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The aim of this note is the following theorem.

THEOREM 1. Let K be an algebraically closed field, and L = HomK (K™, K").
Suppose that 1 ^ t ^ min (m, ri). Then
(a) the subvariety V = {(f>eL\ r k$ < /} can be defined set-theoretically by mn — t2 + \

equations, but not by fewer equations;
(b) the same holds for the corresponding projective variety P(F) <= P(L).

In order to give the most general version of Theorem 1, we introduce the following
notation: B is a commutative ring, l a n m x / i matrix of indeterminates, and It(X) the
ideal generated by the /-minors of Z in the polynomial ring B[X]. (We use Bruns and
Vetter [3] as a reference for the theory of determinantal ideals.) For an ideal J in a
commutative ring R, we call

ara / = min {k: there exist fx,... ,fk e R such that Rad / = Rad (/15... ,fk)}

the arithmetical rank of / .
Then Theorem 1 clearly is a consequence of the following.

THEOREM 2. With the notation just introduced,

for all t such that 1 ̂  t < min (m, n). Furthermore, the mn — t2 +1 elements generating
\t{X) up to radical can be chosen homogeneous.

The inequality < in Theorem 2 is a result of the first author; it will be used in
proving the converse. Therefore we restate [3, (5.21)]. It can be seen easily from its
proof that the mn — t2 +1 elements generating I^A') up to radical may be chosen
homogeneous; furthermore, this has been noted explicitly in Bruns [2, (2.1)].

LEMMA 1. Let B be a commutative ring. Then araIt(-^) ^mn — t2+\, and there
are mn — t2+\ homogeneous elements generating lt(X) up to radical for all t such that
1 < t ^ min (m, n).

The precise value of ara lt{X) has been found only in the trivial case t = 1 and the
cases (i) t = min (m, n) and (ii) t = 2 in characteristic zero. Case (i) was proved by
Hochster (compare the remark following the corollary below). The inequality ^ in (ii)
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is a result of Newstead [12, p. 180, Example (i)(a)]. Generalizing Newstead's
arguments, we derive the inequality ^ from the computation of a topological
invariant. (All the information on the topology of algebraic varieties tacitly used
below can be found in Lojasiewicz [10].)

LEMMA 2. With the notation of Theorem 1, let K = C, N = mn and k = mn-t2.
Then for every abelian group G,

HN+lc(L\V,G)^G.

(Here H denotes singular cohomology.) The higher cohomology groups vanish.

We draw a corollary regarding the algebraic cohomological dimension of
I=lt{X) in R = B[X],

c d / = max{/://^(M) ^ 0 for some finitely generated .K-module M),

Hj denoting cohomology with support in /. The conclusion strengthens Theorem 2
for torsionfree Z-algebras.

COROLLARY. Let B be a torsionfree Z-algebra. Then cd It(X) = mn -12 + 1 for all
t such that 1 ^ / ^ min (m, n).

Proof Since cdlt(X) ^ a.vaIt(X) (Hartshorne [7, p. 414, Example 2]), Lemma 1
implies cd lt(X) ^ mn -t2 +1. For B = C, the case G = C of Lemma 2 yields
c d L \ ^ ^ mn-t2 by virtue of [8, p. 146, Proposition 7.2 and p. 147, Theorem]. The
long exact sequence of cohomology then gives cdIt(X) ^mn-t2+\. One now
derives the general case from the flat base change property of local cohomology
via B = Z.

For t = min (m, n) the corollary has been proved by Hochster. His proof exploits
the fact that the subalgebra S generated by the maximal minors is a direct 5-summand
of K[X] if K is a field of characteristic zero (compare [3, (7.12)] or [9, 4.11]).

In contrast, if B has characteristic p > 0, with p prime, then

cdlt(X) = htI,(JT) = (m-t+\)(n-t+ 1)
by Peskine and Szpiro [13, p. 110, Proposition (4.1)] since lt(X) is a perfect ideal by
the theorem of Hochster and Eagon [3, (5.18)].

In order to prove Theorems 1 and 2 in arbitrary characteristic, one uses the 'etale'
analogue of Lemma 2.

LEMMA 2'. With the notation of Theorem 1, let N = mn and k = mn — t2. Then for
all integers q # 0 prime to char K,

H»+k(L\V,Z/qZ)^Z/qZ.

(Here Het denotes etale cohomology.) The higher cohomology groups vanish.

REMARKS, (a) The proof of Lemma 1 is based on the structure of B[X] as an
algebra with straightening law on the poset of minors of X. It should be noted that
this structure gives the precise value of ara / in the closely related situation where J
is the defining ideal of a Schubert sub variety of a Grassmannian (compare [3, (5.22)]
or [2, (3.4)]).
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(b) P. Schenzel pointed out that in the case of a field B = K an upper bound for
the arithmetical rank is supplied by the 'symbolic analytic spread'

dim S/\X{X) S, S = © /W)//w+1), / = It(X),
i-0

with S considered as a £[X]-algebra via the epimorphism K[X] -> K[X]/\t{X). This
gives in fact the same bound (compare [3, (10.8)]). Note, however, that the ordinary
analytic spread is an efficient bound only for t = min(m,n) (or / = 1):

mn otherwise,

(compare [3, (9.22), (10.16)]).
(c) Since Lemma 2' holds in every characteristic, one does not need Lemma 2 for

the proof of the theorems. One can even derive Lemma 2 from Lemma 2'. Applying
the comparison theorem [11, p. 117, Theorem 3.12], one first obtains

HN+k(L\V,Z/qZ)^Z/qZ

for q # 0. Since the higher cohomology groups vanish, the universal coefficient
theorem then implies

HN+k(L\V,Z)^Z

(note that the cohomology groups //*(L\F, Z) are finitely generated). Another
application of the universal coefficient theorem yields Lemma 2. However, for the
convenience of readers who feel more comfortable in a topological environment, we
give an independent proof of Lemma 2. Of course, the proofs of the lemmas are
completely parallel.

(d) With N replaced by N— 1, Lemmas 2 and 2' also hold for the complement
P(L)\P(K) of the corresponding projective variety. This can be seen either by
repeating the whole calculation (the fibre GLt(C) appearing in the fibration of Lemma
6 changes to PGLt(C)), or more directly by an application of the Gysin sequence
associated with the C*-fibration L\K-»P(L)\P(K).

(e) Our methods should also yield the number of equations defining varieties
similar to determinantal ones, for example, varieties defined by pfaffians of alternating
matrices or minors of symmetric ones.

ACKNOWLEDGEMENT. We are indebted to M. Artin and G. Lyubeznik for
valuable advice regarding etale cohomology.

1. Proof of the main result

In this section we derive Theorem 2 from the lemmas above, whereas the proofs
of the crucial Lemmas 2 and 2' will be given in the next sections. Because of Lemma 1
we may replace B by a field B/xn, where m is a maximal ideal of B. Under
specialization, the arithmetical rank cannot increase. Thus let B = K be a field.

We first discuss the case char K = 0. The quickest argument now is a reference to
the corollary of Lemma 2: cd lt(X) = mn — t2 + \, and cd It(X) ^ araIt(X), as noticed
in its proof.

A more direct topological argument seems appropriate, however; it will be needed
below anyway. Let glt...tg,e K[X] such that It(X) = Rad (glt..., gs). (Note that
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is a prime ideal by the theorem of Hochster and Eagon.) This is equivalent to the
existence of equations which for each Mninor S express that a power of S is contained
in (gv.. .,gs). There are only finitely many equations, and each of them involves only
finitely many polynomials. Thus lt(X) = Rad (gl5... ,gs) holds already over a finitely
generated field extension Ko of Q. Embedding Ko into C and applying the argument
above once more, one finally reduces this case to K = C. (In the following, dimension
always denotes complex dimension, more generally ^-dimension, unless explicitly
indicated otherwise.)

LEMMA 3. (a) Let W and W, with WaW, be projective varieties over C such
that W\ W is non-singular and of pure dimension d. If there are k homogeneous
equations / 1 ? . . . ,fk such that W = W(] V(fx,... ,fk), then

Hd+i(W\W,G) = 0 foralli^k

and all abelian groups G.
(b) The analogous statement holds for affine varieties.

Part (a) is [12, Theorem 2'], or rather the statement from which that theorem is
derived via Lefschetz duality. Part (b) is proved in exactly the same way. If k = 1, then
Hd+i(W\ W, Z) = 0 for all i ^ 1, by the theorem of Andreotti and Frankel [1, Theorem
1], and the general case follows by induction based on the Mayer-Vietoris sequence.
(The universal coefficient theorem enables one to replace Z by an arbitrary group.)

Lemmas 1 and 3 finish the argument in characteristic zero once more. Since
HN+lc(L\V,G) ^0, N = mn, k = mn-t2, the arithmetical rank of It(X) is at least
mn — t2 + 1 .

Let K be an arbitrary field now. For the same reasons as above, we may enlarge
Kand therefore assume that AT is algebraically closed. Then one argues by the 'etale'
analogue of Lemma 3, which is as follows.

LEMMA 3'. (a) Let K be an algebraically closed field, and W <=.W projective
varieties. Let d = dim W\ W. If there are k homogeneous equations fx, ...,fk such that
W = W(] V(J;,...,fk), then

Hd«(W\W, Z/qZ) = 0 for all i > k

and all qeZ, with q prime to char K.
(b) The analogous statement holds for affine varieties.

This is proved in the same way as Lemma 3: Milne [11, p. 25, Theorem 7.2] gives
the case k = 1, in which W\Wis affine, and the general case follows by induction via
the Mayer-Vietoris sequence [11, Ex. 2.24, p. 110].

2. The crucial singular cohomology group

This section is devoted to the proof of Lemma 2. All the cohomology and
homology groups are taken with respect to a fixed group G of coefficients. In order
to simplify notation we omit the group of coefficients henceforth.

One first notes that the cohomology groups with indices greater than N+k
(N = mn,k = mn — t2) vanish because of Lemmas 1 and 3.

In the simplest case, m = n — t, the set L\ V is just GL{(C).
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LEMMA 4. H1 (GLt(C)) = G and the higher cohomology groups vanish.

This follows immediately from the fact that GL((C) is homotopy-equivalent with
U(t), the group of unitary / x t matrices. We now turn to the general case, and first
provide a preparatory result.

LEMMA 5. Let V = V(lt+1(X)) c L (V = L ift = min(m,n)) andW=V\V. Then

HN+k(L\V) s H™-1\W\ d = dim W.

Proof. In order to apply Lefschetz duality, we first compactify by embedding
L = CN into PN in the usual way. Then L\V=PN\U, U=V[)H00, where H^
denotes the hyperplane at infinity. Since N+k = 2N—t2, Lefschetz duality yields

HN+k(L\V)*Ht,(P
N

tU).

Let U= VVH^. As part of the exact sequence for homology, one has an exact
sequence

H?+1(P», U) • Htt0, U) . HrfP", U) > Ht*(F», U).

We claim that the first and last terms in this sequence are zero. Obviously, U can be
defined set-theoretically by the same number of equations as can V. Thus Lemmas 1
and 3, in connection with Lefschetz duality, force these homology groups to vanish.

Since K=SingK if *<min(m,«) (compare [3, (2.6)]), U\U = V\V = W
is non-singular. Applying Lefschetz duality once more, one concludes that

\

After this reduction it remains to compute H2d

LEMMA 6. Let Gd e denote the Grassmannian of d-dimensional vector subspaces
of Ce. Then the map n: W -*• Gm_t m x Gt n which assigns to each <f>eW the pair
(Ker (f), Im <f>), is a locally trivial fibre bundle (in the Zariski topology) with fibre
GL,(C).

Proof. It may suffice to indicate the open subsets of Gm_t mxG( 1 ) over which the
fibration is trivial. One chooses bases e1,...,em of Cm and/x,...,/n of Cn. Then the
open subvarieties

u = O and DnCfii +

cover Gm_t< m x Gt n, and over each of them the fibration is trivial. (A = C(m~l)t x C(n"ot

as a variety.)

Now we can complete the proof of Lemma 2. Since Gm_t raxG(n is simply-
connected, the Leray spectral sequence for the fibration of Lemma 6 takes the simple
form

£ T = H\Gm_t<m x Gttn,H»(GLt)) =>H"
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Since H'D{Gm_tmxGtn)^G, D = dim Gm_,, m x Gtt n, ^ ' ( G L J « G and the higher
cohomology groups vanish, this yields immediately that

i T ^ = ^ •*' = H™{Gm_t,m x Gttn,H>\GLt)) s G.

Finally, 2£> + f2 = 2rf-r!.

3. The crucial e'tale cohomology group

Since a direct comparison does not seem to be possible, we repeat the computation
of Section 2 for etale cohomology, step by step. Let K be an algebraically closed field
of arbitrary characteristic, and q ^ 0 an integer prime to char K. All the etale
cohomology groups below are taken with respect to the constant sheaf defined by
Z/qZ.

(1) For the case m = n = t, there is indeed a comparison theorem. By the
theorem of Friedlander and Parshall [5, Theorem 1], Lemma 4 implies the
corresponding statement for Ght{K): ^(GL^K)) = Z/qZ, and the higher co-
homology groups vanish.

(2) The reduction provided by Lemma 5 works in almost the same way. Poincare
duality [11, p. 276, Corollary 11.2] shows that H™-\L\V) and H[(L\V) are duals of
each other (non-canonically) with respect to linear maps to Z/qZ. The corresponding
statement holds for L\ V and V\ V, since all these varieties are separated and smooth
over K. The exact sequence of homology is replaced by the exact sequence of
cohomology with proper support [11, p. 94, Remark 1.30]:

(3) The fibration given in Lemma 6 is valid for every algebraically closed field.
(4) The properties of the Grassmannians exploited in the proof of Lemma 2 hold

over every algebraically closed field: Gm_t m x Gt n is irreducible, and in particular it
is connected. Since it is a proper non-singular rational variety, the algebraic
fundamental group ^i(Gm_t mxGt n) vanishes by [6, p. 285, Corollary 1.2].
Furthermore, H^(Gm_t m x Gt n, Z/qZ) = Z/qZ, and the higher cohomology groups
vanish. {Gm_t mxGtn being proper, this may be considered a consequence of
Poincare duality.)

(5) The only fact which seems to need proof here is that the Leray spectral
sequence [11, p. 89, Theorem 1.18]

, m x Gtt n, R
vn*Z/qZ) = > H™>{ IV, Z/qZ)

for the morphism n:W^Gm_tmxGtn takes the same simple form as in the
topological situation. This is guaranteed by the following proposition, a rather basic
fact for which the authors fruitlessly searched the literature.

PROPOSITION. Let X, F and B be schemes of finite type over an algebraically closed
field K, and suppose one has a morphism n:X' -> B inducing a locally trivial fibration of
X over B with fibre F. Assume that q is prime to char^T. If B is simply-connected {that
is, B is connected and n^B) = 0), then Rvn+Z/qZ is the constant sheaf defined by
Hlt(F,Z/qZ) on B.

Proof. Let ^ = RvnmZ/qZ and let 2F denote the constant sheaf defined by
Hlt(F, Z/qZ) on B. Let (C/t) be an etale covering of X such that n induces the trivial
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fibration n~\U^ ^BXK Ut^Ut. We claim that (S\Ui s &\UV Then ^ is a locally
constant sheaf, thus constant since X is simply-connected (an easy consequence of
[11, p. 155, Proposition 1.1]), and necessarily ^ ^ 2F.

In order to prove the claim, one considers the following Cartesian diagram.

w
Spec K

The constant sheaf Z/qZ on FxK Ui is the pullback of the constant sheaf Z/qZ on
F along the base extension y/. Furthermore, the formation of higher direct images
commutes with base extension for schemes of finite type over SpecA^ [4, p. 236,
Theorem 1.9]. Therefore

Rvn*Z/qZ £ v*(R

This argument reduces the proposition to the case in which X = F and n is the
structure morphism Z^SpecK. For this case it is easy to prove: for every etale
morphism Y-* Spec AT of finite type, Y is just the union of finitely many copies of
Spec K.
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