
March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

International Journal of Algebra and Computation
Vol. 30, No. 4 (2020) 861–882
c© World Scientific Publishing Company
DOI: 10.1142/S021819672050023X

Wilf’s conjecture in fixed multiplicity

Winfried Bruns

Institut für Mathematik, Universität Osnabrück
49074 Osnabrück, Germany

wbruns@uos.de

Pedro Garćıa-Sánchez

Departamento de Álgebra, Universidad de Granada
18071 Granada, Spain

pedro@ugr.es

Christopher O’Neill∗

Mathematics Department, San Diego State University
San Diego, CA 92182, USA

cdoneill@sdsu.edu

Dane Wilburne†

The MITRE Corporation
McLean, VA 22102, USA

dwilburne@mitre.org

Received 19 July 2019
Accepted 8 December 2019
Published 13 March 2020

Communicated by B. Steinberg

We give an algorithm to determine whether Wilf’s conjecture holds for all numerical
semigroups with a given multiplicity m, and use it to prove Wilf’s conjecture holds
whenever m ≤ 18. Our algorithm utilizes techniques from polyhedral geometry, and
includes a parallelizable algorithm for enumerating the faces of any polyhedral cone up
to orbits of an automorphism group. We also introduce a new method of verifying Wilf’s
conjecture via a combinatorially flavored game played on the elements of a certain finite
poset.

Keywords: Numerical semigroup; Wilf’s conjecture; Kunz polyhedron.

Mathematics Subject Classification 2020: 20M14, 52B20, 52B55

∗Corresponding author.
†The author’s affiliation with The MITRE Corporation is provided for identification purposes only,
and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions,
opinions, or viewpoints expressed by the author.

861

https://dx.doi.org/10.1142/S021819672050023X

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

862 W. Bruns et al.

1. Introduction

In what follows, let Z≥0 denote the set of non-negative integers.
A numerical semigroup S is a subset of Z≥0 containing 0 that is closed under

addition and has finite complement in Z≥0 (this last condition is equivalent to
requiring that the greatest common divisor of its elements is 1). Forty years ago [19],
Wilf conjectured that every numerical semigroup S satisfies an inequality involving
the following basic quantities:

• the conductor of S, denoted c(s), which is the smallest integer c such that c +
Z≥0 ⊂ S (this is guaranteed to exist since S has finite complement in Z≥0);
• the number n(S) of elements of S less than c(S) and
• the embedding dimension of S, denoted e(S), which equals the number of positive

elements of S that cannot be written as a sum of two positive elements of S (called
the atoms or primitive elements of S).

One can think of Wilf’s conjecture, stated below, as a bound on the “density”
of the elements below the conductor in terms of the number of primitive elements.
The problem has attracted the attention of many researchers, in part because of
how easy it is to state. Despite the substantial progress, much of which has been
made in this century, Wilf’s conjecture remains open.

Conjecture 1.1 (Wilf). For any numerical semigroup S,

c(S) ≤ e(S)n(S).

The original aim of this project was to develop a computational method for
verifying Wilf’s conjecture for all numerical semigroups S with fixed m(S) =
min(S\{0}), called the multiplicity of S (note there are infinitely many numeri-
cal semigroups with each fixed multiplicity m(S) ≥ 2). Our results, however, have
more far-reaching consequences than merely verifying the conjecture in some new
cases: we provide new tools from polyhedral geometry and enumerative combina-
torics with which to approach the conjecture.

Our main tool is the Kunz polyhedron Pm, introduced independently in [13, 16],
whose integer points are in one to one correspondence with numerical semigroups
with multiplicity m(S) = m (the coordinates of these points are known as the
Kunz coordinates of the semigroup). The points in the interior of Pm translate to
a class of numerical semigroups for which Wilf’s conjecture is known to hold [16],
namely those with maximal embedding dimension. For each face F of Pm, we reduce
the task of checking Wilf’s conjecture for all Kunz coordinates in the interior of
F to the problem of determining if a certain set of linear inequalities has integer
solutions. The primary computational hurdle in verifying Wilf’s conjecture for a
given multiplicity m then becomes enumerating the faces of the Kunz polyhedron,
which for m(S) ≥ 13 is a challenging computation.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 863

The primary contributions of this paper are as follows:

• We present an algorithm for enumerating the faces of any polyhedral cone under
the action of an automorphism group. The details of our algorithm, including
its implementation in the software package Normaliz [3], can be found in Sec. 5.
Although this work is motivated by the computation of the Kunz polyhedron, our
algorithm, as well as its implementation in Normaliz, is not limited to this case.
• We prove that in the interior of any face of the Kunz polyhedron, the Kunz coor-

dinates of all numerical semigroups violating Wilf’s conjecture are determined
by a system of linear inequalities (Sec. 4). Through a series of reductions, sev-
eral of which result from special cases in which Wilf’s conjecture is known to
hold, we verify that Wilf’s conjecture holds for all numerical semigroups S with
multiplicity m(S) ≤ 18.
• We demonstrate that the unbounded faces of the Kunz polyhedron containing

integer points are indexed by a family of finite partially ordered sets, called Apéry
posets (Sec. 3), and introduce a combinatorial game played on the elements of
a given Apéry poset whose outcome yields a method of checking if all numeri-
cal semigroups with Kunz coordinates interior to the corresponding face satisfy
Wilf’s conjecture. Section 6 contains a description of the game, along with several
examples of its use.

Prior to this work, Wilf’s conjecture was known to hold for m(S) ≤ 10 by
assembling several special cases. At a talk in the summer of 2017, Eliahou claimed
to have a proof using graph theoretical methods that every numerical semigroup
with m(S) ≤ 12 satisfies Wilf’s conjecture. While this paper was in the editorial
process, Eliahou published this result in [9].

2. Numerical Semigroups and Wilf’s Conjecture

We say that a numerical semigroup is Wilf if it satisfies Wilf’s conjecture. In this
section, we introduce some additional concepts from the numerical semigroups lit-
erature, and survey some recent progress on Wilf’s conjecture. We direct the inter-
ested reader to [4] for an exhaustive overview of the partial results obtained to
date.

Fix a numerical semigroup S ⊂ Z≥0. A gap of S is a non-negative integer outside
of S, and the largest gap of S, denoted F(S), is known as its Frobenius number. In
particular, we have c(S) = F(S) + 1. We denote by G(S) the set of gaps of S; its
cardinality g(S) = |G(S)| is called the genus of S. A generating set of a numerical
semigroup S is a subset A ⊂ S with

S = 〈A〉 = {a1 + · · ·+ ak : k ∈ Z≥0, a1, . . . , ak ∈ A},
and every numerical semigroup S admits a unique generating set A (S) that is
minimal with respect to containment. The elements of A (S) are the atoms of S (and
as such are sometimes also called the minimal generators of S), and e(S) = |A (S)|.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

864 W. Bruns et al.

The Apéry set of an element n ∈ S is the set

Ap(S; n) = {s ∈ S : s− n /∈ S}.
It is well known that Ap(S; n) has precisely n elements, each of which is distinct
modulo n. More precisely, Ap(S; n) = {0, a1, . . . , an−1}, where ai = min{m ∈
S : m ≡ i mod n}.

An integer f is said to be a pseudo-Frobenius number of S if f /∈ S but f +
A (S) ⊂ S. In particular, F(S) is a pseudo-Frobenius number of S. The cardinality
of the set PF(S) of pseudo-Frobenius numbers of S is the (Cohen–Macaulay) type of
S and denoted t(S). According to [10, Theorem 20], for any numerical semigroup S,

c(S) ≤ (t(S) + 1)n(S). (2.1)

This implies that if e(S) > t(S), then S is Wilf. This has the following consequences:

• If t(S) = 1, then S is Wilf. Numerical semigroup with t(S) = 1 are called
symmetric, and include all numerical semigroups with e(S) = 2 (see [10, 15]).
• If S is irreducible (that is, if S cannot be expressed as the intersection of two

numerical semigroups properly containing it), then S is Wilf. Indeed, in this case,
if F(S) is odd, then one can show t(S) = 1, so S is symmetric and thus Wilf. On
the other hand, if S is irreducible and F(S) is even (we say S is pseudo-symmetric
in this case), then one can show t(S) = 2 and e(S) ≥ 3. In either case, S is Wilf
by (2.1).
• Any numerical semigroup with e(S) = 3 has t(S) ≤ 2, and thus is Wilf [15,

Chap. 1].
• If e(S) = m(S), then S is Wilf, since e(S) ≤ m(S) and t(S) ≤ m(S) − 1 hold

for every numerical semigroup (see, for instance, [15, Chap. 1]). Such numerical
semigroups are called maximal embedding dimension due in part to the first
inequality.

Separately, Wilf’s conjecture has been proved in numerous special cases, for
instance, when c(S) ≤ 3m(S) [8], or c(S) ≤ 21 [7], or g(S) = (F(S) +
t(S))/2 [1]. Fromentin and Hivert prove in [11], via computations, that every
numerical semigroup S with g(S) ≤ 60 is Wilf. The key is that there are
only finitely many numerical semigroups of a given genus. The repository
https://github.com/hivert/NumericMonoid contains the number of numerical semi-
groups with each genus up to 70, though Wilf’s conjecture has not been verified for
the computed semigroups with genus above 60.

3. The Kunz Polyhedron and Related Polyhedra

In this section, we introduce the Kunz polyhedron, as well as two (new) closely
related polyhedra, one of which is a pointed cone Cm. The main results are Theo-
rem 3.10, which gives a combinatorial interpretation of the faces of Cm, and Corol-
lary 3.11, which is a key ingredient to Algorithm 4.1 in verifying Wilf’s conjecture
for fixed multiplicity.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 865

Throughout this remainder of the paper, we will use basic terminology and
facts from convex geometry, which we briefly summarize here. For more extensive
treatments, we refer the reader to Bruns and Gubeladze [2] or Ziegler [20].

An affine half-space of Rn is a subset {x ∈ Rn : λ(x) ≥ α} for some linear form
λ ∈ (Rn)∗ and some α ∈ R. The half-space is linear if α = 0, and rational if α

and the coefficients of λ can be chosen in Q. A polyhedron is the intersection of
finitely many affine half-spaces. We denote by P ◦ the topological interior of P . A
polytope is a bounded polyhedron, whereas a (polyhedral) cone is the intersection
of finitely many linear half-spaces. A cone C is pointed if x,−x ∈ C implies x = 0.
A support(ing) hyperplane of a polyhedron P is a hyperplane H such that P is
contained in one of the two closed half-spaces into which Rn is decomposed by H .
A face of P is a subset F = P ∩H where H is a support hyperplane. The polyhedron
P itself is considered an improper face. The dimension of F is the dimension of its
affine hull, and a face of dimension k is called a k-face. A facet is a face F such
that dimF = dimP − 1, and a vertex is a face of dimension 0. Faces of polyhedra,
polytopes and cones are themselves polyhedra, polytopes and cones, respectively.
The extreme rays of a cone are its 1-faces. It is important to note that every proper
face of a polyhedron is the intersection of the facets in which it is contained; in
particular, a polyhedron has only finitely many faces.

An affine half-space {x ∈ Rn : λ(x) ≥ α} is rational if the coefficients of λ and α

can be chosen in Q. A rational polyhedron is the intersection of rational half-spaces.
Faces of rational polyhedra are rational.

The H-representation of a polyhedron P is an expression of P as an intersec-
tion of half-spaces. A cone C can equivalently be represented as {α1v1 + · · · +
αmvm : α1, . . . , αn ∈ R+} for some v1, . . . , vm ∈ Rn, and by Minkowski’s theorem,
a polytope P is the convex hull of its vertices; these expressions constitute the
V -representations of their respective polyhedra. Any nonempty polyhedron P

equals the Minkowski sum of some polytope Q and a cone C, i.e. P = {x+ y : x ∈ Q,

y ∈ C}. The cone C is unique, and called the recession cone of P .

Definition 3.1. Fix a numerical semigroup S ⊂ Z≥0, and let m = m(S) denote
its multiplicity. Writing Ap(S; m) = {0, a1, . . . , am−1} so that each ai = kim+ i for
some positive integer ki, we calls (k1, . . . , km−1) the Kunz coordinates of S. It can
be shown (see [16]) that integer vector (x1, . . . , xm−1) are the Kunz coordinates of
a numerical semigroup with multiplicity m if and only if

xi ≥ 1 for 1 ≤ i ≤ m− 1,

xi + xj ≥ xi+j for 1 ≤ i ≤ j ≤ m− 1 with i + j < m and

xi + xj + 1 ≥ xi+j for 1 ≤ i ≤ j ≤ m− 1 with i + j > m,

where the subscript of xi+j is interpreted modulo m. In the remainder of this paper,
whenever we write a variable xi, we regard i as a nonzero element of the cyclic group
Z/(m).

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

866 W. Bruns et al.

The polyhedron defined by the above inequalities is called the Kunz polyhedron
associated to m, which we will denote by Pm. Numerical semigroups with mul-
tiplicity m are in natural bijection with the integer points of Pm. Thus, we will
sometimes identify a numerical semigroup with its Kunz coordinates, and by abuse
of language, we will for instance say that S lies in the interior of Pm or is contained
in a certain face of Pm.

The following result is a well-known fact that follows from Selmer’s equalities,
and implies that numerical semigroups with multiplicity m and genus g are in
bijection with the integer points in the intersection of the polyhedron Pm and the
hyperplane x1 + · · ·+ xm−1 = g.

Lemma 3.2. Fix a numerical semigroup S with multiplicity m. We have

g(S) = x1 + · · ·+ xm−1 and F(S) = max{mxi + i−m : 1 ≤ i ≤ m− 1},
where (x1, . . . , xm−1) denote the Kunz coordinates of S.

Proof. By Selmer’s equalities [18] (or, more directly, by counting the number of
gaps in each equivalence class modulo m), the genus of S equals

1
m

∑

w∈Ap(S;m)

w − m− 1
2

=
m−1∑

i=1

xi,

and F(S) = maxAp(S; m)−m by [15, Proposition 2.12].

We are now ready to introduce the Kunz cone.

Definition 3.3. Fix an integer m ≥ 3. The relaxed Kunz polyhedron is the set P ′
m

of rational points (x1, . . . , xm−1) ∈ Rm−1 satisfying

xi + xj ≥ xi+j , 1 ≤ i ≤ j ≤ m− 1, i + j < m,

xi + xj + 1 ≥ xi+j , 1 ≤ i ≤ j ≤ m− 1, i + j > m.

The Kunz cone is the set Cm of points (x1, . . . , xm−1) ∈ Rm−1 satisfying

xi + xj ≥ xi+j , 1 ≤ i ≤ j ≤ m− 1, i + j
= m.

Proposition 3.4 presents several basic properties of P ′
m and Cm, and their precise

relation to the Kunz polyhedron Pm. In particular, as a consequence of Proposi-
tion 3.4, Cm is a pointed cone and a translation of P ′

m.

Proposition 3.4. For each m ≥ 3, the following holds :

(a) the Kunz cone Cm is contained in the positive orthant Rm−1
+ ;

(b) the relaxed Kunz polyhedron P ′
m has unique vertex

v = (−1/m,−2/m, . . . ,−(m− 1)/m),

and one has x ∈ P ′
m if and only if x− v ∈ Cm and

(c) Cm is the recession cone of Pm and a translation of P ′
m.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 867

Proof. Assume that xk < 0 for some k. Let n be the order of k in Z/(m). Using
the inequalities of the Kunz cone, one sees immediately that xj < 0 for all j =
1, . . . , n− 1. If n > 2 we can write 1 ≡ 2 + (k − 1) mod m, and use the inequality
x2 + xn−1 ≥ x1 to obtain the contradiction x1 < x1. If n = 2, or, equivalently,
k = m/2, then we get the contradiction x1 < x1 since xk+1 ≤ x1 + xm < x1 and
x1 ≤ xk+1 + xk. This proves the first claim.

Next one readily checks that v satisfies every defining inequality of P ′
m with

equality. It follows immediately that P ′
m = {v}+ Cm and that v is the only vertex

of P ′
m.
If a nonempty polyhedron is defined by a system of inequalities, then the reces-

sion cone is defined by the associated homogeneous system. Since Cm ⊂ Rm−1
+ it is

indeed the recession cone of P ′
m and Pm.

Remark 3.5. Proposition 3.4 also appeared in [13, Proposition 1.1], though we
have included the proof for the reader’s convenience. In the same paper, Kunz shows
that the defining inequalities of the Kunz cone are irredundant [13, Proposition 1.2].

We now provide a characterization of the faces of the relaxed Kunz polyhedron
that contain numerical semigroups.

Definition 3.6. A poset P = (Z/(m)\{0},�) is an m-Kunz poset if for distinct
i, j ∈ P , we have i � j implies j − i � j.

Definition 3.7. Fix a numerical semigroup S with multiplicity m, and write

Ap(S; m) = {0, a1, . . . , am−1}
so that ai ≡ i mod m for each i. The Apéry poset of S is a poset

P(S) = (Z/(m)\{0},�)

defined by i � j whenever aj − ai ∈ S. Said another way, P(S) is the divisibility
poset of S restricted to the nonzero elements of Ap(S; m) wherein each element is
labeled with its equivalence class modulo m.

Example 3.8. Let S = 〈6, 9, 20〉. The Hasse diagram of P(S) is depicted in
Fig. 1(a). Each minimal element of P(S) represents one of the minimal genera-
tors of S aside from 6. Moreover, in this depiction, each cover relation corresponds
to adding some minimal element of P(S) (indeed, each “up-right” edge corresponds
to adding 2, and each “up-left” edge corresponds to adding 3).

Lemma 3.9. The Apéry poset of any multiplicity m numerical semigroup S is
m-Kunz.

Proof. Write Ap(S; m) = {0, a1, . . . , am−1} with ai ≡ i mod m for each i. If
i � j in P(S), then aj − ai ∈ S. This means aj − ai ∈ Ap(S; m), as otherwise

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

868 W. Bruns et al.

(a) (b) (c)

Fig. 1. Sample m-Kunz posets from Examples 3.8 and 3.13.

aj − ai−m ∈ S and thus aj /∈ Ap(S; m). Since aj − ai ≡ j − i mod m, we must
have aj − ai = aj−i, so we conclude aj − aj−i = ai ∈ S and thus j − i � j.

Theorem 3.10. Two numerical semigroups S and T with multiplicity m lie on the
interior of the same face of P ′

m if and only if P(S) = P(T).

Proof. Fix a face F and a numerical semigroup S ∈ F ◦. Each defining inequality
of Pm holds with either equality or strict inequality for every point in F ◦. Moreover,
xi + xj = xi+j , with i + j < m, holds for the Kunz coordinates of S if and only if
i � i + j in P(S), and analogously xi + xj = xi+j − 1, with i + j > m, holds for
the Kunz coordinates of S if and only if i � i + j. As such, the relations in P(S)
are determined by the defining equations and strict inequalities of F ◦.

The following result, which Kunz also observed in [13, Sec. 2], relates the embed-
ding dimensions of all numerical semigroups in the interior of the given face, and
forms the crux of Algorithm 4.1.

Corollary 3.11. Fix a face F ⊂ P ′
m. For any numerical semigroups S, T ∈ F ◦,

e(S) = e(T) and t(S) = t(T). More specifically, e(S) − 1 and t(S) count vari-
ables not appearing on the right and left hand sides of any defining equations of F,

respectively.

Proof. Fix a face F ⊂ P ′
m and a numerical semigroup S ∈ F ◦. By the proof of

Theorem 3.10, a given defining inequality xi + xj ≥ xi+j , with i + j < m holds
with equality for F if and only if i � i + j in P(S) (and similarly for i + j > m).
As such, i is minimal (respectively, maximal) in P(S) if and only if xi does not
appear on the right-(respectively, left)hand side of any defining equalities of F ◦.

Now, [15, Proposition 2.20] implies the type of S coincides with the cardinality
of the set of maximal elements in P(S). It also follows easily that if a is an atom
of S other than the multiplicity of S, then a ∈ Ap(S; m) and a mod m is a minimal
nonzero element of P(S). This completes the proof.

Notation 3.12. In view of Theorem 3.10 and Corollary 3.11, for each face F ⊂ P ′
m

containing a numerical semigroup, we write e(F), t(F) and P(F) for embedding
dimension, type and Apéry poset of any numerical semigroup in F ◦.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 869

Example 3.13. Some m-Kunz posets are not the Apéry poset of any numerical
semigroup. For example, no numerical semigroup S with multiplicity m = 4 can
have an Apéry poset with Hasse diagram in Fig. 1(b), as the relations imply its
Apéry set Ap(S; m) = {0, a1, a2, a3} satisfies 2a1 = a2 = 2a3. Despite this, P ′

m has
a face corresponding to this m-Kunz poset under the correspondence in the proof of
Theorem 3.10 (a ray with recession cone (1, 2, 1)). This ray simply does not contain
any integer points.

On the other hand, some faces of P ′
m contain no points with all positive entries

(and thus also contain no numerical semigroups). For instance, in the ray of P ′
6 in

the direction (1, 0, 1, 0, 1), the second and fourth entries of every point are nega-
tive. This face does not naturally correspond to an m-Kunz poset via the proof of
Theorem 3.10.

Lastly, some m-Kunz posets do not correspond to faces of P ′
m. For example, a

face corresponding to the poset in Fig. 1(c) would lie in exactly two facets of P8,
namely those with defining equations x1 +x5 = x6 and x3 +x7 = x2. However, this
implies

2x6 + 2(x2 + 1) = 2(x1 + x5) + 2(x3 + x7) = 2x1 + 2x3 + 2x5 + 2x7

≥ x2 + x6 + (x2 + 1) + (x6 + 1),

so their intersection is also contained in the facets with defining equations 2x1 = x2,
2x3 = x6, 2x5 = x2 and 2x7 = x6.

In view of Example 3.13, we pose the following.

Problem 3.14. Extend Theorem 3.10 to characterize all faces of P ′
m (or,

equivalently, of Cm).

4. Verifying Wilf’s Conjecture for Fixed Multiplicity

In this section, we provide an algorithm for determining whether Wilf’s conjecture
holds for every numerical semigroup with fixed multiplicity m. The key to our
algorithm is using Lemma 3.2 and Corollary 3.11 to reduce Wilf’s conjecture to
checking for integer points in a finite list of rational polyhedra.

Fix a face F ⊂ P ′
m and a numerical semigroup S with Kunz coordinates

(x1, . . . , xm−1) ∈ F ◦. Using the fact that c(S) = F(S)+1 and n(S) = F(S)+1−g(S),
Wilf’s conjecture can be reformulated as

F(S) + 1 ≤ e(S)(F(S) + 1− g(S)).

Let f ∈ [1, m− 1] so that mxf + f is maximal, that is,

mxi + i ≤ mxf + f for every i
= f. (4.1)

By Corollary 3.11 every numerical semigroup in F ◦ has identical embedding dimen-
sion e, so using Lemma 3.2, we may rewrite Wilf’s inequality as

mxf + f −m + 1 ≤ e(mxf + f −m− (x1 + · · ·+ xm−1) + 1). (4.2)

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

870 W. Bruns et al.

We conclude that a face F has a numerical semigroup in its interior that violates
Wilf’s conjecture if and only if, for some f ≤ m−1 that is maximal in P(F), F has
an integer point satisfying inequalities (4.1) and the negation of (4.2). This yields
Algorithm 4.1.

Algorithm 4.1. Verify whether Wilf’s conjecture holds for multiplicity m

function VerifyWilfsConjecture(m)
for all F face of P ′

m do
R← defining equalities and strict inequalities of F

for all f = 1, . . . , m− 1 with f maximal in P(F) do
Rf ← inequalities (4.1) and the negation of (4.2)
if region bounded by R and Rf contains a positive integer point then

return False
end if

end for
end for
return True

end function

Example 4.2. Let F ⊂ P ′
6 denote the face containing S = 〈6, 9, 20〉 from Exam-

ple 3.8, whose Apéry poset is depicted in Fig. 1(a). Since e(F) = 3, and f = 1 is
the only maximal element, by Algorithm 4.1 we must check whether the system

x1 − x2 ≥ 1, 2x2 − x4 = 0, −x2 + 2x4 ≥ 0, 2x1 − x2 ≥ 1,

x1 − x3 ≥ 1, x2 + x3 − x5 = 0, −x4 + 2x5 ≥ 0, x1 + x2 − x3 ≥ 1,

x1 − x4 ≥ 1, −x1 + x2 + x5 = −1, −x2 + x3 + x5 ≥ 0, x1 + x3 − x4 ≥ 1,

x1 − x5 ≥ 1, −x1 + x3 + x4 = −1, −x3 + x4 + x5 ≥ 0, x1 + x4 − x5 ≥ 1,

−11x1 + 3x2 + 3x3 + 3x4 + 3x5 ≥ −6

has any positive integer solutions. More specifically, the inequalities in the first
column come from (4.1), the equalities in the second column are the defining
hyperplanes of F , the remaining two columns are the remaining inequalities in
Definition 3.1, and the final inequality is the negation of (4.2). Some of the above
inequalities have also been simplified using the fact that each xi is an integer. Since
f = 1 is the unique maximal element of P(F), the infeasibility of this system
implies F contains no non-Wilf numerical semigroups.

Implementation. The following refinements in Algorithm 4.1 result in significant
reductions in runtime and memory:

• By (2.1), every numerical semigroup S satisfies the inequality

F(S) + 1 ≤ (t(S) + 1)(F(S)− g(S) + 1),

so if e(S) > t(S) then S is Wilf. As such, we can use Corollary 3.11 to eliminate
certain faces of P ′

m, namely those satisfying e(F) < t(F) + 1.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 871

• It is also known that if S has “high embedding dimension”, that is, if 2e(S) ≥
m(S), then S is Wilf, as proved by Sammartano [17]. As such, any faces F

satisfying the 2e(F) ≥ m can be eliminated. Additionally, for any two faces
F, F ′ ⊂ P ′

m with F ⊂ F ′, we have e(F) ≤ e(F ′), so unlike the above item, once
a face is encountered satisfying this inequality, every face containing it can be
safely skipped.
• Prior to checking for integer points in a region R, we first check whether or not

R is feasible (that is, whether R is a nonempty subset of Qm−1). As it turns out,
each region checked in Algorithm 4.1 for m ≤ 18 is infeasible.

We refer to any face that cannot be skipped based on the considerations in the first
two bullet points as a bad face.

The above simplifications allowed Algorithm 4.1 to complete for m ≤ 18 using
the software package Normaliz [3] to (i) compute the face lattice of P ′

m (using
the method developed in Sec. 5) and (ii) subsequently enumerate the integer
points in each region. In addition to the reductions above, a custom build of
Normaliz uses the automorphism group of the Kunz cone to simplify the face
lattice computation, as well as automatically checking the feasibility of bad faces.
Our custom build can be downloaded from the following page: https://github.com/
Normaliz/Normaliz/tree/wilf. The repository contains input files for 11 ≤ m ≤ 19.
See the file ReadmeWilf for more information on its usage.

The output of our implementation of Algorithm 4.1 yields Theorem 4.3.

Theorem 4.3. For each m ≤ 18, every region tested in Algorithm 4.1 is empty.
In particular, every numerical semigroup S with m(S) ≤ 18 is Wilf.

As noted above, each region tested in Algorithm 4.1 for m ≤ 87 is in fact
empty. With this in mind, we state the following conjecture, which implies Wilf’s
conjecture.

Conjecture 4.4. For each m ≥ 3, every region considered in Algorithm 4.1 is
empty.

As a consequence of Theorem 4.3, we get the following result for numerical
semigroups with high embedding dimension.

Corollary 4.5. If S is a numerical semigroup with m(S) − e(S) ≤ 9, then S is
Wilf.

Proof. We are done by Theorem 4.3 if m(S) ≤ 18. If m(S) ≥ 19, then m(S)− 9 ≥
m(S)/2. Hence, by hypothesis, e(S) ≥ m(S) − 9 ≥ m(S)/2, and thus S is Wilf in
light of [17].

If we copy the same argument used by Delgado in [4, Remark 3.20], together
with [9], then we can go a bit further.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

872 W. Bruns et al.

Corollary 4.6. If S is a numerical semigroup with m(S) − e(S) ≤ 12, then S is
Wilf.

Proof. If m(S) ≤ 18, then we are done by Theorem 4.3. If m(S) ≥ 19, then

3e(S) ≥ 3(m(S)− 12) = 3m(S)− 36 ≥ m(S),

and we are done by [9]. This completes the proof.

Note that both results, as mentioned in [4], improve [6, Theorem 4.9].

Remark 4.7. The following are known about numerical semigroups S in which
Wilf’s inequality c(S) ≤ e(S)n(S) holds with equality:

(1) if e(S) = 2, then equality holds and
(2) if e(S) = m(S), then equality holds if and only if x1 = · · · = xm−1.

See [4, Sec. 2.3]. Using the computation of the face lattice discussed in Sec. 5, we
have verified that no additional cases of equality occur for m(S) ≤ 15.

5. The Computation of the Face Lattice

In this section, we present an algorithm for computing the face lattice of a polyhe-
dron (Algorithm 5.4) up to orbits under the action of a group of automorphisms,
currently implemented in the version of Normaliz [3] that was developed for the
application to the Wilf conjecture (we include a remark on the automorphism free
version at the end of this section). As many other computations, it is done on the
cone over the polyhedron, and therefore it is enough to consider cones C ⊂ Rd

in the face lattice algorithm. Replacing Rd with the subspace RC, we can assume
C is full dimensional in Rd, and since the face lattice remains unchanged modulo
the maximal linear subspace of C, we can further assume C is pointed. Normaliz
handles these steps in preparatory coordinate transformations.

Remark 5.1. If a finite group of automorphisms of C is given, one can often
speed up the algorithm significantly by computing only the orbits of the face lattice
F (C). Moreover, storing only one face per orbit saves a considerable amount of
memory. If all faces are needed, the orbits can be easily expanded at the end. In
our computation of the face lattices of Kunz cones, this is a crucial observation.

Suppose C = Cm is the Kunz cone from Definition 3.3. The set of inequalities

xi + xj−i ≥ xj for i, j ∈ Z/(m)\{0}
defining C is stable under the multiplicative action of the group (Z/(m))∗ of units
modulo m on the coordinates of the ambient space. Therefore, the cone and its
set of integer points are stable under the action of (Z/(m))∗, so this group action
permutes the faces of C. Fortunately, the subset of “bad” faces determined by
Corollary 3.11 (see the discussion in Sec. 4) is stable as well. Therefore, it is enough

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 873

to compute the orbits of the (Z/(m))∗-action and select the “bad” orbits. However,
the action of (Z/(m))∗ does not carry over to the Kunz polyhedron, so the orbits
must be expanded before testing for the existence of integer points in the critical
area determined by Algorithm 4.1.

Remark 5.2. In view of the potentially large size of the computation, the choice
of data structure is crucial. A facet H of C is given by a linear form defining the
hyperplane that cuts H out from C. Faces F have two natural representations:
(i) the set E(F) of extreme rays passing through F and (ii) the set H(F) of facets
containing F . Each uniquely defines F . For faster computation, it is desirable to
store both representations of F . Since the number of facets of F is moderate (at least
for the Kunz cone), while the number of extreme rays of C reaches formidable values
(see Table 1), we choose representation by H(F), recomputing E(F) whenever it is
needed. Storing E(F) is forbidding— already for m = 16, more than 1TB of RAM
would be needed. Both representations are realized as bit vectors. Fortunately, the
computation of E(F) for a face F from a representation of F as an intersection of
facets takes relatively little time (see Remark 5.5(c)).

We say that a face F of a cone C is cosimplicial if it is contained in exactly c

facets, where c = codim F = dim C − dim F is the codimension of F . To motivate
this terminology, consider the dual cone

C∗ = {λ ∈ (Rd)∗ : λ(x) ≥ 0 for all x ∈ C}
of C and dual face

F ∗
C = {λ ∈ C∗ : λ(x) = 0 for all x ∈ F}

of F (see [2, Sec. 1B] for a discussion of duality). One has codimF = dimF ∗
C ,

and the linear forms defining the facets of C containing F generate the extremal
rays of F ∗

C . As such, F is cosimplicial if and only if F ∗
C is simplicial. It follows

that any face G containing a cosimplicial face F is cosimplicial as well. One can
say that cosimplicial faces are “well behaved” in the face lattice computation, as is
illuminated by the following proposition.

As we assume that C is full dimensional, the linear forms defining the facets
of C are uniquely determined up to scaling by positive factors. As such, we can
consider the facets as elements of the dual space (Rd)∗ so long as scaling factors
can be neglected.

Proposition 5.3. A face F of C is cosimplicial if and only if it is not the inter-
section of less than c = codim F facets.

Proof. By duality, the proposition is equivalent to the assertion that a cone D of
dimension c is simplicial if and only if every set S ⊂ E(D) of cardinality less than
c is contained in a proper face of D.

If D is simplicial, the latter is obviously true, and only the converse needs an
argument. Suppose that D is nonsimplicial. We triangulate D using only its extreme

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

874 W. Bruns et al.

rays as rays in the triangulation. Since D is not simplicial, there are at least two
dimension c simplices in the triangulation whose intersection is a facet G of both
of them. This means D is its only face containing the c− 1 extreme rays of G.

We now outline the contents of Algorithm 5.4. The computation of the face
lattice is based on some preparatory steps, starting from the definition of a cone C

by its facets:

(1) Compute E(C) by the existing vertex enumeration algorithm.
(2) For each facet H of C, compute E(H).
(3) Compute the set S of cosimplicial extreme rays.
(4) For each x ∈ (Z/(m))∗, compute the permutation of H(C) induced by x.

The last step allows us to compute the orbit of an arbitrary face by applying the
permutations to the facets in H(F) (currently, this is only implemented in the
specialized version of Normaliz for Kunz cones). The set S allows us to recognize
some cosimplicial faces F by checking whether E(F) ∩S
= ∅.

The representation of a non-cosimplicial face as an intersection of facets is
never unique (indeed, this follows immediately from Proposition 5.3). For checking
whether a given face (or orbit) has already been found, we use four ordered sets of
faces:

(1) the set F of faces, each computed in the second to last round of the while
loop or earlier;

(2) the set W of faces found in the previous round and to be processed in the
current round;

(3) the set N of faces produced by the current round and
(4) the set E of intersections G = F ∩H for a fixed face F and H ∈ H(C).

A face F in F , W or N is represented by H(F), whereas each face G in the short
list E is represented by E(G). Lists of bit vectors are ordered lexicographically
(based on fixed (but arbitrary) orderings of H(C) and E(C)) so a list of size n can
be searched in O(log n) steps.

Algorithm 5.4. Compute the orbits of the face lattice of a cone C

function FaceLattice(C)
F ← ∅, W ← {C}, c← 0, N ← ∅
while W
= ∅ do

c← c + 1
for all F ∈ W do

E(F) =
⋂

H∈H(F) E(H)
E ← ∅
for all H ∈ H(C) with H /∈ H(F) do

E ← E ∪ {F ∩H}

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 875

end for
for all G ∈Max⊂ E do

compute H(G)
N ← N ∪ {minorbit(G)}

end for
end for
F ← F ∪W , W ← N , N ← ∅

end while
return F

end function

The set Max⊂ E is the set of the elements of E that are maximal with respect to
inclusion. Evidently these are the facets of F , and this proves the correctness of the
algorithm: for every computed face F of C, the facets of F are also computed, and
no proper subset F of the full face lattice contains C and is closed under taking
facets of F ∈ F . Each orbit representative G′ ∈ orbit(G) is chosen so that H(G′)
is lexicographically minimal.

Remark 5.5. Before we refine Algorithm 5.4, we make several comments:

(a) The number c, in addition to counting rounds of execution in the while loop,
equals the codimension of the faces produced in the current round, as follows
immediately by induction on c: if the face F has codimension c, then the facets
of F each have codimension c + 1 (this property will be somewhat relaxed
below).

(b) The outer for loop is parallelized in Normaliz using OpenMP [14], a standard
shared memory parallelization library. All threads must access the bit vectors
E(H) and the list N , but N must be protected against simultaneous access
since it is potentially changed by at least one thread. Nevertheless, paralleliza-
tion with 16 threads is very reasonable; for m = 14, an efficiency of ≈45% per
thread is reached. For comparison, with eight threads the efficiency is ≈70%,
and with four threads it is ≈77% (note that such measurements depend heavily
on the workload of the machine).

(c) A profiler run for m = 14 shows that the computation of E(F) for faces F uses
only ≈6% of the execution time for the face lattice. The most time consuming
task is lexicographic comparison of bit vectors at about 40%, followed by some
system routines. The inclusion check takes ≈4%.

(d) For a given F , it is extremely common to have F ∩ H = F ∩ H ′ for facets
H
= H ′ of C. Therefore, it is useful to produce the set E first; we obtain each
intersection only once and can select the facets of F by testing inclusion.

(e) Algorithm 5.4 is designed for cones with small or at most moderate numbers of
facets. Via dualization, it can also be effectively applied to cones with a small
or moderate number of extreme rays (though this is not yet implemented in
Normaliz).

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

876 W. Bruns et al.

(f) Although we speak of the “face lattice” throughout, Algorithm 5.4 does not
compute the lattice structure. Indeed, this would be impossible given the order
of magnitude of the number of faces of the Kunz cone. The standard version
of Normaliz writes an output file in which each face F is represented by a
0-1-vector representing the facets that contain F , together with the codimension
of F . The lattice structure can be easily derived from this data.

An obvious weakness of Algorithm 5.4 is that it ignores the commutativity of
the intersection F1 ∩F2. Utilizing this fact should enable one to reduce the number
of pairs (F, H) that must be touched by the algorithm. To some extent this is
achieved by using the following proposition.

Proposition 5.6. For cosimplicial faces F = H1 ∩ · · · ∩Hc, H1, . . . , Hc ∈ H(C),
H1 < · · · < Hc, it is sufficient to run the loop “for all H ∈ H(C) with H /∈ H(F)”
over those facets satisfying H > Hc, and to simultaneously replace Max⊂ E with
the subset {G ∈ E :G is a facet of F}.

Proof. Suppose F is a face that has already been computed up to orbit. We must
show that all facets G of F are computed up to orbit as well. Since all facets
of C are evidently computed up to orbit, we can assume codimF ≥ 1. Set E =
H1 ∩ · · · ∩Hc−1 and H = Hc.

We have codimG = codimF + 1 = codimE + 2. By the “diamond property” of
the face lattice [20, Theorem 2.7(c)], there exists exactly one more face F ′ strictly
between E and G, which must be a facet of E as well, meaning F ′ = E ∩H ′ for
some H ′ ∈ H(C). It follows that F ∩H ′ = F ′ ∩H = F ∩ F ′ = G. The situation is
depicted by Fig. 2.

If H ′ > H , then G = F ∩ H ′ is computed since H ′ is not excluded by the
condition in the proposition. In the case H > H ′, however, we must be careful, since
F ′ has been computed only up to orbit. Let π be the automorphism that maps F ′ to
the minimal face in its orbit. If F ′ is not cosimplicial, then π(F ′∩H) = π(F ′)∩ π(H)
is computed since there is no restriction on the facets with which π(F ′) is matched.

If F ′ is cosimplicial (necessarily of codimension c), then H(π(F ′)) ≤ H(F ′) since
we choose the lexicographically smallest face in the orbit. Moreover, H(F ′) < H(F),

Fig. 2. The diamond property in the proof of s Proposition 5.6.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 877

since

max H(F ′) = max(Hc−1, H
′) < H = max H(F).

As such, we can assume π(F ′)∩ π(H) is computed up to orbit by induction on the
lexicographical order. It follows that F ∩H is computed up to (the same) orbit, as
desired.

The inequality H(F ′) < H(F) in the proof cannot be guaranteed (and rightfully
is not used) if F ′ is not cosimplicial. In the computation of orbits the main problem
is to find invariants of the faces that behave equivariantly under the action of the
automorphism group, or can at least be controlled with reasonable effort. In the
computation of the Wilf cone, Proposition 5.6 is already quite helpful because
the number of cosimplicial faces (and their orbits) is rather high. When m = 14,
for instance, the Kunz cone has 2,643,996 cosimplicial orbits out of 3,506,961.

The algorithm computes faces of codimension c in round c and not earlier (or
later). There is, however, a catch in using Proposition 5.6: one cannot select the
facets of F in Max⊂ E by checking inclusions unless all intersections F ∩ H with
H ∈ H(C) have been computed. In the Wilf version we proceed with Max⊂ E and
allow the computation of a codimension c face F prior to round c. In order to avoid
the re-computation of an orbit we look up W ∪F before F is added to N .

Table 1 contains data on the Kunz cones and their face lattices. The increase in
computation time with m is not only due to the larger and larger face lattices, but
also to the significant increase in the number of extreme rays. We have computed
their number for m = 19, 20 and 21 to give a glimpse of the complexity one expects
therein, let alone for higher values of m.

Table 2 gives execution times of the steps in the verification of Wilf’s conjecture,
and approximate values of the peak RAM usage. The times listed for “bad faces”

Table 1. Combinatorial data of Kunz cones.

m No. of No. of No. of No. of No. of No. of
inequ extr rays orbits bad orbits faces bad faces

7 18 30 71 0 400 0
8 24 47 379 0 1348 0
9 32 122 1104 9 6508 54

10 40 225 6711 19 26,682 74
11 50 812 15,622 178 155,944 1765
12 60 1864 169,607 714 669,794 2791
13 72 7005 365,881 4338 4,389,234 52,035
14 84 15,585 3,506,961 15,251 21,038,016 91,394
15 98 67,262 17,217,534 180,464 137,672,474 1,441,273
16 112 184,025 94,059,396 399,380 751,497,188 3,184,022
17 128 851,890 333,901,498 3,186,147 5,342,388,604 50,977,648
18 144 2,158,379 4,712,588,473 17,345,725 28,275,375,292 104,071,319
19 162 11,665,781 — — — —
20 180 34,966,501 — — — —
21 200 169,543,084 — — — —

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

878 W. Bruns et al.

Table 2. Normaliz execution data in verifying Wilf’s conjecture.

m Preparation Face lattice Bad faces Total time ≈RAM

11 — — — 0.7 s 6 MB
12 — — — 2.0 s 35 MB
13 1 s 2 s 16 s 19 s 80 MB
14 3 s 20 s 37 s 1:0 m 603 MB
15 15 s 3:335 m 14 m 17:59 m 2.6 GB
16 59 s 54:39 m 36 m 1:30 h 12 GB
17 6:05 m 19:35 h 16:55 h 36:36 h 48 GB
18 19:19 m 27:13 d 1:16 d 29:05 d 720 GB

include the final transformations and the output times. All runs were done with a
parallelization of 32 threads on a Dell R640 system with two IntelTM XeonTM Gold
6152 (a total of 44 cores) and 1 TB of RAM. These times can vary quite a bit with
the workload of the system. The table indicates that both computation time and
RAM usage are limiting factors in the computations.

Another conclusion from Table 2 is that computing the face lattice takes signifi-
cantly longer than subsequently checking the bad faces (and certainly uses far more
memory). This means verifying Wilf’s conjecture for m = 19 with Algorithm 5.4
will remain out of reach even if new restrictions on the bad faces are obtained (e.g.
from improvements on results such as [9]).

Remark 5.7. An automorphism free version of the face lattice computation was
released in Normaliz 3.7.0. Version 3.8.0 will contain a substantially improved
algorithm, which we forgo discussing at this point since (i) it does not con-
tribute to the Wilf computations and (ii) an algorithm by Kliem and Stump [12]
posted to arXiv.org after the first version of our paper appears to be faster than
Normaliz 3.8.0. The Kliem and Stump algorithm differs greatly from ours, e.g.
by using a depth first search in the recursion and a faster implementation of bit
vectors.

6. Wilf’s Conjecture as a Combinatorial Game

The defining inequalities of any face in which Conjecture 4.4 holds can be combined
to yield Wilf’s inequality. We introduce a “combinatorial game” of sorts (Defini-
tion 6.2), played with the facet description of each face (or, equivalently, the asso-
ciated Kunz poset), the successful completion of which implies Wilf’s conjecture
holds for all numerical semigroups in that face (Theorem 6.5).

Remark 6.1. Using the Wilf game in the pursuit of Wilf’s conjecture has several
potential advantages. Some of the special classes of numerical semigroups for which
Wilf’s conjecture is known to hold have well-understood Apéry posets (for instance,
those in Corollary 6.6). The Wilf game provides a streamlined avenue for proving

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 879

Wilf’s conjecture in such cases, as the game only depends on the Apéry posets
of the underlying semigroup. Additionally, any counterexample to Wilf’s conjec-
ture must lie in a face for which the Wilf game is unwinnable, so one method of
searching for such examples is by first locating such a poset. Note that, using the
machinery in Sec. 4, once an unwinnable poset is located, Normaliz can be used
to either locate an integer point whose corresponding numerical semigroup violates
Wilf’s conjecture, or verify computationally that none exist in the corresponding
face.

Definition 6.2. Fix an m-Kunz poset P and a maximal element f ∈ P , and let
e− 1 denote the number of minimal elements of P . We define the Wilf game of P ,
played on the set of all formal expressions

∑
i∈P aixi in variables x1, . . . , xm−1

with ai ∈ Z≥0. A Wilf move on a given expression is a replacement of the
form

xi + xk−i → xk

for some i, k ∈ P with i ≺ k. The score of a Wilf move xi + xj → xk equals the
sum of:

(i) the net change in the number of summands “to the right” of f (that is, variables
whose index is greater than f), that is, the sum of

• −1 if i > f ;
• −1 if j > f and
• +1 if k > f ;

(ii) +1 if k < i (equivalently, if k < j) and
(iii) +2 if it is not one of the first m− e moves performed.

A sequence of at least m−e Wilf moves starting on the expression ex1+ · · ·+exm−1

with initial score m− 1− f (that is, the number of distinct variables “to the right”
of f) is said to win the Wilf game if the net score is non-negative.

Example 6.3. Let S = 〈3, 5, 7〉, whose Apéry poset P(S) has two elements, both
of which are maximal. As such, there are no available Wilf moves. However, m(S)−
e(S) = 0, so the game is won with zero moves, as the initial score is either 3− 1− 1
or 3− 1− 2, both of which are non-negative.

Notice that the same behavior occurs for every maximal embedding dimension
numerical semigroup S, since in this case P(S) consists of e(S) − 1 incomparable
elements (each both maximal and minimal). The Wilf game is won with zero moves
for each maximal element, the net score being m−1−f ≥ 0 for every f ∈ (Z/(m))∗.

Example 6.4. Let us return to the numerical semigroup S = 〈6, 9, 20〉 from Exam-
ple 3.8 (here, m = 6, e = 3 and f = 1). The Wilf game on P can be won with the

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

880 W. Bruns et al.

sequence

3x1 + 3x2 + 3x3 + 3x4 + 3x5 → 4x1 + 2x2 + 3x3 + 3x4 + 2x5

→ 5x1 + x2 + 3x3 + 3x4 + x5

→ 6x1 + 3x3 + 3x4

→ 7x1 + 2x3 + 2x4

→ 8x1 + x3 + x4

→ 9x1

of 2 distinct Wilf moves (x2 +x5 → x1 and x3 +x4 → x1) each applied three times.
The net score is computed as follows:

(i) −12 points, since each Wilf move results in 2 less summands to the right of
f = 1;

(ii) +6 points, since each move results in a variable with smaller index and
(iii) +4 points for the extra 2 moves beyond the initial m− e = 4.

The net score is thus (m − 1 − f) − 12 + 6 + 4 = 2. Had each Wilf move been
performed only twice, the net score would be 0, still enough to win the Wilf game.
Since S is symmetric, f is the unique maximal element of the Apéry poset, and the
strategy employed above (move everything directly to xf) is precisely the one used
in the proof of Corollary 6.6(a).

Theorem 6.5. Fix a face F ⊂ Pm with corresponding Kunz poset P, and let e =
e(F). If, for each maximal element f, P has a winning sequence of moves, then
Conjecture 4.4 (and thus Wilf ’s conjecture) holds for every numerical semigroup
in F ◦.

Proof. Fix a positive integer vector (x1, . . . , xm−1) ∈ F ◦ corresponding to the
Kunz coordinates of some numerical semigroup S, and let f ∈ P so that mxf +f =
F(S). Rearranging the inequality (4.2), we must show

ex1 + · · · + exm−1 −m(e− 1)xf + (e− 1)(m− 1− f) ≤ 0.

Each Wilf move on ex1 + · · · + exm−1 corresponds to an equality of the form

xi + xj = xi+j or xi + xj = xi+j−m − 1

satisfied by all points in F ◦. Let a1x1 + · · · +am−1xm−1 denote the final expression
resulting from some winning sequence of Wilf moves on P , let s3 denote the number
of Wilf moves used beyond the first m− e, let s2 denote the number of Wilf moves
of the latter form above, and let s1 = af+1 + · · · + am−1, so that the net score is

s1 − (e− 1)(m− 1− f) + s2 + 2s3 ≥ 0.

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

Wilf’s conjecture in fixed multiplicity 881

Using the fact that xi ≤ xf for i ≤ f and xi ≤ xf − 1 for i > f , we obtain

ex1 + · · ·+ exm−1 −m(e− 1)xf = −s2 + a1x1 + · · ·+ am−1xm−1 −m(e− 1)xf

≤ −s1 − s2 + (a1 + · · ·+ am−1)xf −m(e− 1)xf

= −s1 − s2 + (a1 + · · ·+ am−1 −m(e− 1))xf

= −s1 − s2 + (e(m− 1)− (m− e)

− s3 −m(e− 1))xf

= −s1 − s2 − s3xf

≤ −s1 − s2 − 2s3

≤ −(e− 1)(m− 1− f),

from which the desired inequality immediately follows.

To demonstrate the utility of Theorem 6.5, we rederive some known results.

Corollary 6.6. The Wilf game is winnable on the Apery poset of a semigroup S if

(a) S is symmetric or
(b) S has maximal embedding dimension.

Proof. Let P denote the Apéry poset of S, and let m, e and f be defined as before.
If S is symmetric, then t(S) = 1, so f is the unique maximal element of P . As such,
performing the move xi + xf−i → xf for each i
= f yields a sequence of m − 2
moves. Since i < f if and only if f − i < f , each such move scores 0 (if i < f) or −1
(if i > f). Combined with the starting score of m− 1− f and any additional points
earned for extra moves, this yields a net non-negative score, thereby winning the
Wilf game.

The maximal embedding dimension case has been already treated in Exam-
ple 6.3.

Acknowledgments

The second author is supported by the project MTM2017-84890-P, which is funded
by the Ministerio de Econóıa y Competitividad and Fondo Europeo de Desarrollo
Regional FEDER, and by the Junta de Andalućıa Grant Number FQM–343. The
third author received support from the AMS-Simons travel grant to visit the sec-
ond and fourth author’s home institutions. The authors would also like to thank
Eduardo Torres-Davila for his helpful comments. Experimental evidence early in
the project made use of the GAP package numericalsgps [5].

March 21, 2020 11:33 WSPC/S0218-1967 132-IJAC 2050023

882 W. Bruns et al.

References

[1] V. Barucci, On propinquity of numerical semigroups and one-dimensional local Cohen
Macaulay rings, in Commutative Algebra and its Applications (Walter de Gruyter,
Berlin, 2009), pp. 49–60.

[2] W. Bruns and J. Gubeladze, Polytopes, Rings and K-Theory (Springer, 2009).
[3] W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger, Normaliz. Algorithms for

rational cones and affine monoids, http://normaliz.uos.de.
[4] M. Delgado, Conjecture of Wilf: A survey, preprint (2019), arXiv:1902.03461.
[5] M. Delgado, P. Garćıa-Sánchez and J. Morais, NumericalSgps, A package for

numerical semigroups, Version 1.1.10 (2018), (Refereed GAP package), https://gap-
packages.github.io/numericalsgps.

[6] M. Dhayni, Wilfs conjecture for numerical semigroups, Palestine J. Math. 7 (2018)
385–396.

[7] D. Dobbs and G. Matthews, On a question of Wilf concerning numerical semigroups,
in Focus on Commutative Rings Research (Nova Science Publishers, New York, 2006),
pp. 193–202.

[8] S. Eliahou, Wilf’s conjecture and Macaulay’s theorem, J. Eur. Math. Soc. Online
first (2018), https://arXiv.org/abs/1703.01761.

[9] S. Eliahou, A graph-theoretic approach to Wilfs conjecture, preprint (2019),
arXiv:1909.03699, https://arXiv.org/abs/1909.03699.

[10] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup
Forum 35 (1987) 63–83.

[11] J. Fromentin and F. Hivert, Exploring the tree of numerical semigroups, Math.
Comput. 85 (2016) 2553–2568.

[12] J. Kliem and C. Stump, A face iterator for polyhedra and more general finite locally
branched lattices, preprint (2019), arXiv:1905.01945.

[13] E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger Math.
Schriften 11 (1987).

[14] OpenMP Architecture Review Board, OpenMP Application Program Interface
Version 3.0 (2008), http://www.openmp.org/mp-documents/spec30.pdf.

[15] J. Rosales and P. Garćıa-Sánchez, Numerical Semigroups, Developments in Mathe-
matics, Vol. 20 (Springer-Verlag, New York, 2009).

[16] J. C. Rosales, P. A. Garćıa-Sánchez, J. I. Garćıa-Garćıa and M. B. Branco, Systems
of inequalities and numerical semigroups, J. Lond. Math. Soc. 65(3) (2002) 611–623.

[17] A. Sammartano, Numerical semigroups with large embedding dimension satisfy Wilfs
conjecture, Semigroup Forum 85(3) (2012) 439–447.

[18] E. S. Selmer, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math.
293/294 (1977) 1–17.

[19] H. Wilf, A circle-of-lights algorithm for the money-changing problem, Amer. Math.
Monthly 85 (1978) 562–565.

[20] G. Ziegler, Lectures on Polytopes (Springer 1995).

	Introduction
	Numerical Semigroups and Wilf's Conjecture
	The Kunz Polyhedron and Related Polyhedra
	Verifying Wilf's Conjecture for Fixed Multiplicity
	The Computation of the Face Lattice
	Wilf's Conjecture as a Combinatorial Game
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

