DISCRETE CONES AND CARATH EODORY'S THEOREM
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In remembrance of my parents

Discrete cones, in systematic terminology: normal affimeigeoups, represent the link
between branches of mathematics that, at first sight, sedra &xtremely distant from
one another, i.e. combinatorial geometry and discreterogdition on the one hand, and
algebraic geometry and commutative algebra on the othess@hranches and the links
between them have been researched intensively in recesdeec

The disproof of two conjectures about the combinatorialcttire of discrete cones will
be discussed in this paper. In particular, we will show thatathéodory’s theorem for
convex cones does not have an integer analogue. This is¢obyva discrete cone which
was recently found by Joseph Gubeladze (Thilisi) and theaautHowever, it was first
only recognised as a counterexample to the second corgetctdre discussed—the so-
called unimodular Hilbert covering. The fact that it alsolaies the discrete Carathéodory
property was then found out by Martin Henk, Alexander Madimd Robert Weismantel
(Magdeburg and Berlin) and represented in a joint paper [4].

The discovery of the counterexamples signifies a succesfmrimental mathemat-
ics, since it marks the end of a very lengthy series of experimélttis success is largely
due to the capacity of modern computers which enable vegglaumbers of objects to
be searched, even for complex properties.

For numerous other, in particular, algebraic aspects othkery of discrete cones,
we refer to [3] and the joint work [5] of the author with Gubdta and Ngo Viet Trung
(Hanoi). Gubeladze’s guest stay at the University of Vechta995, financed by the
Deutsche Forschungsgemeinschaft, contributed consigecethe latter work. The paper
[3], which in conjunction with [4] forms the basis of this iaie, came into being during
Gubeladze’s guest stay (from October 1996 to March 1998)rasemrch scholar of the
Alexander von Humboldt Foundation at the Department of Mathtics/Informatics at
the University of Osnabrick.

CONVEX AND DISCRETE CONES
The solutionsy = (&4, ..., &,) of a system
ai1§l+"'+ain§n:O» i=1...,m,

of m homogeneous linear equations form a linear subspasithen-dimensional vector
space. (In the following, for the sake of clarity, vectordlwe denoted by the letters
x, y andz, their components by the corresponding Greek letters aefficients bya, b
andc). This system is solved by determining a basid/ofi.e. vectorss,...,z, € U,
u = dim(U), for which every solutiorx has a (uniquely determined) representatios
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c121 + -+ + ¢,z, as alinear combinationof zy, ..., z,. (Moreover, every such linear
combination is also the solution of the system of equatioms)the following we will
first of all discuss whether these statements remain valibarthey should possibly be
altered if inequations are to be considered instead of emngat Systems of inequations
occur in numerous applications of mathematics, espedrathptimisation.

The set of solutions of a system

bkl§1+"'+bkn§nzo, k:].,...,p,

of p homogeneous linear inequalities forms a polyhedral cocege C. Without loss

of generality, we can assume th@thas the same dimension as its surrounding space
and, moreover, does not contain any complete line. Therlpttgerty is equivalent to

C having a vertex at zero. Since only a finite number of inedgjealiare considered, the
cone has a finite number tdcets and asupport hyperplanpasses through each facet.
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FIGURE 1. A convex and a discrete cone

This explains why the cone is also “finite” in another sendevd select a point;,

j =1,...,u, on each of the finite number of edges, all points C can be written as a
linear combination of4, ... , z, with non-negativeoefficients,
x:clzl+'+cuzu» cjzovj:]-""’uv

(conversely, every such linear combination is a solutiomhef system of inequations).
None of thez; can be omitted; for this reason,, ..., z, form a minimal generating
systemAs soon as the cong has at least dimension 3, it can have any number of edges.
Hence in general, there is no generating system withdinelements. If we consider
each point of the conmdividually, however, we can represent it with di@) selected
elements of, ..., z,. Thisis

Carathéodory’s theorem. LetC be a convex cone of the dimensiowhich is generated
byzi, ..., z,. Thenforevery e C there are indices,, .. ., i, anda; > 0 coefficients so
thatx = aiz;, + - - + a,z;,.-

Carathéodory’s theorem follows from the stronger statentieat across-sectiorof
the cone can be triangulated, as shown in Figure 2 for a 3vtiiopal cone. If the ray
throughx emitting from zero intersects the cross-section in a tlerg we then select
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FIGURE 2. Triangulation of the cross-section

thosez;’s to represent that lie on the rays through the boundary pointof(In general,
(n — 1)-dimensional simplices take the place of the triangles).

A discrete coné is the integer analogue of a convex cone: it occurs when @teats
the set of solutions of a system of homogeneous linear inggsacontaininginteger
coefficientso vectors withinteger componentsA convex coneC also belongs to each
discrete cones, andS is the set of integer vectors ifi. Finally, a discrete cone is also
finitely generated:

Gordan’s Lemma. A discrete cone always contains elements, . . ., z,, for which
each element € S possesses a representation= aiz; + - - - + a,,z, With integers
a; = 0.

Gordan’s lemma can still be considerably strengthenedreTiseeven a uniquely de-
fined minimal generating system 8fwhich (in the combinatorial literature) is called the
Hilbert basisof S, or Hilb(S) for short. Hilk(S) is obtained by selecting a finite gener-
ating system, according to Gordan’s lemma, and then omittie superfluous elements.
The Hilbert basis, in fact, consists of aiteduciblevectorsy in S, i.e. those vectors that
can not be written ag = y; + y, with y;, yo € S, y1, 2 # 0. If a comparison is made
to number theory, they are the “prime numbers”Sta-however, they occur in a finite
number, and the representation of a certain element by teeim general, not unique.
The discrete cone shown in Figure 1 is described by the inidigsa-&; + 2&, > 0 and
3&, — 2&, > 0. Its Hilbert basis consists o1, 1), (2, 1) and(2, 3).

Now the question arises whether even an analogy to Caddings theorem is valid
for discrete cones:

Discrete Carathéodory property. Let S be a discrete cone of dimensian Can
21, ..., 2, OF Hilb(S) and whole numbers,, ...,a, > 0 be found for each element
of S elements, for which = a1z1 + -+ - + a,2,?

Sebo[11] has proved far = 3 and conjectured for atl that the answer to this question
isyes (This is very easy to see far = 1 andn = 2). The counterexamples we have
found are of dimension 6. The question remains unsolvedifoedsions 4 and 5.

UNIMODULAR TRIANGULATIONS AND COVERS

We intend to derive Sebd’s theorem for three-dimensiorsdrdte cones in a spe-
cial case. The proof leads us to triangulations, as in Cacatbry’s theorem, and more
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generally, to covers of discrete cones. The feature of ffesial case is that all elements
of Hilb(S) lie on one plane. After an integer change of coordinatesnthm assumed
that this planeE is given by the equatiog; = 1, i.e. that HildS) consists of vectors
of the form(¢y, &2, 1), (this requires an explanation which we, however, will passr).
The left-hand side of Figure 3 shows a “vertical” cross-eecdf such a cone. The right-
hand side of the figure shows cross-sectipalong planeE in which the elements of the
Hilbert basis are denoted by dots. As shown in the figure, \laadulateQ such that each

o

FIGURE 3. Vertical cut and cross-section

triangle A contains no other elements of the Hilbert basis apart frermadtners, z», zs.
According to a classical theorem of elementary integer ggomPick’s formula A must
therefore have areg/2. The volume of the pyramid with bastssand its vertex at zero is
then /6, and the parallelotope spanned by the three veetors, z3 has volume 1. But
this means

§ = deft(zy, 22, z3) = £1.

We now consider a vector in S. The ray from zero through intersects one of the
trianglesA; in other words,x lies in coneD spanned by, z,, z3. Sinced # 0, the
system of equations

X = €121+ €222 + €323
has a unique solution. Sinaelies in D, ¢y, ¢, c3 > 0 is valid, and finally, the;’s even
have to be whole numbers becadse +1. The latter follows from Cramer’s rule, since
all coefficients in the system and the right-hand side argents, and only appears as
the denominator.

Hence it is shown that three-dimensional co@en the considered special case possess
the discrete Carathéodory property. We have even derivadra precise statement:
possesses animodular Hilbert triangulation The prefix “Hilbert” indicates that the
corners of the triangles (more generally: {he— 1)-simplices) are given by elements of
the Hilbert basis, whilst “unimodular” reflects the conalitid = +1.

As shown by Sebo, all three-dimensional discrete conesgsssunimodular Hilbert
triangulations. This statement was also proven indepéhydeyn Aguzzoli and Mundici
[1] and Bouvier and Gonzalez—Sprinberg [2]. An example obarddimensional cone
without such a triangulation can also be found in [2].

Even in dimension 3 there is no analogue to Pick’s formulae €an easily obtain tetra-
hedra of arbitrarily large volume whose corners are thely axteger points. Although
the above procedure can not be transferred naively to hjhegnsions, the actual idea
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has not yet been fully exhausted. We have proceeded fulthernecessary in one re-
spect: To derive the discrete Carathéodory property itldvoot matter if the triangles

overlapped. It would be sufficient if we could replgsto the following question (as also
conjectured by Sebdo [11]):

Unimodular Hilbert cover. Is every discrete cone covered by its unimodular Hilbert
subcones?

Before our counterexamples there was no answer to thisiqnéstdimension> 3,
and for dimensions 4 and 5 it remains unsolved. Moreoverna edhich possesses the
discrete Carathéodory property, but which is not unimadtlilbert covered, is also not
yet known.

In order to delimit our problem it ought to be mentioned thetlediscrete cone pos-
sesses a unimodular triangulation, as long as no condjtegpesrt from finiteness, are
imposed on the vectors that determine the triangulation.

THE COUNTEREXAMPLE

Even those experts who did not believe in the discrete Ceaoaltry property or the
unimodular Hilbert cover were certainly surprised by tHékeing counterexample which
not only fulfills its purpose, but is also even aestheticplBasing.

It is a 6-dimensional discrete cone which we denotesgyln order to make its sym-
metries more visible we select an embedding in 12-dimemasigpace. The row vectors

Z1,...,25andzg, ..., z10 Of the following matrices form the Hilbert basis 84:
10 10000 0122 01 02112 1000
10 01000 1012 01 20211 0100
10 00100 2101 01 12021 0010
10 00010 2210 01 11202 0001
10 00001 1221 01 21120 0000

An embedding in 6-dimensional space is obtained, for examyten the columns 2. ., 7
are selected. Each of the 12 coordinate hyperplanes of tdei@nsional space intersects
Cs at one facet, since for every column the 5 vectors, whose oaergs at that point are
0, are linearly independent. However, there are 15 furtheett, 5 of which are not
simplicial: they each contain 6 elements of Hif).

The vectorgy, .. ., zio lie in hyperplaneH, which is defined by the equatier6 ¢; —
6¢, 4+ &3+ - - - + ¢12 = 1. The cross-section of the convex cafiggenerated by along
H has the 5-dimensional volumegZ4.

The discrete cone is not unimodular Hilbert covered, siheevector

1=z1+ -4+ 2Z1w0

is not contained in any unimodular Hilbert subconeSgf Simultaneously, it is the
“smallest” vector inSg with this property. If we take away the union of all unimodu-
lar Hilbert subcones fromi’s, a convex cone surprisingly remains (its interior, to be enor
precise), which is generated by 22 vectors. Its crossesealong the hyperpland has

a 5-dimensional volume of/129600; it therefore represents only2¥000 of the cross-
section ofCg with H.
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However,r; does not disprove the discrete Carathéodory property.t®thee equation
71+ 24 + 27 + 28 = 225 + 2z10, 11 CAN be written as an integer linear combination of 6
elements of the Hilbert basis:

t1 = 22+ 23+ 325 + 26 + 29 + 3210
However, this is impossible for
bh=t+z22+z25+2(z7+ -+ 210.

(It can be shown that each elementSgfcan be represented by 7 elements of K5)).

The obvious symmetry afs can be described precisely without much effort. Both of
the assignments given in the following diagrams can besedlby suitably permuting
the coordinate axes of the 12-dimensional space. Theyftteneepresent symmetries of
Sg (or Cg):

O .21> 22> 23> 24> 25> 21, Zet> 27> 28> Zogk> Ziot> Zs
P 21> Zet> 21, Z2+>Zgt> s> 29> 2o, 3> Ziob> Zab> 7> Za.

(This is to be read as follows: transfersz; to zp, z» to z3, etc.). The group of motions
determined by ando has 20 elements; other symmetries do not existndp? exchange
the elements within the subsdts = {z1, ..., zs} andF, = {z, . . ., 210}, iNn the same way
as in the symmetry group of the regular pentagon. On the btoatt,0 exchange#; and
F,. Each element of Hili¥s) can therefore be transferred to any other so fagdboks
“the same” at each boundary ray. The test vegtas left invariant byo andp (and its
multiples are the only ones of this typeSg); on the other hand; is only invariant foro
andp?.

We have found a further counterexample bey@gdt is also 6-dimensional, but has a
Hilbert basis with 12 vectors, and its symmetry group only fizzlements. A counterex-
ample of dimension + 1 can easily be constructed from a counterexample of diroansi
n so that counterexamples are now also known in each dimess@n(An 0 is added to
the vectors of the Hilbert basis as a new final component attre vectorO, ..., 0, 1)
is added to it).

CONSTRUCTION AND TIGHTENING OF DISCRETE CONES

In the search for cones without the discrete Carathéodoygty or unimodular Hilbert
covering one requires algorithms for three fundamentglsstee. for

1. the availability of candidates,
2. the test for unimodular Hilbert covering,
3. the test for the discrete Carath&odory property.

In this section we will discuss the first step, which is the togportant of the three.

First of all the integer vectorsg,, ..., y, are selected, whereby the numlaeand the
components of; are either determined systematically or by a random numémergtor,
whilst keeping to certain limits. The linear combinatidns; + - - - + b, y, with coeffi-
cientsh; > 0 form a convex con€, which can be described by inequations with integer
coefficients. As desired, the integer vectorg€iform a discrete con§. Then the Hilbert
basis ofS is determined. We will refrain from describing how this isnéo However,
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an efficient algorithm is absolutely necessary for the rédngrocedure given below, as
implemented by R. Koch and the author; see [6].

In general, the Hilbert basis of the discrete cones obtaisi¢énb large, rendering the
second and third steps impossible, due to the inacceptablputing time and memory
required—these calculations need to be repeated for nwseendidates. The reduction
to tight cones was crucial for our success. This reduction will nowléxscribed.

In every boundary ray of a congthere is exactly one elementof the Hilbert basis
H (it is the first integer point on this ray if it is passed throudgom zero). We consider
the coneC’ which is spanned by the remaining elements = Hilb(S) \ {z}. If A’
is not the Hilbert basis of the discrete cosé which is determined by, we call z
destructive A cone should be calletight if every boundary element of the Hilbert basis
is destructive. The tight cones are also precisely thosescthrat can not be reduced with
the best possible preservation of the Hilbert basis.

FIGURE 4. Tightening a cone

In order to “tighten” a cone the elements of the Hilbert basis tested one at a time
for destructivity. If a non-destructive element is foundisisimply discarded and work
continues on the reduced cone.

A cone can often be completely “peeled off” using this praged If this is not the
case, a tight cone remains which can then undergo furthiingesd\Ve are not certain if
a tight cone of dimension 3 exists. But the arguments of tkegipus section show that
its Hilbert basis can not be contained in one plane. Tightsaran easily be found in
dimension> 4.

THE TEST FOR UNIMODULARHILBERT COVERING

Our test for unimodular Hilbert covering is based on the e&kfien of the cone into
elementary cells whose “walls” are formed by those hypemgsdahat form the boundaries
of the unimodular Hilbert subcones. Figure 5 shows thisetitisn as a cross-section of a
three-dimensional cone. The following two alternatives\alid for each elementary cell
E:

1. E is contained in a unimodular Hilbert subcone;

2. the interior ofE is not intersected by any unimodular Hilbert subcone.

To test the unimodular Hilbert covering we first of all detérena Hilbert triangulation
of candidates, i.e. a triangulation in which every simplex is spanned nednts of the
Hilbert basis. We can then immediately forget about the moiaunimodular cones in this
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FIGURE 5. Dissection into elementary cells

triangulation—since it is already unimodular Hilbert coe@. For each of its other cones
D we then attempt to find a unimodular Hilbert subcd@nevhich intersects the interior
of D. If such aU can not be found, it is obvious th@ is not unimodular covered.
Otherwise one of the “walls” frony/ divides candidat® into two smaller coned); and
D,. Now the same procedure is applied recursivelptcand D,. Since there are a finite
number of unimodular Hilbert subcones, and therefore orfipiee number of “walls”,
the case in which the tested candidate is contained in aneel@ny cell must occur at
some point, so that one of the above alternatives apply.

This is (with some minor simplifications) our algorithm tetéhe unimodular Hilbert
covering. Not only does it decide$fis unimodular covered, it also determines in the neg-
ative case all elementary cells that are not contained iruanyodular Hilbert subcone.
(In the counterexampl&s this is the case for exactly one elementary cell).

The discrete Carathéodory property can also be decidedimta number of steps.
However, this is not possible by means of convex geometnyealand for this reason,
we will refrain from describing the algorithm. Incidentglive have not yet managed to
realise this problem. It would only be worthwhile if we had example that withstands
all attacks with more basic weapons.

By trying out very many elements & one could attempt to find one that can not
be represented as a linear combinatiomof= dim(S) elements of the Hilbert basis.
The search only needs to be undertaken in the elementasytbali are not unimodular
covered, and this increases the chance of success coyd@vih Sg by factor 27000).

However, this method first of all led us to believe in the deserCarathéodory prop-
erty of Sg. This belief was then disproved by M. Henk, A. Martin and R.iskgantel
(Magdeburg and Berlin) —the compiler we used had providewitis a poor random
number generator. The results of the exact analysig,ofvhich was then carried out in
cooperation, are described in [4].
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