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In remembrance of my parents

Discrete cones, in systematic terminology: normal affine semigroups, represent the link
between branches of mathematics that, at first sight, seem tobe extremely distant from
one another, i.e. combinatorial geometry and discrete optimisation on the one hand, and
algebraic geometry and commutative algebra on the other. These branches and the links
between them have been researched intensively in recent decades.

The disproof of two conjectures about the combinatorial structure of discrete cones will
be discussed in this paper. In particular, we will show that Carathéodory’s theorem for
convex cones does not have an integer analogue. This is proved by a discrete cone which
was recently found by Joseph Gubeladze (Tbilisi) and the author. However, it was first
only recognised as a counterexample to the second conjecture to be discussed—the so-
called unimodular Hilbert covering. The fact that it also violates the discrete Carathéodory
property was then found out by Martin Henk, Alexander Martinand Robert Weismantel
(Magdeburg and Berlin) and represented in a joint paper [4].

The discovery of the counterexamples signifies a success forexperimental mathemat-
ics, since it marks the end of a very lengthy series of experiments. This success is largely
due to the capacity of modern computers which enable very large numbers of objects to
be searched, even for complex properties.

For numerous other, in particular, algebraic aspects of thetheory of discrete cones,
we refer to [3] and the joint work [5] of the author with Gubeladze and Ngô Viet Trung
(Hanoi). Gubeladze’s guest stay at the University of Vechtain 1995, financed by the
Deutsche Forschungsgemeinschaft, contributed considerably to the latter work. The paper
[3], which in conjunction with [4] forms the basis of this article, came into being during
Gubeladze’s guest stay (from October 1996 to March 1998) as aresearch scholar of the
Alexander von Humboldt Foundation at the Department of Mathematics/Informatics at
the University of Osnabrück.

CONVEX AND DISCRETE CONES

The solutionsx = (ξ1, . . . , ξn) of a system

ai1ξ1 + · · · + ainξn = 0, i = 1, . . . , m,

of m homogeneous linear equations form a linear subspaceU of then-dimensional vector
space. (In the following, for the sake of clarity, vectors will be denoted by the letters
x, y andz, their components by the corresponding Greek letters and coefficients bya, b

andc). This system is solved by determining a basis ofU , i.e. vectorsz1, . . . , zu ∈ U ,
u = dim(U), for which every solutionx has a (uniquely determined) representationx =
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c1z1 + · · · + cuzu as alinear combinationof z1, . . . , zu. (Moreover, every such linear
combination is also the solution of the system of equations). In the following we will
first of all discuss whether these statements remain valid orhow they should possibly be
altered if inequations are to be considered instead of equations. Systems of inequations
occur in numerous applications of mathematics, especiallyin optimisation.

The set of solutions of a system

bk1ξ1 + · · · + bknξn ≥ 0, k = 1, . . . , p,

of p homogeneous linear inequalities forms a polyhedral convexconeC. Without loss
of generality, we can assume thatC has the same dimension as its surrounding space
and, moreover, does not contain any complete line. The latter property is equivalent to
C having a vertex at zero. Since only a finite number of inequalities are considered, the
cone has a finite number offacets, and asupport hyperplanepasses through each facet.

ξ26

ξ1-

FIGURE 1. A convex and a discrete cone

This explains why the cone is also “finite” in another sense: If we select a pointzj ,
j = 1, . . . , u, on each of the finite number of edges, all pointsx ∈ C can be written as a
linear combination ofz1, . . . , zu with non-negativecoefficients,

x = c1z1 + · · · + cuzu, cj ≥ 0, j = 1, . . . , u,

(conversely, every such linear combination is a solution ofthe system of inequations).
None of thezi can be omitted; for this reason,z1, . . . , zu form a minimal generating
system. As soon as the coneC has at least dimension 3, it can have any number of edges.
Hence in general, there is no generating system with dim(C) elements. If we consider
each point of the coneindividually, however, we can represent it with dim(C) selected
elements ofz1, . . . , zu. This is

Carathéodory’s theorem. LetC be a convex cone of the dimensionn which is generated
byz1, . . . , zu. Then for everyx ∈ C there are indicesi1, . . . , in andaj ≥ 0 coefficients so
thatx = a1zi1 + · · · + anzin.

Carathéodory’s theorem follows from the stronger statement that across-sectionof
the cone can be triangulated, as shown in Figure 2 for a 3-dimensional cone. If the ray
throughx emitting from zero intersects the cross-section in a triangle 1, we then select



DISCRETE CONES AND CARATH́EODORY’S THEOREM 3
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FIGURE 2. Triangulation of the cross-section

thosezi ’s to representx that lie on the rays through the boundary point of1. (In general,
(n − 1)-dimensional simplices take the place of the triangles).

A discrete coneS is the integer analogue of a convex cone: it occurs when one restricts
the set of solutions of a system of homogeneous linear inequalities containinginteger
coefficientsto vectors withinteger components. A convex coneC also belongs to each
discrete coneS, andS is the set of integer vectors inC. Finally, a discrete cone is also
finitely generated:

Gordan’s Lemma. A discrete coneS always contains elementsz1, . . . , zw, for which
each elementx ∈ S possesses a representationx = a1z1 + · · · + awzw with integers
ai ≥ 0.

Gordan’s lemma can still be considerably strengthened: There is even a uniquely de-
fined minimal generating system ofS which (in the combinatorial literature) is called the
Hilbert basisof S, or Hilb(S) for short. Hilb(S) is obtained by selecting a finite gener-
ating system, according to Gordan’s lemma, and then omitting the superfluous elements.
The Hilbert basis, in fact, consists of allirreduciblevectorsy in S, i.e. those vectors that
can not be written asy = y1 + y2 with y1, y2 ∈ S, y1, y2 6= 0. If a comparison is made
to number theory, they are the “prime numbers” inS—however, they occur in a finite
number, and the representation of a certain element by them is, in general, not unique.
The discrete cone shown in Figure 1 is described by the inequalities −ξ1 + 2ξ2 ≥ 0 and
3ξ1 − 2ξ2 ≥ 0. Its Hilbert basis consists of(1, 1), (2, 1) and(2, 3).

Now the question arises whether even an analogy to Carathéodory’s theorem is valid
for discrete cones:

Discrete Carathéodory property. Let S be a discrete cone of dimensionn. Can
z1, . . . , zn of Hilb(S) and whole numbersa1, . . . , an ≥ 0 be found for each elementx

of S elements, for whichx = a1z1 + · · · + anzn?

Sebö [11] has proved forn = 3 and conjectured for alln that the answer to this question
is yes. (This is very easy to see forn = 1 andn = 2). The counterexamples we have
found are of dimension 6. The question remains unsolved for dimensions 4 and 5.

UNIMODULAR TRIANGULATIONS AND COVERS

We intend to derive Sebö’s theorem for three-dimensional discrete conesS in a spe-
cial case. The proof leads us to triangulations, as in Carathéodory’s theorem, and more
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generally, to covers of discrete cones. The feature of this special case is that all elements
of Hilb(S) lie on one plane. After an integer change of coordinates it can be assumed
that this planeE is given by the equationζ3 = 1, i.e. that Hilb(S) consists of vectors
of the form(ζ1, ζ2, 1), (this requires an explanation which we, however, will passover).
The left-hand side of Figure 3 shows a “vertical” cross-section of such a cone. The right-
hand side of the figure shows cross-sectionQ along planeE in which the elements of the
Hilbert basis are denoted by dots. As shown in the figure, we triangulateQ such that each

Q
E

◦
x

Q

FIGURE 3. Vertical cut and cross-section

triangle1 contains no other elements of the Hilbert basis apart from its cornersz1, z2, z3.
According to a classical theorem of elementary integer geometry, Pick’s formula,1 must
therefore have area 1/2. The volume of the pyramid with basis1 and its vertex at zero is
then 1/6, and the parallelotope spanned by the three vectorsz1, z2, z3 has volume 1. But
this means

δ = det(z1, z2, z3) = ±1.

We now consider a vectorx in S. The ray from zero throughx intersects one of the
triangles1; in other words,x lies in coneD spanned byz1, z2, z3. Sinceδ 6= 0, the
system of equations

x = c1z1 + c2z2 + c3z3

has a unique solution. Sincex lies in D, c1, c2, c3 ≥ 0 is valid, and finally, theci ’s even
have to be whole numbers becauseδ = ±1. The latter follows from Cramer’s rule, since
all coefficients in the system and the right-hand side are integers, and onlyδ appears as
the denominator.

Hence it is shown that three-dimensional conesC in the considered special case possess
the discrete Carathéodory property. We have even derived amore precise statement:C
possesses aunimodular Hilbert triangulation. The prefix “Hilbert” indicates that the
corners of the triangles (more generally: the(n − 1)-simplices) are given by elements of
the Hilbert basis, whilst “unimodular” reflects the condition δ = ±1.

As shown by Sebö, all three-dimensional discrete cones possess unimodular Hilbert
triangulations. This statement was also proven independently by Aguzzoli and Mundici
[1] and Bouvier and Gonzalez–Sprinberg [2]. An example of a four-dimensional cone
without such a triangulation can also be found in [2].

Even in dimension 3 there is no analogue to Pick’s formula: One can easily obtain tetra-
hedra of arbitrarily large volume whose corners are their only integer points. Although
the above procedure can not be transferred naively to higherdimensions, the actual idea
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has not yet been fully exhausted. We have proceeded further than necessary in one re-
spect: To derive the discrete Carathéodory property it would not matter if the triangles
overlapped. It would be sufficient if we could replyyesto the following question (as also
conjectured by Sebö [11]):

Unimodular Hilbert cover. Is every discrete cone covered by its unimodular Hilbert
subcones?

Before our counterexamples there was no answer to this question in dimension> 3,
and for dimensions 4 and 5 it remains unsolved. Moreover, a cone which possesses the
discrete Carathéodory property, but which is not unimodular Hilbert covered, is also not
yet known.

In order to delimit our problem it ought to be mentioned that each discrete cone pos-
sesses a unimodular triangulation, as long as no conditions, apart from finiteness, are
imposed on the vectors that determine the triangulation.

THE COUNTEREXAMPLE

Even those experts who did not believe in the discrete Carathéodory property or the
unimodular Hilbert cover were certainly surprised by the following counterexample which
not only fulfills its purpose, but is also even aestheticallypleasing.

It is a 6-dimensional discrete cone which we denote byS6. In order to make its sym-
metries more visible we select an embedding in 12-dimensional space. The row vectors
z1, . . . , z5 andz6, . . . , z10 of the following matrices form the Hilbert basis ofS6:













1 0 1 0 0 0 0 0 1 2 2 1
1 0 0 1 0 0 0 1 0 1 2 2
1 0 0 0 1 0 0 2 1 0 1 2
1 0 0 0 0 1 0 2 2 1 0 1
1 0 0 0 0 0 1 1 2 2 1 0

























0 1 0 2 1 1 2 1 0 0 0 0
0 1 2 0 2 1 1 0 1 0 0 0
0 1 1 2 0 2 1 0 0 1 0 0
0 1 1 1 2 0 2 0 0 0 1 0
0 1 2 1 1 2 0 0 0 0 0 1













An embedding in 6-dimensional space is obtained, for example, when the columns 2, . . . , 7
are selected. Each of the 12 coordinate hyperplanes of the 12-dimensional space intersects
C6 at one facet, since for every column the 5 vectors, whose components at that point are
0, are linearly independent. However, there are 15 further facets, 5 of which are not
simplicial: they each contain 6 elements of Hilb(S6).

The vectorsz1, . . . , z10 lie in hyperplaneH , which is defined by the equation−6ζ1 −

6ζ2 + ζ3 + · · · + ζ12 = 1. The cross-section of the convex coneC6 generated byS6 along
H has the 5-dimensional volume 5/24.

The discrete cone is not unimodular Hilbert covered, since the vector

t1 = z1 + · · · + z10

is not contained in any unimodular Hilbert subcone ofS6. Simultaneously, it is the
“smallest” vector inS6 with this property. If we take away the union of all unimodu-
lar Hilbert subcones fromC6, a convex cone surprisingly remains (its interior, to be more
precise), which is generated by 22 vectors. Its cross-section along the hyperplaneH has
a 5-dimensional volume of 1/129600; it therefore represents only 1/27000 of the cross-
section ofC6 with H .
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However,t1 does not disprove the discrete Carathéodory property. Dueto the equation
z1 + z4 + z7 + z8 = 2z5 + 2z10, t1 can be written as an integer linear combination of 6
elements of the Hilbert basis:

t1 = z2 + z3 + 3z5 + z6 + z9 + 3z10.

However, this is impossible for

t2 = t1 + z2 + z5 + 2 (z7 + · · · + z10).

(It can be shown that each element ofS6 can be represented by 7 elements of Hilb(S6)).
The obvious symmetry ofS6 can be described precisely without much effort. Both of

the assignments given in the following diagrams can be realised by suitably permuting
the coordinate axes of the 12-dimensional space. They therefore represent symmetries of
S6 (or C6):

σ : z1 7→ z2 7→ z3 7→ z4 7→ z5 7→ z1, z6 7→ z7 7→ z8 7→ z9 7→ z10 7→ z6

ρ : z1 7→ z6 7→ z1, z2 7→ z8 7→ z5 7→ z9 7→ z2, z3 7→ z10 7→ z4 7→ z7 7→ z3.

(This is to be read as follows:σ transfersz1 to z2, z2 to z3, etc.). The group of motions
determined byρ andσ has 20 elements; other symmetries do not exist.σ andρ2 exchange
the elements within the subsetsF1 = {z1, . . . , z5} andF2 = {z6, . . . , z10}, in the same way
as in the symmetry group of the regular pentagon. On the otherhand,ρ exchangesF1 and
F2. Each element of Hilb(S6) can therefore be transferred to any other so thatS6 looks
“the same” at each boundary ray. The test vectort1 is left invariant byσ andρ (and its
multiples are the only ones of this type inS6); on the other hand,t2 is only invariant forσ
andρ2.

We have found a further counterexample beyondS6. It is also 6-dimensional, but has a
Hilbert basis with 12 vectors, and its symmetry group only has 4 elements. A counterex-
ample of dimensionn + 1 can easily be constructed from a counterexample of dimension
n so that counterexamples are now also known in each dimension> 6. (An 0 is added to
the vectors of the Hilbert basis as a new final component and then the vector(0, . . . , 0, 1)

is added to it).

CONSTRUCTION AND TIGHTENING OF DISCRETE CONES

In the search for cones without the discrete Carathéodory property or unimodular Hilbert
covering one requires algorithms for three fundamental steps, i.e. for

1. the availability of candidates,
2. the test for unimodular Hilbert covering,
3. the test for the discrete Carathéodory property.

In this section we will discuss the first step, which is the most important of the three.
First of all the integer vectorsy1, . . . , yu are selected, whereby the numberu and the

components ofyi are either determined systematically or by a random number generator,
whilst keeping to certain limits. The linear combinationsb1y1 + · · · + buyu with coeffi-
cientsbi ≥ 0 form a convex coneC, which can be described by inequations with integer
coefficients. As desired, the integer vectors inC form a discrete coneS. Then the Hilbert
basis ofS is determined. We will refrain from describing how this is done. However,
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an efficient algorithm is absolutely necessary for the reduction procedure given below, as
implemented by R. Koch and the author; see [6].

In general, the Hilbert basis of the discrete cones obtainedis too large, rendering the
second and third steps impossible, due to the inacceptable computing time and memory
required—these calculations need to be repeated for numerous candidates. The reduction
to tight cones was crucial for our success. This reduction will now bedescribed.

In every boundary ray of a coneS there is exactly one elementz of the Hilbert basis
H (it is the first integer point on this ray if it is passed through from zero). We consider
the coneC ′ which is spanned by the remaining elementsH ′ = Hilb(S) \ {z}. If H ′

is not the Hilbert basis of the discrete coneS ′, which is determined byC ′, we call z
destructive. A cone should be calledtight if every boundary element of the Hilbert basis
is destructive. The tight cones are also precisely those cones that can not be reduced with
the best possible preservation of the Hilbert basis.

z

C ′

C

FIGURE 4. Tightening a cone

In order to “tighten” a cone the elements of the Hilbert basisare tested one at a time
for destructivity. If a non-destructive element is found, it is simply discarded and work
continues on the reduced cone.

A cone can often be completely “peeled off” using this procedure. If this is not the
case, a tight cone remains which can then undergo further testing. We are not certain if
a tight cone of dimension 3 exists. But the arguments of the previous section show that
its Hilbert basis can not be contained in one plane. Tight cones can easily be found in
dimension≥ 4.

THE TEST FOR UNIMODULAR HILBERT COVERING

Our test for unimodular Hilbert covering is based on the dissection of the cone into
elementary cells whose “walls” are formed by those hyperplanes that form the boundaries
of the unimodular Hilbert subcones. Figure 5 shows this dissection as a cross-section of a
three-dimensional cone. The following two alternatives are valid for each elementary cell
E:

1. E is contained in a unimodular Hilbert subcone;
2. the interior ofE is not intersected by any unimodular Hilbert subcone.
To test the unimodular Hilbert covering we first of all determine a Hilbert triangulation

of candidateS, i.e. a triangulation in which every simplex is spanned by elements of the
Hilbert basis. We can then immediately forget about the union of unimodular cones in this
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FIGURE 5. Dissection into elementary cells

triangulation—since it is already unimodular Hilbert covered. For each of its other cones
D we then attempt to find a unimodular Hilbert subconeU which intersects the interior
of D. If such aU can not be found, it is obvious thatD is not unimodular covered.
Otherwise one of the “walls” fromU divides candidateD into two smaller cones,D1 and
D2. Now the same procedure is applied recursively toD1 andD2. Since there are a finite
number of unimodular Hilbert subcones, and therefore only afinite number of “walls”,
the case in which the tested candidate is contained in an elementary cell must occur at
some point, so that one of the above alternatives apply.

This is (with some minor simplifications) our algorithm to test the unimodular Hilbert
covering. Not only does it decide ifS is unimodular covered, it also determines in the neg-
ative case all elementary cells that are not contained in anyunimodular Hilbert subcone.
(In the counterexampleS6 this is the case for exactly one elementary cell).

The discrete Carathéodory property can also be decided in afinite number of steps.
However, this is not possible by means of convex geometry alone, and for this reason,
we will refrain from describing the algorithm. Incidentally, we have not yet managed to
realise this problem. It would only be worthwhile if we had anexample that withstands
all attacks with more basic weapons.

By trying out very many elements ofS one could attempt to find one that can not
be represented as a linear combination ofn = dim(S) elements of the Hilbert basis.
The search only needs to be undertaken in the elementary cells that are not unimodular
covered, and this increases the chance of success considerably (with S6 by factor 27000).

However, this method first of all led us to believe in the discrete Carathéodory prop-
erty of S6. This belief was then disproved by M. Henk, A. Martin and R. Weismantel
(Magdeburg and Berlin) —the compiler we used had provided uswith a poor random
number generator. The results of the exact analysis ofS6, which was then carried out in
cooperation, are described in [4].
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