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study also the homological properties of associated multi-Rees 
algebra which are shown to be Cohen–Macaulay, Koszul and 
defined by a Gröbner basis of quadrics.
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1. Introduction

Let K be a field and X = (xij) be the m × n matrix whose entries are the indeter-
minates of the polynomial ring R = K[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n], and assume that 
m ≤ n. The ideals It(X), generated by the t-minors of X, and their varieties are classical 
objects of commutative algebra, representation theory and algebraic geometry. They are 
clearly invariant under the natural action of GLm(K) ×GLn(K) on R. Their arithmeti-
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cal and homological properties are well-understood as well as their Gröbner bases and 
initial ideals with respect to diagonal (or antidiagonal) monomial orders, i.e., monomial 
orders under which the initial monomial of a minor is the product over its diagonal (or 
antidiagonal); see our survey [7]. Bruns and Vetter [13] and Miller and Sturmfels [25] are 
comprehensive treatments.

Among the ideals of minors the best-behaved is undoubtedly the ideal of maximal 
minors, namely the ideal Im(X). It has the following important features:

Theorem 1.1.

(1) The powers of Im(X) have a linear resolution.
(2) They are primary and integrally closed.
(3) Computing initial ideals commutes with taking powers for diagonal or anti-diagonal 

monomial orders: in(Im(X)k) = in(Im(X))k for all k, and the natural generators of 
Im(X)k form a Gröbner basis.

(4) The Rees algebra of Im(X) is Koszul, Cohen–Macaulay and normal.

In the theorem and throughout this article “resolution” stands for “minimal graded 
free resolution”. The grading is always the standard grading on the polynomial ring.

Concerning the statements in (1), one knows that Im(X) itself is resolved by the 
Eagon–Northcott complex and the resolution for the powers is described by Akin, Buchs-
baum and Weyman in [2]. References for assertions (2), (3) and (4) can be found in [6,7,
10,13], and Eisenbud and Huneke [17]. Note also that the maximal minors form a univer-
sal Gröbner basis (i.e., a Gröbner basis with respect to every monomial order) as proved 
by Bernstein, Sturmfels and Zelevinsky in [4,27] and generalized by Conca, De Negri, 
Gorla [15]. But for m > 2 and k > 1 there are monomial orders < such that in<(Im(X)k)
is strictly larger than in(Im(X))k. In other words, the natural generators of Im(X)k do 
not form a universal Gröbner basis. This is related to the fact that the maximal minors 
do not form a universal Sagbi basis for the coordinate ring of the Grassmannian, as 
observed, for example, by Speyer and Sturmfels [26, 5.6].

For 1 < t < m the ideal It(X) does not have a linear resolution and its powers are 
not primary. The primary decomposition of the powers of It(X) has been computed by 
De Concini, Eisenbud and Procesi [19] and in [13]. The Castelnuovo–Mumford regularity 
of It(X) is computed by Bruns and Herzog [11]. Furthermore, the formation of initial 
ideals does not commute with taking powers, but It(X)k has a Gröbner basis in degree 
tk as the results in [6] show.

In our joint work with Berget [3], Theorem 1.1 was extended to arbitrary products 
of the ideals It(Xt) where Xt is the submatrix of the first t rows of X. We proved the 
following results:

Theorem 1.2. Let 1 ≤ t1, . . . , tw ≤ m and I = It1(Xt1) · · · Itw(Xtw).

(1) Then I has a linear resolution.
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(2) I is integrally closed and it has a primary decomposition whose components are 
powers of ideals It(Xt) for various values of t.

(3) in(I) = in(It1(Xt1)) · · · in(Itw(Xtw)) and the natural generators of I form a Gröbner 
basis with respect to a diagonal or anti-diagonal monomial order.

(4) The multi-Rees algebra associated to I1(X1), . . . , Im(Xm) is Koszul, Cohen–Macaulay 
and normal.

Note that the ideals It(Xt) are fixed by the natural action of the subgroup Bm(K) ×
GLn(K) of GLm(K) ×GLn(K), where Bm(K) denotes the subgroup of lower triangular 
matrices. For use below we denote the subgroup of upper triangular matrices in GLn(K)
by B′

n(K).
Ideals of minors that are invariant under the Borel group Bm(K) ×B′

n(K) have been 
introduced and studied by Fulton in [20]. They come up in the study of singularities of 
various kinds of Schubert subvarieties of the Grassmannians and flag varieties. Those 
that arise as Borel orbit closures of (partial) permutation matrices are called Schubert 
determinantal ideals by Knutson and Miller in the their beautiful paper [24] where they 
describe the associated Gröbner bases, as well as Schubert and Grothendieck polynomi-
als.

The goal of this paper is to extend the results of Theorems 1.1 and 1.2 to a class 
of ideals that are fixed by the Borel group. Depending on whether one takes upper 
or lower triangular matrices on the left or on the right, one ends up with different 
“orientations”, in the sense that for Bm(K) ×B′

n(K) one gets ideals of minors that flock 
in the northwest corner of the matrix while for Bm(K) × Bn(K) the ideals of minors 
flock in the northeast corner, and so on. Of course, there is no real difference between 
the four cases, but because we prefer to work with diagonal monomial orders, we will 
choose the northeast orientation. Clearly, all the results we prove can be formulated in 
terms of the other three orientations as well.

Theorem 1.2 was motivated by the application to the description of a generating set 
of a certain equivariant Grothendieck group. Our motivations for proposing a further 
generalization are the following. Firstly, the study of the Castelnuovo–Mumford regu-
larity has been a central topic in commutative algebra and algebraic geometry in the 
last forty years, and the identification of large families of ideals whose products have 
linear resolution play an important role in this study. Secondly, the Gorenstein property 
and factoriality of multi-Rees rings and fiber rings that we discuss in the last chapter 
generalize classical results on Grassmannians and flag varieties.

Let us define the northeast ideals It(a) of maximal minors: It(a) is generated by the 
t-minors of the t × (n − a + 1) northeast submatrix

Xt(a) = (xij : 1 ≤ i ≤ t, a ≤ j ≤ n).

The main results can be summed up as follows:
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Theorem 1.3. Let It1(a1), . . . , Itw(aw) be northeast ideals of maximal minors, and let I
be their product. Then

(1) I has a linear resolution.
(2) in(I) = in(It1(a1)) · · · in(Itw(aw)), and the natural generators of I form a Gröbner 

basis with respect to a diagonal monomial order.
(3) I is integrally closed, and it has a primary decomposition whose components are 

powers of ideals It(a) for various values of t and a.
(4) The multi-Rees algebra associated to the family of ideals It(a) with t, a > 0 and 

t + a ≤ n + 1 is Koszul, Cohen–Macaulay and normal.

Statements (1), (3) and (4) hold analogously for the initial ideals, in particular the 
primary components of in(I) can be taken to be powers of ideals of variables.

The patters highlighted in Theorem 1.3, i.e. the linearity of the resolution of products, 
good homological properties of multi-Rees algebras and the existence of a primary de-
composition whose components are powers of primes, are present also in other interesting 
situations that we discuss in [9]. In particular in [9] we highlight the analogy between 
the ideals that we discuss in this paper and the (monomial) Borel-fixed ideals pointing 
out that both families have a tendency to give linear resolutions. Unfortunately we do 
not have an explanation, not even an heuristic one, why the Borel action is related to 
the linearity of the resolution.

One could consider a more general definition of northeast ideals of maximal minors, 
allowing also more rows than columns. Unfortunately the results of Theorem 1.3 do not 
hold in this generality. Let I ′t(a) denote the ideal of the t-minors in the submatrix formed 
by the last t columns and first a rows (with a > t). For example, one can check in a 3 ×3
matrix that the product of (Borel-fixed ideals of maximal minors) I1(2)I2(1)I ′1(2)I ′2(3)
does not have a linear resolution.

The proofs of the results of [3] are based on the classical straightening law for mi-
nors of Doubillet, Rota, and Stein. For generalities, historical remarks on the classical 
straightening law for minors and its applications to the study of determinantal ideals we 
refer the reader to [13].

The point is that the ideals considered in [3] have K-bases of classical standard mono-
mials. This is no longer true for the ideals It(a) in general, let alone for products of such 
ideals. Therefore we had to develop a more general notion of “normal form” that we 
call northeast canonical, see Section 4. Using this type of normal form we will prove the 
crucial description of the initial ideal in(I) as an intersection of powers of the ideals 
in(It(a)).

The northeast canonical form allows us to prove that the multi-Rees algebra defined 
by all ideals It(a) is a normal domain and is defined by a Gröbner basis of quadrics. 
A theorem of Blum [5] then implies that all our ideals have linear fee resolutions. The 
same statements have counterparts for the initial ideals and their multi-Rees algebra as 
well.
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We conclude the paper with a discussion of the Gorenstein property of certain multi-
graded Rees rings and the factoriality of certain fiber rings that come up in connection 
with the northeast ideals. In particular, we prove that the multigraded Rees algebra 
associated to a strictly ascending chain of ideals J1 ⊂ J2 · · · ⊂ Jv is Gorenstein, provided 
each Ji belongs to the family of the It(a) and has height i.

The results of this paper originated from extensive computations with the systems 
CoCoA [1], Macaulay 2 [22], Normaliz [12] and Singular [18].

2. Minors, diagonals and the straightening law

Let K be a field and X = (xij) an m × n matrix of indeterminates. The ideals we 
want to investigate live in

R = K[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n].

Let Xt(a) be the submatrix of X that consists of the entries xij with 1 ≤ i ≤ t and 
a ≤ j ≤ n. We call it a northeast submatrix since it sits in the right upper corner of X. 
The ideal

It(a) = It(Xt(a))

is called a northeast ideal of maximal minors, or a northeast ideal for short. In the 
following “northeast” will be abbreviated by “NE”. Since It(a) = 0 if t + a > n + 1, we 
will always assume that t + a ≤ n + 1.

We fix a monomial order on R that fits the NE ideals very well: the lexicographic order 
>lex (or simply >) in which x11 is the largest indeterminate, followed by the elements 
in the first row of X, then the elements in the second row from left to right, etc. More 
formally:

xij >lex xuv if i < u or i = u and j < v.

The minor

δ = det(xibj : i, j = 1, . . . , t), b1 < · · · < bt,

is denoted by [b1 . . . bt]. The shape |δ| is the number t of rows. The initial monomial of 
δ is the diagonal

〈b1 . . . bt〉 = x1b1 · · ·xtbt .

Therefore < is a diagonal monomial order. All our theorems remain valid for an ar-
bitrary diagonal monomial order ≺ since we will see that for our ideals I the initial 
ideals in<lex(I) are generated by initial monomials of products of minors. Therefore 
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in<lex(I) ⊂ in≺(I), and the inclusion implies equality. In view of this observation we will 
suppress the reference to the monomial order in denoting initial ideals, always assuming 
that the monomial order is diagonal. However, when we compare single monomials, the 
lexicographic order introduced above will be used.

In the straightening law, Theorem 2.2, we need a partial order for the minors and also 
for their initial monomials:

[b1 . . . bt] ≤str [c1 . . . cu] ⇐⇒ 〈b1 . . . bt〉 ≤str 〈c1 . . . cu〉

⇐⇒ t ≥ u and bi ≤ ci, i = 1, . . . , u.

It is easy to see that the minors as well as their initial monomials form a lattice with 
the meet and join operations defined as follows: if t ≥ u,

[b1 . . . bt] ∨ [c1 . . . cu] = [c1 . . . cu] ∨ [b1 . . . bt] = [max(b1, c1), . . . ,max(bu, cu)],

[b1 . . . bt] ∧ [c1 . . . cu] = [c1 . . . cu] ∧ [b1 . . . bt] = [min(b1, c1), . . . ,min(bu, cu), bt+1, . . . , bt].

The meet and join of two diagonals are defined in the same way: just replace [· · · ] by 〈· · · 〉.
A product

Δ = δ1 · · · δp, δi = [bi1 . . . biti ], i = 1, . . . , p,

of minors is called a tableau. The shape of Δ is the p-tuple |Δ| = (t1, . . . , tp), provided 
t1 ≥ · · · ≥ tp, a condition that does not restrict us in any way.

If

δ1 ≤str · · · ≤str δp

then we say that Δ is a standard tableau. In the context of determinantal ideals one 
usually has to deal with bitableaux, but in this paper the row indices are always fixed 
so that we only need to take care of the column indices. Since the product does not 
determine the order of its factors, one should distinguish the sequence of minors from 
the product if one wants to be formally correct; as usually, we tacitly assume that such 
products come with an order of their factors.

Proposition 2.1. Let Δ be a tableau. Then there exists a unique standard tableau Σ such 
that in(Δ) = in(Σ). Furthermore Δ and Σ have the same shape.

This is easy to see: if Δ = δ1 · · · δp is not standard, then there exist i and j such that 
δi and δj are not comparable. Since in(δiδj) = in((δi∧δj)(δi∨δj)) we can replace δiδj by 
an ordered pair of factors, and after finitely many such operations we reach a standard 
tableau. It is evidently unique.

That the row indices are not only fixed, but always given by 1, . . . , t for a t-minor 
simplifies the straightening law.
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Theorem 2.2.

(1) Let δ = [b1 . . . bt] and σ = [c1 . . . cu] be minors. Then there exist uniquely determined 
minors ηi, ζi and coefficients λi ∈ K, i = 1, . . . , q, q ≥ 0, such that

δσ = (δ ∧ σ)(δ ∨ σ) + λ1η1ζ1 + · · · + λqηqζq,

ηi ≤str δ ∧ σ, δi ∨ σ ≤str ζi, i = 1, . . . , q,

in(δσ) = in((δ ∧ σ)(δ ∨ σ)) > in(η1ζ1) > · · · > in(ηqζq).

(2) For every tableau Δ there exist standard tableaux Σ0 . . . , Σq of the same shape as Δ
and uniquely determined coefficients λ1, . . . , λq, q ≥ 0, such that

Δ = Δ0 + λ1Σ1 + · · · + λpΣp, in(Δ) = in(Σ0) > in(Σ1) > · · · > in(Σq).

Note that the K-algebra generated by the t-minors of the first t-rows for t = 1, . . . , m
is the coordinate of the flag variety. Hence Theorem 2.2 can be deduced from [25, 14.11], 
and can also be derived from [13, (11.3) and (11.4)], taking into account Proposition 2.1.

3. Initial ideals and primary decomposition

The main objects of this paper are products of ideals It(a). We will access them via 
the initial ideals

Jt(a) = in(It(a)).

Our first goal is to determine the primary decompositions of such products along with 
their initial ideals. For the powers of a single ideal It(a) the answer is well-known:

Theorem 3.1.

(1) The powers of the prime ideal It(a) are primary. In other words, the ordinary and 
the symbolic powers of It(a) coincide.

(2) Jt(a) is generated by the initial monomials in(δ) of the t-minors of It(a).
(3) in(It(a)k) = Jt(a)k for all k ≥ 1.

See [13, (9.18)] for the first statement and [14] for the remaining statements. The 
results just quoted are formulated for a = 1, but they immediately extend to general a
since polynomial extensions of the ground ring are harmless.

The primary decompositions of the powers of Jt(a) have been determined in [8, 
Prop. 7.2]. We specify the technical details only as far as they are needed in this ar-
ticle:
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Theorem 3.2. The ideal Jt(a) is radical. It is the intersection Jt(a) =
⋂

i Pi of prime 
ideals Pi that are generated by (n − a − t + 2) indeterminates, and Jt(a)k =

⋂
i P

k
i for 

all k. In particular, Jt(a)k has no embedded primes and it is integrally closed.

For the precise description of the set of prime ideals Pi appearing in Theorem 3.2 we 
refer the reader to [8].

Now we introduce the main players formally:

Definition 3.3. A NE-pattern is a finite sequence 
(
(t1, a1), . . . , (tw, aw)

)
of pairs of positive 

natural numbers with ti + ai ≤ n + 1 for i = 1, . . . , w and which is ordered according to 
the following rule: if 1 ≤ i < j ≤ w, then

ai ≤ aj and ti ≥ tj if ai = aj .

Let S =
(
(t1, a1), . . . , (tw, aw)

)
be a NE-pattern. A pure NE-tableau of pattern S is a 

product of minors

Δ = δ1 · · · δw, such that δi is a ti-minor of Xti(ai), i = 1, . . . , w.

An NE-tableau is a product MΔ of a monomial M in the indeterminates xij and a 
pure NE-tableau Δ.

The NE-ideal of pattern S is the ideal generated by all (pure) NE-tableaux of pat-
tern S. In other words, it is the ideal

IS = It1(a1) · · · Itw(aw).

Furthermore we set

JS = in(IS).

So IS is simply a product of ideals of type It(a) where, by convention, the factors 
have been ordered according to the rule specified in 3.3.

For S =
(
(t1, a1), . . . , (tw, aw)

)
and a pair (u, b) we set

eub(S) = |{i : b ≤ ai and u ≤ ti}|.

Note that b ≤ ai and u ≤ ti is indeed equivalent to Iti(ai) ⊂ Iu(b).

Theorem 3.4. Let S =
(
(t1, a1), . . . , (tw, aw)

)
be a NE-pattern. Then the following hold:

JS = Jt1(a1) · · ·Jtw(aw); (3.1)

JS =
⋂

Ju(b)eub(S); (3.2)

u,b
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IS =
⋂
u,b

Iu(b)eub(S). (3.3)

Equation (3.3) gives a primary decomposition of IS. The ideals IS and JS are integrally 
closed.

As soon as the equation (3.3) will have been proved, it indeed yields a primary decom-
position of IS since all the ideals Iu(b)e are primary, being powers of ideals of maximal 
minors. The intersection in (3.3) is almost always redundant. An irredundant decompo-
sition will be described in Proposition 3.9. Together with Theorem 3.2, equation (3.2)
gives a primary decomposition of JS. The ideals IS and JS are integrally closed because 
the ideals appearing in their primary decomposition are symbolic powers of prime ideals 
and therefore integrally closed.

The special case of Theorem 3.4 in which all ai are equal has been proved in [3, 
Corollary 2.3] and [3, Theorem 3.3]. It will be used in the proof of the theorem. (Note 
however that in [3] our ideal IS is denoted by JS .)

Proof of Theorem 3.4. By the definition of eub(S) we have

IS ⊂
⋂
u,b

Iu(b)eub(S).

This implies the chain of inclusions

w∏
i=1

Jti(ai) ⊂ JS ⊂ in
(⋂

u,b

Iu(b)eub(S)
)

⊂
⋂
u,b

in
(
Iu(b)eub(S)) =

⋂
u,b

Ju(b)eub(S)

where we have used Theorem 3.1 for the equality of the two rightmost terms. If

⋂
u,b

Ju(b)eub(S) ⊂
w∏
i=1

Jti(ai)) (3.4)

as well, then we have equality throughout, implying (3.1) and (3.2). Then (3.3) follows 
since two ideals with the same initial ideal must coincide if one is contained in the other. 
Therefore (3.4) is the crucial inclusion.

We prove it by induction on w. Let M be a monomial in 
⋂

u,b Ju(b)eub(S). Then M is 
contained in Jtw(aw). This ideal is generated by all diagonals 〈f1 . . . ftw〉 with f1 ≥ aw
by Theorem 3.1(2). Among all these diagonals we choose the lexicographically smallest
and call it F .

Set T =
(
(t1, a1), . . . , (tw−1, aw−1)

)
. It is enough to show that M/F ∈

⋂
u,b Ju(b)eub(T ), 

and for this containment we must show M/F ∈ Ju(b)eub(T ) for all u and b. Evidently
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eub(T ) =

⎧⎪⎪⎨
⎪⎪⎩
eub(S), b ≤ aw, u > tw,

eub(S) − 1, b ≤ aw, u ≤ tw,

0, else.

If etwb(T ) = 0, there is nothing to show. If b ≤ aw, u > tw, we have etwb(S) ≥ eub(S) +1
because Itw(aw) contributes to etwb(S), but not to eub(S). This observation is important 
for the application of Lemma 3.5 that covers this case. The case b ≤ aw, u ≤ tw is 
Lemma 3.6. �
Lemma 3.5. Let k ∈ N. Let b ≤ a and u > t. Let M ∈ Ju(b)k ∩ Jt(b)k+1 ∩ Jt(a) be a 
monomial and let F be the lexicographic smallest diagonal of length t that divides M . 
Then M/F ∈ Ju(b)k.

Proof. We can apply [3, Theorem 3.3] to Ju(b)k ∩ Jt(b)k+1: M is divided by a product 
D1 · · ·DkE where D1, . . . , Dk are diagonals of length u starting in column b or further 
right, and E is such a diagonal of length t. Even more: Ju(b)k ∩ Jt(b)k+1 is generated 
by the initial monomials of the standard tableaux in Iu(b) ∩ It(b)k+1 (Proposition 2.1). 
Therefore we can assume that D1 ≤str · · · ≤str Dk ≤str E.

The greatest common divisor of F and D1 · · ·DkE must divide E—if not we could 
replace F by F ∨E and obtain a lexicographically smaller diagonal of length t. Therefore 
D1 · · ·Dk divides M/F . �
Lemma 3.6. Let k ∈ N. Let b ≤ a and u ≤ t. Let M ∈ Ju(b)k ∩ Jt(a) be a monomial 
and let F be the lexicographic smallest diagonal of length t that divides M . Then M/F ∈
Ju(b)k−1.

Proof. By Theorem 3.1 here exist diagonals D1, . . . , Dk such of length u such that 
D1 · · ·Dk divides M and D1 ≤str · · · ≤str Dk. Division by F can “destroy” more than 
one of these diagonals but, as we will see, the fragments can be joined to form k − 1
diagonals of length u as desired.

We explain the argument first by an example: M = x11x12x23x24x34 ∈ J2(1)2∩J3(2). 
The lexicographically smallest diagonal of length 3 is 〈234〉. It intersects both 2-diagonals 
〈13〉 and 〈24〉, but we can produce the new 2-diagonal 〈14〉 from the two fragments, and 
are done in this case: M ∈ J2(1)J3(2).

Let r1 ≤ · · · ≤ rp be the rows in which F intersects one of the Di, and choose gi
maximal such that F intersects Dgi in row ri. In view of the order of the Di and by 
the choice of F as the lexicographically smallest t-diagonal dividing M , we must have 
gi+1 ≤ gi for i = 1, . . . , p − 1.

Every time that F “jumps” to another diagonal, i.e., if gi > gi+1, we concatenate 
the entries in rows 1, . . . , ri of Dgi+1 with the entries in rows ri + 1, . . . , u of Dgi , thus 
producing a new diagonal. (Note that F cannot return to Dgi+1 in rows ≤ ri and has 
not touched Dgi in the other rows.) Only one u-diagonal is lost this way. �
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Our next goal is to identify the irredundant components in the primary decomposition 
of IS described in Theorem 3.4. To this end we prove the following facts.

Lemma 3.7. Let S be a NE-pattern and let D be a subsequence of S. Set T = S \ D. 
Then IS : ID = IT .

Proof. By induction on the cardinality of D, we may assume right away D is a singleton. 
Using Theorem 3.4 the desired equality boils down to the proof that for every k > 0
one has Iu(b)k : It(a) = Iu(b)k−1 if (b, u) ≤ (t, a), and Iu(b)k : It(a) = Iu(b)k otherwise. 
Both equalities follow from the fact that Iu(b) has primary powers. �
Lemma 3.8. Let (t, a), (u, b) ∈ N

2
+ such that t ≤ u, a ≤ b and u + b ≤ n + 1. Then 

It(a)Iu(b) ⊂ It(b)Iu(a). Actually, It(a) is an associated prime to R/It(b)Iu(a).

Proof. For the inclusion It(a)Iu(b) ⊂ It(b)Iu(a), in view of Theorem 3.4 it is enough 
to show that evc(S) ≥ evc(T ) for every (v, c) where S = {(t, a), (u, b)} and T =
{(t, b), (u, a)}, and this is easy.

The inclusion just proved shows one inclusion of the equality 
(
It(b)Iu(a)

)
: Iu(b) =

It(a). The other follows from the fact that It(a) is prime and contains It(b)Iu(a). �
Now we are ready to prove:

Proposition 3.9. Given S, let Y be the set of the elements (t, a) ∈ N
2
+, (t, a) /∈ S, such 

that there exists (u, b) ∈ N
2
+ for which (t, b), (u, a) ∈ S and t < u, a < b. Then we have 

the following primary decomposition:

IS =
⋂

(v,c)∈S∪Y

Iv(c)evc(S)

which is irredundant provided all the points (u, b) above can be taken so that u +b ≤ n +1. 
In particular, for fixed S, the given primary decomposition above is irredundant if n is 
sufficiently large, and in this case all powers IkS have the same associated prime ideals 
as IS.

Proof. The equality holds because of Theorem 3.4 and because if (v, c) /∈ S ∪ Y then 
evc(S) is either equal to ev+1,c(S) or ev,c+1(S).

It remains to show that the decomposition is irredundant under the extra assumption. 
We can equivalently prove that every prime It(a) with (t, a) ∈ S ∪ Y is associated 
to R/IS . For (t, a) ∈ S this follows from a general fact: for prime ideals P1, . . . , Pr �= 0
in a noetherian domain A each Pi is associated to A/I, I = P1 · · ·Pr. This follows easily 
by localization; one only needs that IAPi

�= 0 for all i.
Now let (t, a) ∈ Y and (t, b), (u, a) ∈ S and such that t < u and a < b and u +b ≤ n +1. 

Set D = S \ {(t, b), (u, a)}. Then by 3.7 we have IS : ID = It(b)Iu(a), and by 3.8 It(a) is 
associated to R/It(b)Iu(a). It follows that It(a) is associated to R/IS as well.
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For the last statement we note that the set Y does not change if we pass from IS
to IkS . �

Let us illustrate Theorem 3.4 and Proposition 3.9 by two examples.

Example 3.10. Let n ≥ 5 and S = {(3, 1), (3, 3), (2, 3), (1, 4)} so that

IS = I3(1)I3(3)I2(3)I1(4).

The ideal and the values eub(S) are given by the following tables:

•
•

• •

4© 3 3© 1 0 0

3© 2 2 0 0 0

2 1 1 0 0 0

The boxed and circled values are the essential ones and give rise to the irredundant 
components. The boxed correspond to elements in S and the circled to elements in Y . 
Hence a irredundant primary decomposition of IS is:

IS = I1(4) ∩ I1(3)3 ∩ I2(3)2 ∩ I3(3) ∩ I1(1)4 ∩ I2(1)3 ∩ I3(1)2.

Example 3.11. If the criterion in Proposition 3.9 does not apply, It(a) may nevertheless 
be associated to R/IS . We choose n = 4.

First, let S = {(3, 1), (2, 2), (1, 3)}. Then (1, 1) ∈ Y and the corresponding “(u, b)” is 
(3, 3) which does not satisfy u + b ≤ n + 1. Unexpectedly, I1(1) is associated to IS .

Second, let S = {(3, 1), (1, 3)}. Again (1, 1) ∈ Y , and it has the same corresponding 
(u, b). But in this case I1(1) is not associated to IS .

4. The northeast straightening law

It is now crucial to have a “normal form” for elements of IS. For this purpose we select 
a K-basis that involves the natural system of generators, the NE-tableaux Δ of pattern 
S. It has already become apparent in the proof of Lemma 3.6 that we cannot simply 
require that Δ is a standard tableau, and the following example for S =

(
(1, 2), (3, 3)

)
shows this explicitly:

[14][234] = [134][24] − [124][34].

The difficulty is that the transformations occurring in the standard straightening proce-
dure do not respect the bounds of the NE-ideals in general. However, they do so in an 
important special case to which we will come back.

Let MΔ be a NE-tableau. A monomial 〈c1, . . . , ct〉 is called a diagonal of type (t,a) 
in MΔ if c1 ≥ a and 〈c1, . . . , ct〉 | in(MΔ) = M in(Δ).
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Definition 4.1. Let S =
(
(t1, a1), . . . , (tw, aw)

)
be a NE-pattern. A NE-tableau MΔ

of pattern S, Δ = δ1 · · · δw, is S-canonical if in(δj) is the lexicographically smallest 
diagonal of type (tj , aj) in the NE-tableau Mδ1 · · · δj of pattern 

(
(t1, a1, . . . , (tj , aj)

)
for 

j = 1, . . . , w.

As an example we consider the monomial M = x11x12x13x23x24x25x35, graphically 
symbolized by the following table:

• • •
• • •

•

It depends on the pattern S which S-canonical tableau has M as its initial monomial.

(1) For S =
(
(2, 1), (3, 2), (2, 2)

)
the canonical tableau with initial monomial M is

[13][245][35].

(2) For S =
(
(2, 1), (2, 2), (3, 3)

)
it is

[13][25][345].

(3) For S =
(
(2, 1), (2, 2), (2, 3)

)
it is

x35[13][24][35].

Note that different canonical NE-tableaux of the same pattern are K-linearly inde-
pendent since they have different initial monomials: if the pattern S is fixed, then an 
S-canonical tableau is uniquely determined by its initial monomial. In fact, the diagonals 
that are split off successively are uniquely determined, and each diagonal belongs to a 
unique minor.

We can now formulate the NE-straightening law:

Theorem 4.2. Let S =
(
(t1, a1), . . . , (tw, aw)

)
be a NE-pattern and x ∈ IS. Then there 

exist uniquely determined S-canonical NE-tableaux MiΓi, i = 0, . . . , p, and coefficients 
λi ∈ K such that

x = λ0M0Γ0 + λ1M1Γ1 + · · · + λpMpΓp

and

in(x) = in(M0Γ0) > in(M1Γ1) > · · · > in(MpΓp).

Proof. Let λ0 be the initial coefficient of x. It is enough to show the existence of M0Γ0
since in(x − λ0M0Γ0) < in(x), and we can apply induction.
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Clearly in(x) ∈ in(IS). The factorization of the monomial in(x) constructed recur-
sively in the proof of Theorem 3.4 is exactly the factorization that gives it the structure 
M0 in(Γ0) for an S-canonical NE-tableau of pattern S: it starts by extracting the lexico-
graphically smallest diagonal Dw of length tw from in(x), and applies the same procedure 
to in(x)/Dw recursively. As pointed out above, this factorization belongs to a unique 
S-canonical tableau. �

We call Theorem 4.2 a straightening law, since it generalizes the “ordinary” straight-
ening law to some extent:

Theorem 4.3. Suppose the NE-pattern S =
(
(t1, a1), . . . , (tw, aw)

)
satisfies the condition 

ti ≥ ti+1 for i = 1, . . . , w − 1, and let Δ be pure NE-tableau of pattern S. Then the 
representation

Δ = Δ0 + λ1Σ1 + · · · + λpΣp

of Theorem 2.2(2) is the S-canonical representation.

Proof. The only question that could arise is whether the representation is S-canonical. 
It is successively obtained from Δ by applying the straightening law to pairs of minors:

δσ = (δ ∧ σ)(δ∨σ) + λ1η1ζ1 + · · · + λqηqζq, ηi ≤str δ∧σ, δi ∨ σ ≤str ζi, i = 1, . . . , q,

as in Theorem 2.2(1). Therefore it is enough to consider the case w = 2, S =
((t, a), (u, b)), a ≤ b, t ≥ u, δ = [d1 . . . dt], σ = [s1 . . . su]. The smallest column index is 
min(d1, s1) ≥ a. So all minors ζi belong to It(a). The minors ηi satisfy the inequalities 
ηi ≥str δ and ηi ≥str σ. Therefore they belong to Iu(b). �

For later use we single out two special cases of Theorem 4.2.

(1) For δ ∈ It(a), |δ| = t, σ ∈ Iu(b), |σ| = u, there is an equation

δσ = δ0σ0 + λ1δ1σ1 + . . . λpδpσp (4.1)

with λ1, . . . , λp ∈ K and canonical NE-tableaux δ0σ0, . . . δpσp of pattern ((t.a), (u, b))
and in(δσ) = in(δ0σ0) > in(δ1σ1) + . . . in(δpσp).

(2) With the same notation for δ, for every indeterminate xuv there is an equation

xuvδ = xu0v0δ0 + λ1xu1v1δ1 + · · · + xupvpδp (4.2)

with λ1, . . . , λp ∈ K, xu0v0δ0, . . . , xupvpδp canonical of pattern (t, a) and in(xuvδ) =
in(xu0v0δ0) > in(xu1v1δ1) > in(xupvpδp).
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Equation (4.2) is nothing but a linear syzygy of t-minors (unless it is a tautology). 
These syzygies have sneaked in through the use of the theorem that the t-minors form a 
Gröbner basis of It(a).

We complement the discussion of canonical decompositions by showing that a non-
canonical tableau can be recognized by comparing the factors pairwise.

Lemma 4.4. Let S be a NE-pattern and MΔ, Δ = δ1 · · · δw, be a NE-tableau of pattern S. 
If MΔ is not S-canonical, then at least one of the following two cases occurs:

(1) there exist a divisor xij of M and an index k such that xijδk is not NE-canonical of 
pattern (tk, ak);

(2) there exist indices q and k, q < k, such that δqδk is not ((tq, aq), (tk, ak))-canonical.

Proof. We choose k maximal with the property that in(δk) is not the lexicographi-
cally smallest (tk, ak)-diagonal dividing in(Mδ1 . . . δk). Set t = tk, δ = [d1 . . . dt] and let 
〈e1 . . . et〉 be the lexicographically smallest such diagonal. Then choose r maximal with 
the property that dr < er. Since xrer divides in(Mδ1 · · · δk), at least one of the following 
two cases must hold:

(1) xrer | M ;
(2) xrer | in(δq) for some q < k.

In the first case xrerδk is not (tk, ak)-canonical, and in the second case δqδk fits case (2) 
of the lemma: 〈d1 . . . dr−1erdr+1 . . . et〉 is lexicographically smaller than 〈d1 . . . dt〉 and 
divides in(xrerδk) or in(δqδk), respectively. �

Lemma 4.4 and the equations (4.1) and (4.2) indicate that the S-canonical represen-
tation of an element x ∈ IS can be obtained by the successive application of quadratic 
relations. This is indeed true and will be formalized in the next section.

5. The multi-Rees algebra

The natural object for the simultaneous study of the ideals IS is the multi-Rees 
algebra

R = R[It(a)Tta : 1 ≤ t, a ≤ n, t + a ≤ n + 1]

where the Tta are new indeterminates It is a subalgebra of the polynomial ring

R[Tta : 1 ≤ t, a ≤ n, t + a ≤ n + 1],
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and the products of the ideals It(a) appear as the coefficient ideals of the monomials 
in the indeterminates Tta. These monomials are parametrized by the patterns S: for 
S = ((t1, a1), . . . , (tw, aw)) we set

TS = Tt1a1 · · ·Ttwaw
.

Then

R =
⊕
S

IST
S .

The monomial order on R is extended to R[Tta : 1 ≤ a ≤ n, 1 ≤ t + a ≤ n + 1] in an 
arbitrary way. The extension will be denoted by <lex as well.

Alongside with R we consider the multi-Rees algebra Rin defined by the initial ideals 
Jt(a):

Rin = R[Jt(a)Tta : 1 ≤ a ≤ n, 1 ≤ t + a ≤ n + 1].

As always in this context, there is a second “initial” object that comes into play, namely 
the initial subalgebra of R:

in(R) =
⊕
S

JST
S .

(Recall that JS = in(IS) by definition.) From Theorem 3.4 one can easily derive a first 
structural result on R and Rin.

Theorem 5.1.

(1) With respect to any extension of the monomial order on R to R[Tta : 1 ≤ a ≤ n, 1 ≤
t + a ≤ n + 1] one has in(R) = Rin.

(2) R and Rin are normal Cohen–Macaulay domains.

Proof. The equation in(R) = Rin is just equation (3.1) read simultaneously for all 
NE-patterns S.

The normality of R and Rin follows from the fact that all the ideals IS and JS are 
integrally closed by Theorem 3.4. We observe that Rin is a normal monoid domain, and 
therefore Cohen–Macaulay by Hochster’s theorem. Finally we use the transfer of the 
Cohen–Macaulay property from in(R) = Rin to R, see [16]. �

In order to gain insight into the minimal free resolutions of the ideals IS over R we 
must understand R as the residue class ring of a polynomial ring over K. To this end 
we introduce a variable zaδ for every bound a and every t-minor δ ∈ It(a). Let
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S = R[zaδ : |δ| = t, t + a ≤ n + 1, δ ∈ It(a)].

Viewed as a K-algebra, S needs also the indeterminates xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. We 
want to study the surjective R-algebra homomorphism

Φ : S → R, Φ(zaδ) = δTa|δ|, Φ|R = id .

We introduce an auxiliary monomial order on S by first ordering the indeterminates. 
The xij are ordered as in R. Next we set

xij > zaδ

for all i, j, a, δ, and

zaδ > zbσ ⇐⇒ a < b or a = b and in(δ) >lex in(σ).

This order of the indeterminates is extended to the reverse lexicographic order ≤revlex
it induces on the monomials in S .

Now we define the main monomial order on S as follows. For monomials Z1 and Z2
in xij and zaδ we set

Z1 ≺ Z2 ⇐⇒ in(Φ(Z1)) <lex in(Φ(Z2)) or

in(Φ(Z1)) = in(Φ(Z2)) and Z1 <revlex Z2.

In other words, we pull the monomial order on R back to S and then use our auxiliary 
order to separate monomials with the same image under Φ.

Theorem 5.2.

(1) With respect to the monomial order ≺ the ideal I = Ker Φ has a Gröbner basis of 
quadrics, given by the equations (4.1) and (4.2) (interpreted as elements in I ).

(2) In particular R is a Koszul algebra.
(3) All the ideals IS have linear minimal free resolutions over R.

Proof. Equation (4.1) defines the polynomial

zaδzbσ −
(
zaδ0zbσ0 + λ1zaδ1zbσ1 + · · · + λwzaδwzbσw

)

in I . By the definition of ≺ we first observe that only zaδzbσ or zaδ0zbσ0 can be the initial 
monomial. But then the auxiliary reverse lexicographic oder makes zaδzbσ the leading 
monomial. Similarly one sees that xuvzaδ is the leading monomial of the polynomial in 
I defined by (4.2).
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Let J be the ideal generated by all monomials Z = Mza1δ1 · · · zawδw , M ∈ R, for 
which Mδ1 · · · δw is not canonical of pattern S = ((|δ1|, a1), . . . , (|δ1|, a1)). It follows from 
Lemma 4.4 that MMza1δ1 · · · zawδw then contains a factor zaiδizjδj or a factor xuvzajδj

that is not mapped to a canonical tableau of the associated pattern. In connection wit 
the argument above, this observation implies that J ⊂ in≺(I ).

On the other hand the set of monomials that do not belong to J form a K-basis of 
S /I = R by Theorem 4.2. This is only possible if J = in(I ).

Since I has a Gröbner basis of quadratic polynomials, R = S /I is a Koszul algebra. 
By (the multigraded version of) a theorem of Blum [5] the linearity of the resolutions 
follows from the Koszul property of the multi-Rees algebra. �

In addition to Φ, we have a surjective R-algebra homomorphism

Ψ : S → Rin, Ψ(za,δ) = in(δ)Ta|δ|, Φ|R = id .

Theorem 5.3.

(1) With respect to the monomial order ≺ the ideal B = Ker Ψ has a Gröbner basis 
of quadrics, given by the binomials resulting from the equations in(δσ) = in(δ0σ0)
in (4.1) and in(xuvδ) = in(xu0v0δ0) in (4.2) (interpreted as elements in I ).

(2) In particular Rin is a Koszul algebra.
(3) All the ideals JS have linear minimal free resolutions over R.

Proof. The first statement is proved completely analogous the first statement in Theo-
rem 5.2, and the second and third follow from it in the same way as for Theorem 5.2. �
6. Some Gorenstein Rees rings and some factorial fiber rings

In this section we will consider multi-Rees algebras defined by some of the ideals It(a). 
More generally, if I1, . . . , Ip are ideals in R, we let

R(I1, . . . , Ip) = R[IiTi : i = 1, . . . , p] ⊂ R[T1, . . . , Tp]

denote the multi-Rees algebra defined by I1, . . . , It. Note that we could as well have 
defined it by taking ordinary Rees algebras successively, since

R(I1, . . . , Ip) = B
(
IpB

)
where B = R(I1, . . . , Ip−1).

Some of the Rees rings defined by NE-ideals of minors are Gorenstein. This is not 
true in general for the “total” multi-Rees rings of the last section: the first potential 
non-Gorenstein example is a 2 × 3-matrix, and the corresponding total multi-Rees ring 
is indeed not Gorenstein. Nevertheless, the multi-Rees rings defined by certain selections 
of the ideals It(a) are Gorenstein, as we will see in the following.
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The ideals It(a) form a poset under inclusion. The minimal elements are the princi-
pal ideals It(n − t + 1) and the maximal element is I1(1), the ideal generated by the 
indeterminates in the first row of our matrix X. The next theorem states the Gorenstein 
property of the multi-Rees algebras defined by an unrefinable ascending chain in our 
poset that starts from a minimal element or a cover of a minimal element.

Theorem 6.1. Let It1(a1) ⊂ It2(a2) ⊂ · · · ⊂ Itp(ap) such that height It1(a1) = 1 or 2 and 
height Iti(ai) = 1 + height Iti−1(ai−1) for i = 2, . . . , p. Equivalently,

(1) a1 = n − t1 or a1 = n − t + 1;
(2) ti = ti−1 and ai = ai−1 − 1 or ti = ti−1 − 1 and ai = ai−1 for i = 2, . . . , p.

Then the multi-Rees algebra R
(
It1(a1), . . . , Itp(ap)

)
is Gorenstein and normal with divi-

sor class group Zp−1 or Zp, depending on whether a1 = n − t1 or a1 = n − t + 1.

Proof. Note that the smallest ideal is a principal ideal if a1 = n − t1 + 1. In 
this case R

(
It1(a1), . . . , Itp(atp)

)
is just (isomorphic to) a polynomial ring over 

R
(
It2(a2), . . . , Itp(ap)

)
, and a2 = n − t2. Since polynomial extensions do not affect 

the Gorenstein property, we can assume that a1 = n − t1.
Let R = R

(
It1(a1), . . . , Itp(ap)

)
, R′ = R

(
It1(a1), . . . , Itp−1(ap−1)

)
, and Q =

Itp(ap)R′. Then R is just the ordinary Rees algebra of the ideal Q of R′, and by induction 
on p it is enough to understand the extension of R′ to R.

By the next lemma, Q is a prime ideal of height 2 such that QR′
Q is generated by 2

elements. Moreover, R′ and R are normal domains since they are retracts of the total 
multi-Rees algebra of the last section (or by Theorem 3.4). Under these conditions a 
theorem of Herzog and Vasconcelos [23, Theorem(c), p. 183] shows that the canonical 
module of R has the same divisor class as the canonical module of R′ (extended to R):

cl(ωR) = cl(ωR′) + (htQ− 2)cl(QR) = cl(ωR′) ∈ Cl(R) = Cl(R′) ⊕ Z.

By induction R′ is Gorenstein, cl(ωR′) = 0. Therefore R is Gorenstein as well, and we 
are done. The assertion on the divisor class group follows as well. �
Lemma 6.2. With the notation of the preceding proof, Q is a prime ideal of height 2 in 
R′ such that QR′

Q is generated by 2 elements.

Proof. The most difficult claim is the primeness of Q. We show primeness of a larger 
class of ideals, namely all ideals Iu(b)R′ such that Iu(b) ⊃ Itp−1(ap−1). Set P = Iu(b).

As an auxiliary ring we consider the multi-Rees algebra S = R(P, . . . , P ) with p − 1
“factors” P . For R′ as above one has S ⊃ R′ since P contains all the ideals defining R′. 
It follows from Equation (3.3) that

PR′ = PS ∩ R′.
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In fact, both algebras use the variables T1, . . . , Tp−1. The coefficient ideal of T e1
1 · · ·T ep−1

p−1
in PS is P 1+e1+···+ep−1 and its coefficient ideal in R′ is

It1(a1)e1 · · · Itp−1(ap−1)ep−1

whereas the coefficient ideal in PR′ is PIt1(a1)e1 · · · Itp−1(ap−1)ep−1 . Equation (3.3) im-
plies

PIt1(a1)e1 · · · Itp−1(ap−1)ep−1 = P 1+e1+···+ep−1 ∩ It1(a1)e1 · · · Itp−1(ap−1)ep−1 ,

and this is the desired equality.
The primeness of PR′ follows if PS is a prime ideal. The algebra S is the Segre 

product of the polynomial ring in p − 1 variables over K and the ordinary Rees algebra 
S = R[PT ]. Consequently R′/PR′ is the Segre product of the same polynomial ring and 
the associated graded ring S/PS of P . But the latter is an integral domain [13, (9.17)].

The smallest choice for P is Itp−1(ap−1). This nonzero prime ideal is properly contained 
in Q. Therefore htQ ≥ 2. In order to finish the proof it remains to show that QR′

Q is 
generated by 2 elements. The indeterminate x1n in the right upper corner of X is not 
contained in Q if tp > 1. We can invert it and, roughly speaking, reduce all minor sizes 
and n by 1. This is a standard localization argument; see [13, (2.4)] (where it is given 
for x11). Therefore we can assume that tp = 1.

If even p = 1, then a1 = n − 1, and P is evidently generated by 2 elements. So 
suppose that p > 1. There are two cases left, namely tp−1 = 1, ap−1 = ap − 1 or 
tp−1 = 2, ap−1 = ap.

In the first case we use the equations

x1i(x1nTp−1) = x1n(x1iTp−1), i ≥ ap−1 = ap + 1.

The element x1nTp−1 does not belong to Q, and becomes a unit in R′
Q. Thus QR′

Q is 
generated x1ap

and x1n.
In the other case one uses the linear syzygies of the 2-minors in I2(ap−1) with co-

efficients from the first row of X in order to show that QR′
Q is generated by x1n−1

and x1n. �
Remark 6.3. (a) An alternative proof of Theorem 6.1 can be given by toric methods. 
Using Theorem 3.2 one can describe the cone of the exponent vectors of in(R) (R as 
in Theorem 6.1) by inequalities. These inequalities have coefficients in {0, ±1}, and 1
occurs exactly one more time than −1. Therefore the exponent vector with all entries 
1 generates the interior of the cone of exponent vectors, which is the set of exponent 
vectors of the canonical module of in(R) by theorem of Danilov and Stanley [11, 6.3.5]. 
It follows that in(R) is Gorenstein and therefore R is also Gorenstein.

The opposite implication also works for the Gorenstein property since in(R) is known 
to be Cohen–Macaulay. For Cohen–Macaulay domains the Gorenstein property only 
depends on the Hilbert series by a theorem of Stanley [11, 4.4.6].
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(b) In general, extensions of the prime ideals It(a) to Rees algebras defined by collec-
tions of the ideals Iu(b) are not prime. However, by extending the intersection argument 
in the proof of Lemma 6.2 one can show that they are radical ideals.

A Cohen–Macaulay factorial domain is Gorenstein. So one may wonder whether the 
Rees rings discussed above can be factorial. But, apart from trivial exceptions, Rees rings 
cannot be factorial. On the other hand, the fiber rings have more chances to be factorial. 
The fiber ring F (I1, . . . , Ip) of associated to the multi-Rees ring of ideals Ii, i = 1, . . . , p
is defined as

F (I1, . . . , Ip) = R(I1, . . . , Ip)/mR(I1, . . . , Ip)

where m is the irrelevant maximal ideal of R. If each of the ideals Ii is generated by 
elements of the same degree, say di, the multi-fiber ring is a retract of the Rees ring, 
namely

F (I1, . . . , Ip) = K[(Ii)di
Ti : i = 1, . . . , p]

where (Ii)di
is the homogeneous component of degree di. It can of course be replaced by 

a system of degree di generators of Ii.
Let us consider a sequence (t1, a1), . . . , (tp, ap) such that t1 < · · · < tp and Ii = Iti(ai). 

In this case the multi-fiber ring can even be identified with the subalgebra

K[(Ii)ti : i = 1, . . . , p] (6.1)

of R (it is only essential that the degrees ti are pairwise different). Thus the multi-fiber 
ring is a subalgebra of the homogeneous coordinate ring of the flag variety of Kn. The 
latter is the subalgebra of K[X] (where X is an n ×n-matrix) generated by the t-minors 
of the first t rows, t = 1, . . . , n. The coordinate ring of the flag variety is factorial. See 
[21, p. 138] for an invariant-theoretic argument; an alternative proof is given below.

Theorem 6.4. Let t1 < · · · < tp and a1 ≥ · · · ≥ ap and Ii = Iti(ai) for i = 1, . . . , p. Then 
the multi-fiber ring F (I1, . . . , Ip) is factorial and therefore Gorenstein.

Proof. Set F = F (I1, . . . , Ip). In the first step we reduce the claim to the special case 
in which p = n and ti = i for i = 1, . . . , n. Starting from the given data, we augment 
X to have at least n rows. Changing the indeterminates for the embedding of F into 
a polynomial ring over R, we can assume that F = K[(Iti(ai))tiTti ]. Then we let G
be the multi-fiber ring defined by (1, b1), . . . , (n, bn) where bi = a1 if i < t1, bi = aj if 
tj ≤ i < tj+1, bj = at for j > tp. Consider the R-endomorphism Φ of R[T1, . . . , Tn] that 
maps all indeterminates Tti to themselves and the other Tj to 0. Then Φ is the identity 
on F and maps G onto F . Thus F is a retract of G. Since retracts of factorial rings are 
factorial, it is enough to consider G, and we have reduced the general claim to the special 
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case in which p = n and ti = i for i = 1, . . . , n. Moreover, we can use the embedding 
(6.1) to simplify notation.

Using the NE straightening law for pure (!) NE-tableaux one sees that x1n is a prime 
element in F . By the theorem of Gauß–Nagata, the passage to F [x−1

1n ] does not affect 
factoriality.

We repeat the localization argument of the proof of Theorem 6.1. Note that the linear 
syzygies of the t-minors in It(at) with coefficients x1i are polynomial equations of the 
algebra generators of F since a1 ≥ aj for j = 1, . . . , n. It follows that F [x−1

1n ] is a 
multi-fiber ring defined by minors of sizes 1, . . . , n − 1 over a Laurent polynomial ring. 
This does not harm us since we can replace K by a factorial ring of coefficients right 
from the start. This concludes the proof that F is factorial. As we will remark in 6.5, F is 
a Cohen–Macaulay domain, so we may conclude it is Gorenstein by virtue of Murthy’s 
theorem [11, 3.3.19]. �

Note that the theorem covers the flag variety coordinate ring for which all the bounds 
ai are equal to 1.

Remark 6.5. (a) In general the multi-fiber ring F (It1(a1), . . . , Itp(ap)) is not factorial. 
For example, for t + 2 ≤ n factoriality fails for F (It(1), It(2)) because of the Segre-type 
relations (fT1)(gT2) = (gT1)(fT2) for distinct t-minors f, g in It(2).

(b) The multi-fiber ring F (It1(a1), . . . , Itp(ap)) is a Cohen–Macaulay normal domain 
for every (t1, a1), . . . , (tp, ap), as can be seen via deformation to the initial algebras.

(c) In general F (It1(a1), . . . , Itp(ap)) is not Gorenstein, for example F (I1(1), I1(2)) is 
not Gorenstein when n ≥ 4. On the other hand, there is strong experimental evidence 
that the multi-fiber rings defined by sequences (t1, a1), . . . , (tp, ap) as in Theorem 6.1 are 
Gorenstein. In the case in which the ti are all equal, say equal to t, this is clearly true 
because the initial algebra of F (It(1), It(2), . . . , It(n + 1 − t)) coincides with the initial 
algebra of the coordinate ring of the Grassmannian G(t + 1, n + 1).
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