text{gp}(S)$ or $L = \mathbb{Z}^n$. These choices for L cover almost all potential applications.

It is the aim of this note to explain the algorithm used by normaliz. Many
facts which we will use without proof belong to the classical theory of convex
polyhedral cones. See Gale [7] and Gerstenhaber [8].

We do not attempt to describe the potential applications of normaliz. See
the documentation of normaliz, the book [10] of Villarreal, and Bruns, Gube-
2. Computing the Hilbert basis. Finiteness of the integral closure.

We start by showing that the integral closure of an affine semigroup \(S \subset \mathbb{Z}^n \), in a sublattice \(L \) of \(\mathbb{Z}^n \) which contains \(S \), is finitely generated, and give a geometric description of the integral closure. The subcone of \(\mathbb{R}^n \) generated by \(S \) is denoted by \(C(S) \).

Proposition 2.1. (a) (Gordan’s lemma) Let \(C \subset \mathbb{R}^n \) be a finitely generated rational cone (i.e., generated by finitely many vectors from \(\mathbb{Q}^n \)). Then \(\mathbb{Z}^n \cap C \) is an affine semigroup and integrally closed in \(\mathbb{Z}^n \).

(b) Let \(S \) be an affine subsemigroup of the lattice \(L \subset \mathbb{Z}^n \). Then

(i) \(\bar{S}_L = L \cap C(S) \);

(ii) there exist \(z_1, \ldots, z_u \in \bar{S}_L \) such that \(\bar{S}_L = \bigcup_{i=1}^u (z_i + S) \);

(iii) \(\bar{S}_L \) is an affine semigroup.

Proof. (a) Note that \(C \) is generated by finitely many elements \(x_1, \ldots, x_m \in \mathbb{Z}^n \). Let \(x \in \mathbb{Z}^n \cap C \). Then \(x = a_1 x_1 + \cdots + a_m x_m \) with non-negative rational \(a_i \). Set \(b_i = \lfloor a_i \rfloor \). Then

\[
(*) \quad x = (b_1 x_1 + \cdots + b_m x_m) + (r_1 x_1 + \cdots + r_m x_m), \quad 0 \leq r_i < 1.
\]

The second summand lies in the intersection of \(\mathbb{Z}^n \) with a bounded subset of \(C \). Thus there are only finitely many choices for it. These elements together with \(x_1, \ldots, x_m \) generate \(\mathbb{Z}^n \cap C \). That \(\mathbb{Z}^n \cap C \) is integrally closed in \(\mathbb{Z}^n \) is evident.

(b) Set \(C = C(S) \), and choose a system \(x_1, \ldots, x_m \) of generators of \(S \). Then every \(x \in L \cap C \) has a representation \((*)\). Multiplication by a common denominator of \(r_1, \ldots, r_m \) shows that \(x \in \bar{S}_L \). On the other hand, \(L \cap C \) is integrally closed in \(L \), and so \(\bar{S}_L = L \cap C \).

The elements \(z_1, \ldots, z_u \) can now be chosen as those vectors \(r_1 x_1 + \cdots + r_m x_m \) that appear in \((*)\) and belong to \(L \). Their number is finite since they are all integral and contained in a bounded subset of \(\mathbb{R}^n \). Together with \(x_1, \ldots, x_m \) they certainly generate \(\bar{S}_L \) as a semigroup.

In principle Proposition 2.1 tells us how to determine the generators of \(\bar{S}_L \): we only need to search these elements in a bounded subset of \(\mathbb{Z}^n \). However, it is difficult to generate the candidates in an effective way without some preparations.

Reduction to a full rank embedding. In the first step we reduce the problem to computing the integral closure of \(S \) in a lattice \(L' \) such that \(\text{rank } L' = \text{rank } \text{gp}(S) \). (We will write \(\text{rank } S \) for \(\text{rank } \text{gp}(S) \) in the following.)

Applying the elementary divisor algorithm one finds a basis \(e_1, \ldots, e_n \) of \(\mathbb{Z}^n \) and integers \(\alpha_1, \ldots, \alpha_n \) such that \(f_i = \alpha_i e_i \), \(i = 1, \ldots, \text{rank } L \), is a basis of \(L \). After a linear transformation we can assume that \(L = \mathbb{Z}^n \), and that we
have to compute the integral closure of S in \mathbb{Z}^n. Henceforth the index L will be dropped.

The elementary divisor algorithm is applied again in order to find a basis f_1, \ldots, f_n of $L \mathbb{Z}^n$ and integers β_1, \ldots, β_r, $r = \text{rank } S$, such that $\beta_1 f_1, \ldots, \beta_r f_r$ is a basis of $\text{gp}(S)$. The integral closure of S in \mathbb{Z}^n evidently coincides with the integral closure of S in $L' = \mathbb{Z} f_1 + \cdots + \mathbb{Z} f_r$. Consequently we may further assume that rank $S = n$.

It is clear that at the end of all the computations the linear transformations inverse to those above have to be applied in order to rewrite the output in the coordinates of the input.

The program \texttt{normaliz} allows for L only \mathbb{Z}^n or $\text{gp}(S)$. Therefore one application of the elementary divisor algorithm is sufficient: if $L = \mathbb{Z}^n$, then one chooses $L' = \mathbb{Z} f_1 + \cdots + \mathbb{Z} f_r$, and if $L = \text{gp}(S)$ one has to take $L' = \mathbb{Z} \beta_1 f_1 + \cdots + \mathbb{Z} \beta_r f_r$.

\textit{Extreme rays, faces and facets.} Let $C \subset \mathbb{R}^n$ be a finitely generated cone. We can assume that $\dim C = n$, replacing \mathbb{R}^n by the vector subspace generated by C if necessary. (Above we have computed such an embedding in the discrete case.) Let H be a vector subspace of dimension $n - 1$. It determines two halfspaces. If C is contained in one of these (closed) halfspaces, then $F = C \cap \overline{H}$ is called a face of C. The dimension of a face is the dimension of the vector subspace that it generates. Faces of dimension $n - 1$ are called facets. It is often useful to count C as a face of C.

From the algebraic and also from the computational point of view a subspace H is the kernel of a linear form ϕ, uniquely determined up to a nonzero constant factor. Replacing ϕ by $-\phi$ if necessary, we can always assume that C is contained in the positive halfspace associated with ϕ (or H).

An extreme ray is a halfline starting in 0 that is contained in a 1-dimensional face. Evidently each 1-dimensional face is either an extreme ray or the union of two extreme rays. In particular, if C does not contain a full line (and this will be the case later on), then we can identify 1-dimensional faces and extreme rays.

\textbf{PROPOSITION 2.2.} Let C be a finitely generated cone.

(a) A subset X of C is a minimal generating set if and only if $0 \notin X$ and X contains exactly one element from each extreme ray.

(b) There is exactly one irredundant representation of C as the intersection of vector halfspaces, namely that by the positive halfspaces associated with the facets of C.

For each facet F the linear form σ_F defining the half-space in (b) is unique up to a positive factor, and we may speak of σ_F as the support form associated
with the facet F. If C is rational, then there is a natural choice for σ_F, and we always use it in the rational case: σ_F is rational (since its kernel is generated by rational vectors), and it has a unique multiple with coprime integral coefficients. (Normaliz always clears denominators and removes common divisors during its computations.) Next we discuss how to compute the σ_F.

The dual cone algorithm. For a cone $C \subset \mathbb{R}^n$ one defines the dual (or polar) cone by

$$C^* = \{ \phi \in (\mathbb{R}^n)^* : \phi(x) \geq 0 \text{ for all } x \in C \}.$$

The following proposition justifies this term.

Proposition 2.3. Let C be a cone in \mathbb{R}^n.

(a) The bidual cone C^{**} is the topological closure of C in \mathbb{R}^n (which we identify with its bidual $(\mathbb{R}^n)^{**}$ via the natural isomorphism).

(b) If C is finitely generated (rational), then C^* is finitely generated (rational). Moreover, $C^{**} = C$.

Proof. (a) Since linear forms are continuous, the topological closure \hat{C} is contained in $C^{**} = \{ x \in \mathbb{R}^n : \phi(x) \geq 0 \text{ for all } \phi \in C^* \}$. For the converse inclusion consider $x \in C^{**}$. Evidently \hat{C} is convex. If $x \notin \hat{C}$, then the Hahn-Banach separation theorem yields a linear form ϕ and a real number α such that $\phi(x) < \alpha$ and $\phi(y) > \alpha$ for all $y \in \hat{C}$. This is impossible if $\phi(z) < 0$ for some $z \in \hat{C}$, since $\beta z \in \hat{C}$ for all $\beta \geq 0$. Thus $\phi \in C^*$, and we obtain a contradiction.

(b) If C is finitely generated, then C is closed, and so $C^{**} = C$ by (a). It remains to show that C^* is finitely generated if C is. The dual cone algorithm, outlined below, will show this. If C is rational, then it finds rational generators for C^*.

Corollary 2.4. Let the cone C be the intersection of finitely many (rational) halfspaces. Then it is finitely generated (and rational).

In fact, C is closed, and we can apply Proposition 2.3. The corollary indicates why finitely generated cones appear in linear optimization where constraints are given by linear inequalities.

Let $x_1, \ldots, x_m \in \mathbb{R}^n$. We want to find the dual cone of $C = \mathbb{R}_+ x_1 + \cdots + \mathbb{R}_+ x_m$. We can assume that \mathbb{R}^n is generated by x_1, \ldots, x_m as a vector space. (For the data for which we want to use the algorithm this assumption is satisfied after we have passed to a full rank embedding.)

We first search for n vectors among x_1, \ldots, x_m that form a basis of \mathbb{R}^n, say x_1, \ldots, x_n. For each $i = 1, \ldots, n$ we compute a linear form ϕ_i such that $\phi_i(x_i) > 0$, $\phi_i(x_j) = 0$ for $j \neq i$. Clearly ϕ_i is uniquely determined up to a
positive factor. One also checks immediately that ϕ_1, \ldots, ϕ_n is a basis of $(\mathbb{R}^n)^*$ and generate the dual cone of $C_0 = \mathbb{R}_+ x_1 + \cdots + \mathbb{R}_+ x_n$.

This initialization is useful because it simultaneously starts a triangulation of the cone C. This triangulation will be needed for the computation of the Hilbert basis. We now describe how the dual cone changes if we enlarge C by another generator.

Proposition 2.5. Let $x_1, \ldots, x_m, y \in \mathbb{R}^n$ be such that x_1, \ldots, x_m generate \mathbb{R}^n as a vector space. Suppose that ϕ_1, \ldots, ϕ_t generate the dual cone of $C = \mathbb{R}_+ x_1 + \cdots + \mathbb{R}_+ x_m$. For each pair (i, j), $i, j = 1, \ldots, t$, with $\phi_i(y) > 0$ and $\phi_j(y) < 0$ we set

$$\psi_{ij} = \phi_i(y)\phi_j - \phi_j(y)\phi_i.$$

Then the dual cone of $\tilde{C} = C + \mathbb{R}_+ y$ is generated by the ψ_{ij} and all ϕ_i with $\phi_i(y) \geq 0$.

For the proof see Burger [6]. A geometric explanation follows after the next proposition.

The generating set of C^* specified by Proposition 2.5 contains a minimal system of generators, and because of Proposition 2.3 it consists exactly of a set of support forms σ_F, F running through the facets of C. It is not difficult to find this minimal generating set:

Proposition 2.6. With the notation of Proposition 2.5, suppose that ϕ_1, \ldots, ϕ_t are the support forms of C, and denote by H_i the hyperplane given by the vanishing of ϕ_i. Then the support forms of \tilde{C} are given by the ϕ_i with $\phi_i(y) \geq 0$ and those ψ_{ij} such that $H_i \cap H_j \cap C$ is not contained in one of the hyperplanes H_k, $k \neq i, j$.

Let us say that a subset X of C is visible from y if for each $x \in X$ the line segment from y to x intersects C exactly in x. It is geometrically evident that one finds the facets of \tilde{C} by taking first those facets of C that do not separate y from C, and second those hyperplanes that pass through y and the $(n - 2)$-dimensional faces of C that bound the part of C that is visible from y. Exactly these hyperplanes are specified by the two propositions above: an $(n - 2)$-dimensional face is contained in exactly two facets, and it bounds the visible area if exactly one of these facets is visible from C.

Once the dual cone (equivalently, the support forms) of C have been computed, we can decide whether C is positive, i.e., 0 is the only element $x \in C$ such that $-x \in C$, too.

Proposition 2.7. Let $C \subset \mathbb{R}^n$ be an n-dimensional cone, and $S \subset \mathbb{Z}^n$ an affine semigroup.

(a) C is positive if and only if C^* has dimension n.

(b) S is positive if and only if $C(S)$ is positive.
(c) If S is positive, then it has a unique minimal generating set, given by its finitely many irreducible elements.

Proof. (a) It is obvious that $x, -x \in C$ if and only if $\phi(x) = 0$ for all $\phi \in C^*$, and such an element $x \neq 0$ exists if and only if $\dim(C^*) < n$.
(b) This is trivial.
(c) Let s_1, \ldots, s_s be the support forms of $C(S)$. Then we consider the homomorphism $\sigma : \mathbb{R}^n \to \mathbb{R}^s$, $\sigma(x) = (s_1(x), \ldots, s_s(x))$. Because of (a) and (b) σ is injective, and it maps S isomorphically onto a subsemigroup of \mathbb{Z}_+^s. We can assume that $S \subset \mathbb{Z}_+^n$. Then it follows easily that each element x of S is the sum of irreducible elements, for example by induction on the sum of the components of x. Therefore S is generated by its irreducible elements, and since S has a finite system of generators and every system of generators must contain the irreducibles, their number is finite.

At this point normaliz tests whether S is positive. If not, it stops. It would not be difficult to extend the program in such a way that it covers the general case. Let U be the kernel of the homomorphism $\sigma : \mathbb{Z}^n \to \mathbb{Z}^s$, $\sigma(x) = (s_1(x), \ldots, s_s(x))$. Because of (a) and (b) σ is injective, and it maps S isomorphically onto a subsemigroup of \mathbb{Z}_+^s. We can assume that $S \subset \mathbb{Z}_+^n$. Then it follows easily that each element x of S is the sum of irreducible elements, for example by induction on the sum of the components of x. Therefore S is generated by its irreducible elements, and since S has a finite system of generators and every system of generators must contain the irreducibles, their number is finite.

Computing the triangulation. A cone is simplicial if it is generated by a linearly independent set of vectors. By a triangulation of a cone C we mean a decomposition into a family Δ of finitely many simplicial subcones such that the intersection of $\delta, \epsilon \in \Delta$ is a face of both δ and ϵ. A triangulation Δ is uniquely determined by those $\delta \in \Delta$ such that $\dim \delta = \dim C$. Therefore the triangulation can be described by a list of n-tuples of vectors in \mathbb{R}^n, where each n-tuple contains the generators of an n-dimensional simplicial cone.

Let $C \subset \mathbb{R}^n$ be a cone of dimension n, given by generators x_1, \ldots, x_m. In the computation of the dual cone C^* we have started with a simplicial subcone C_0 generated by a linearly independent subset of $\{x_1, \ldots, x_m\}$. It has a trivial triangulation by its faces (including C_0 itself). Therefore it is enough to describe how to pass from a triangulation of C to a triangulation of \bar{C} generated by x_1, \ldots, x_m, y.

If y is contained in C, then we can (and do) simply keep the triangulation δ. So suppose that $y \notin C$. Let Δ be a triangulation of C. Then we obtain a triangulation of \bar{C} by joining Δ with the set of all cones $\delta + \mathbb{R}_+ y$ where $\delta \in \Delta$ is visible from y.

The new n-dimensional simplicial subcones are generated by y and the $(n-1)$-dimensional visible cones δ' of Δ. Such a subcone is visible if and only
if it lies in a facet F of C that is visible from y, and the visible facets F are character-ized by the fact that $\sigma_F(y) < 0$. This makes it easy for normaliz to find the new n-dimensional members of the triangulation, since the support forms of C are known. (However, note that a facet of C itself is not simplicial in general, and even if it is: Δ may subdivide it, if the given generating set of C is not minimal.)

At this point we can also discuss how to find the irreducible elements of \bar{S}, and thus $\mathrm{Hilb}(\bar{S})$, once a system of generators $x_1, \ldots, x_m \neq 0$ of \bar{S} is known: x_i is irreducible if $x_i - x_j \notin S$ for all $j \neq i$. This criterion holds for arbitrary S. However, the condition $x_i - x_j \notin S$ is difficult to verify in general. For \bar{S} it is easy: we simply test whether the condition $\sigma_F(x_i - x_j) \geq 0$ is violated for at least one facet F.

Suppose further that we have found a system of generators for the semi-group $\delta \cap \mathbb{Z}^n$ for each δ in a triangulation of $C(S)$. Then the union of all these systems obviously generates \bar{S}. We have already constructed a triangulation Δ, and each $\delta \in \Delta$ is specified by a set of integral, linearly independent vectors generating δ. It only remains to find the generators of \bar{S} if S is simplicial.

Simplicial cones. Let x_1, \ldots, x_n be linearly independent elements of \mathbb{Z}^n and let C be the cone spanned by them and S the affine semigroup they generate. Then each $y \in \bar{S} = C \cap \mathbb{Z}^n$ has a representation

$$y = (a_1 x_1 + \cdots + a_n x_n) + (q_1 x_1 + \cdots + q_n x_n), \quad a_i \in \mathbb{Z}_+, \ q_i \in \mathbb{Q}, \ 0 \leq q_i < 1.$$

We collect the second summands in the set

$$\text{par}(x_1, \ldots, x_n) = \mathbb{Z}^n \cap \{q_1 x_1 + \cdots + q_n x_n: q_i \in \mathbb{Q}, \ 0 \leq q_i < 1\}.$$

The notation par (introduced by Sebő [9]) is suggested by the fact that the elements of $\text{par}(x_1, \ldots, x_n)$ are exactly the lattice points in the semi-open parallelepiped spanned by x_1, \ldots, x_n.

Lemma 2.8. The set $\text{par}(x_1, \ldots, x_n)$ contains exactly one representative from each residue class of \mathbb{Z}^n modulo $U = \mathbb{Z} x_1 + \cdots + \mathbb{Z} x_n$. Therefore

$$\text{card} \text{par}(x_1, \ldots, x_n) = \text{card}(\mathbb{Z}^n/U) = |\det(x_1, \ldots, x_n)|.$$

Moreover, \bar{S} is the disjoint union of the sets $z + S$, $z \in \text{par}(x_1, \ldots, x_n)$.

Proof. The first statement is evident, and it implies the first equation. The second equation results from the elementary divisor theorem. That \bar{S} is the union of the sets $z + S$ has been shown in Proposition 2.1, and that the union is disjoint follows immediately from the fact that the $z \in \text{par}(x_1, \ldots, x_n)$ represent different residue classes. \qed
In the language of commutative algebra: let K be a field; then $\text{par}(x_1, \ldots, x_n)$ is a basis of the free $K[S]$-module $K[S]$, and $K[S]$ is actually a polynomial ring over K.

Together with x_1, \ldots, x_n the set $\text{par}(x_1, \ldots, x_n)$ certainly generates \bar{S}. Therefore it is enough to find an efficient method for producing $\text{par}(x_1, \ldots, x_n)$ from x_1, \ldots, x_n.

First one applies the elementary divisor algorithm to find a basis u_1, \ldots, u_n of \mathbb{Z}^n, and positive integers $\lambda_1, \ldots, \lambda_n$ such that $\lambda_1 u_1, \ldots, \lambda_n u_n$ is a basis of $\text{gp}(S)$. Clearly $d = \det(x_1, \ldots, x_n) = \lambda_1 \cdots \lambda_n$, and $d\mathbb{Z}^n \subset \text{gp}(S)$, since $\mathbb{Z}^n / \text{gp}(S)$ is a direct sum of n cyclic groups of orders $\lambda_1, \ldots, \lambda_n$.

The residue classes of \mathbb{Z}^n modulo $\text{gp}(S)$ are represented by the vectors

$$e = b_1 u_1 + \cdots + b_n u_n, \quad b_i = 0, \ldots, \lambda_i - 1, \quad i = 1, \ldots, n.$$

Each such vector e has a representation $e = a_1 x_1 + \cdots + a_n x_n$ with rational coefficients a_i. Now we set $q_i = a_i - \lfloor a_i \rfloor$, so that $e' = q_1 x_1 + \cdots + q_n x_n$ represents the residue class of e and belongs to $\text{par}(x_1, \ldots, x_n)$. Note that d is a suitable common denominator for the a_i, since $d\mathbb{Z}^n \subset \text{gp}(S)$. Therefore one can keep all the coefficients integral by first passing to de and dividing by d at the end.

3. Computing the Hilbert series. Suppose that A is a positively graded affine semigroup; one has fixed a homomorphism $\text{deg} : \text{gp}(A) \to \mathbb{Z}$ such that $\text{deg}(A) \subset \mathbb{Z}_+$ and 0 is the only element of A having degree 0. Then the set $A_k = \{ x \in A : \text{deg} x = k \}$ is finite for each $k \in \mathbb{Z}_+$, and we can define the Hilbert function

$$H(A, k) = \text{card } A_k, \quad k \in \mathbb{Z}_+,$$

of A. The Hilbert series of A is the formal power series

$$H_A(T) = \sum_{k=0}^{\infty} (\text{card } A_k) T^k.$$

If K is a field, then the semigroup algebra $K[A]$ inherits the grading, and the Hilbert series of A is just the Hilbert series of $K[A]$. Therefore $H_A(T)$ has all the properties that are known for Hilbert series of positively graded K-algebras (see [1, Chap. 4]). In particular, $H_A(T)$ represents a rational function,

$$H_A(T) = \frac{Q(T)}{(1 - T^{d_1}) \cdots (1 - T^{d_n})},$$

where $Q(T)$ is a polynomial, $n = \text{rank } A$, and d_1, \ldots, d_n are positive integers.

The situation further simplifies if A is almost homogeneous. This means that there exists an affine subsemigroup $A_0 \subset A$ which is generated by elements of degree 1 and over which A is a finite module, i.e., there exist $x_1, \ldots, x_m \in A$
such that $A = \bigcup_{i=1}^{m} (A_0 + x_i)$. Then $K[A]$ is a finitely generated module over $K[A_0]$, and therefore $H_A(T)$ can be represented in the form

$$H_A(T) = \frac{Q(T)}{(1-T)^n}.$$

For $k \gg 0$ the Hilbert function $H_A(k)$ is given by a polynomial, the Hilbert polynomial $P_A(k)$. It is a polynomial of degree $n - 1$ with leading coefficient $e(A)/(n-1)!$, where $e(A) = Q(1)$ is the multiplicity of A.

In `normaliz` the role of A_0 is played by the given affine semigroup S and that of A is played by the integral closure \bar{S}. (We assume, as before, that $S \subset \mathbb{Z}^n$, rank $S = n$, and the integral closure is taken with respect to \mathbb{Z}^n.) We want to compute the Hilbert series of \bar{S}. In principle this would be possible for the general case, but so far it has only been implemented in the almost homogeneous case (simply called “homogeneous” in the `normaliz` documentation), and from now on we restrict ourselves to this case.

`Normaliz` has computed a triangulation Δ of the cone C generated by S such that each simplicial cone $\delta \in \Delta$ is generated by elements of S, and by assumption these have degree 1 in \bar{S}. The triangulation defines a disjoint decomposition

$$C = \bigcup_{\delta \in \Delta} \text{relint}(\delta),$$

where $\text{relint}(\delta)$ is the interior of δ relative to the vector subspace of \mathbb{R}^n generated by δ. We set

$$\omega_\delta = \text{relint}(\delta) \cap \mathbb{Z}^n.$$

It follows that

$$H_{\bar{S}}(T) = \sum_{\delta \in \Delta} H_{\omega_\delta}(T),$$

where the terms on the right hand side are defined in an obvious way.

Therefore, in order to compute $H_{\bar{S}}(T)$, two tasks have to be carried out, namely

1. the decomposition of C into the cones $\delta \in \Delta$, and
2. the computation of $H_{\omega_\delta}(T)$ for each δ.

The most time consuming part of `normaliz` is step 1 above because of the extreme combinatorial complexity of triangulations in general. For the computation of the Hilbert basis it is enough to consider the maximal simplicial cones in Δ, and it would be foolish to insist on a disjoint decomposition. (Some vectors are tested more than once for being members of the Hilbert basis if they belong to two or more maximal simplicial subcones. But this effect is negligible.) However, for the Hilbert series one cannot avoid the disjoint decomposition. We have recently implemented an essential improvement of the decomposition algorithm.
For step 2 we denote by \(x_1, \ldots, x_r \) the linearly independent degree 1 elements of \(S \) that generate \(\delta \). The semigroup \(S_\delta \) they generate is free, and so \(H_{S_\delta}(T) = 1/(1 - T)^r \). Furthermore one has a disjoint decomposition

\[
\omega_\delta = \bigcup_{x \in \text{par}'(x_1, \ldots, x_r)} (x + S_\delta)
\]

where

\[
\text{par}'(x_1, \ldots, x_r) = \mathbb{Z}^n \cap \{ q_1 x_1 + \cdots + q_r x_r : q_i \in \mathbb{Q}, 0 < q_i \leq 1 \}.
\]

Therefore

\[
H_{\omega_\delta}(T) = \frac{\sum_{k=1}^r \text{card}(B_k) T^k}{(1 - T)^r},
\]

where \(B_k = \{ x \in \text{par}'(x_1, \ldots, x_r) : \deg x = k \} \).

Remark 3.1. (a) Often one is only interested in a single numerical invariant, namely the multiplicity \(e(\bar{S}) \). (It coincides with the multiplicity of \(S \) if \(\text{gp}(S) = \mathbb{Z}^n \); in general one has \(e(\bar{S}) = e(S) \cdot \text{card}(\mathbb{Z}^n / \text{gp}(S)) \).) The different maximal simplices in the triangulation intersect each other only in lower dimensional cones, so that the leading coefficient of the Hilbert polynomial can be calculated without taking care of the lower dimensional cones. Then

\[
e(\bar{S}) = \sum_{\delta \in \Delta, \dim \delta = n} e(\bar{S}_\delta)
\]

where \(\bar{S}_\delta = \delta \cap \mathbb{Z}^n \). Let \(x_1, \ldots, x_n \) be the linearly independent degree 1 generators of \(\delta \). Then \(S_\delta = \mathbb{Z}_+ x_1 + \cdots + \mathbb{Z}_+ x_n \) is a free affine semigroup and therefore of multiplicity 1. The integral closure \(\bar{S}_\delta \) is a free \(S_\delta \)-module (as already observed), and therefore its multiplicity coincides with the number of elements in its basis \(\text{par}(x_1, \ldots, x_n) \). To sum up,

\[
e(\bar{S}_\delta) = \text{card}(\text{par}(x_1, \ldots, x_n)) = |\det(x_1, \ldots, x_n)|.
\]

Therefore it is not necessary to compute the Hilbert basis in order to find the multiplicity. We offer the option -v for normaliz. It restricts all computations to multiplicities and those data which determine the triangulation.

The letter v has been chosen since the multiplicity of \(S \) can be interpreted as the normalized volume of the polytope spanned by the generators of \(S \) in the hyperplane of degree 1 elements. Thus normaliz -v can be used for the computation of volumes of lattice polytopes.

(b) It is not necessary to compute \(\text{par}'(x_1, \ldots, x_r) \) separately. In fact \(y \in \text{par}'(x_1, \ldots, x_r) \) if and only if \((x_1 + \cdots + x_r) - y \in \text{par}(x_1, \ldots, x_r) \). We use this observation as follows.

The \(n \)-dimensional simplicial cones \(\delta \in \Delta \) are scanned for the computation of the Hilbert basis. Suppose that \(\delta \) is spanned by the degree 1 elements
Then the elements \(x \in \text{par}(\delta) \) are computed since they are candidates for the Hilbert basis. We can write \(x = q_1x_{i_1} + \cdots + q_rx_{i_r} \) with \(0 < q_i < 1 \). For each subset \(J \subset \{1, \ldots, n\} \) with \(\{i_1, \ldots, i_r\} \subset J \) the vector \(\sum_{j \in J} x_j - x \) belongs to \(\text{par}'(x_j : j \in J) \), and all the vectors necessary for the computation of the Hilbert function are produced by this method.

References

Received April 8, 2001

Universität Osnabrück,
FB Mathematik/Informatik, 49069 Osnabrück,
Germany
e-mail: Winfried.Bruns@mathematik.uni-osnabrueck.de
e-mail: Robert.Koch@mathematik.uni-osnabrueck.de