ON THE NUMBER OF ELEMENTS INDEPENDENT
WITH RESPECT TO AN IDEAL

WINFRIED BRUNS

Let R denote a commutative noetherian ring, and a an ideal of R. Elements $x_1, \ldots, x_n \in R$ are called independent with respect to a, or simply a-independent, if every form $F \in R[X_1, \ldots, X_n]$ such that $F(x_1, \ldots, x_n) = 0$ has all its coefficients in a. Valla [10] introduced the notation $\text{sup } a$ for the maximal number of a-independent elements in a. He found that $\text{sup } a$ is bounded above by the height of a (which we denote by $\text{ht } a$) whereas the lower bound grade a was established by Rees:

Proposition 1. grade $a \leq \text{sup } a \leq \text{ht } a$.

(The grade of a is the maximal length of a R-sequence contained in a.) More precisely Rees provided in [9] the following proposition.

Proposition 2. Let x_1, \ldots, x_n be a R-sequence. Then x_1, \ldots, x_n are independent with respect to the ideal they generate in R.

The relationship between R-sequences and sequences of elements which are independent with respect to an ideal can best be explained in terms of the Rees ring of an ideal a. It is the graded ring

$$R(a) := \bigoplus_{i \geq 0} a^i.$$ Let x_1, \ldots, x_n generate a. Then, as was shown in the proof of Theorem 2.1 of [9], x_1, \ldots, x_n are independent with respect to an ideal $b \supset a$ if and only if the homomorphism $R[X_1, \ldots, X_n] \rightarrow R(a)$, which sends X_i to x_i, induces an isomorphism

$$\phi : (R/b)[X_1, \ldots, X_n] \rightarrow R(a)/bR(a),$$

and exactly when x_1, \ldots, x_n form a R-sequence, ϕ is already an isomorphism for $b = a$ (cf. [6; Theorem p. 202]), and observe that $R(a)/aR(a)$ is just the associated graded ring of R with respect to a.

A system of parameters in a local ring R is independent with respect to the maximal ideal m_R of R; the most important consequence of this theorem is the analytic independence of a system of parameters in a complete equicharacteristic local ring [13; Theorem 2.1 and Corollary 2]. By an elementary localization argument one can further conclude that $\text{sup } b = \text{ht } b$ for radical ideals b [10; Theorem 5.4].

We do not believe that $\text{sup } a$ can always be expressed in terms of better

Received 4 September, 1979.

J. LONDON MATH. SOC. (2), 22 (1980), 57–62]
understood invariants of \(a \). There are simple examples of ideals \(a \) with \(\sup a^n < \sup a \) for some \(n > 1 \). They demonstrate that it is in general impossible to compute \(\sup a \) from invariants which do not change if \(a \) is replaced by a power of itself. Thus one is led to study the “asymptotic stabilization”

\[
\sup^\infty a := \inf \{ \sup a^n : n \geq 1 \},
\]

and this is the main object of our note. The final theorem is a bit too technical to be given here. However, two special cases suffice to indicate the nature of our results:

(1) Let \(R \) be a local ring, and \(m_R \) its maximal ideal; then \(\sup^\infty m_R \) is the minimal Krull dimension of an associated prime ideal in the \(m_R \)-adic completion \(\hat{R} \) of \(R \):

\[
\sup^\infty m_R = \min \{ \dim \hat{R}/p : p \in \text{Ass } \hat{R} \}.
\]

(2) If \(R \) is an excellent domain, then \(\sup^\infty a = \sup a = \text{ht } a \) for every ideal \(a \) of \(R \).

We start our investigation by giving an upper bound for \(\sup^\infty a \). It is a consequence of Proposition 1 and the lemma of Artin–Rees.

Proposition 3. Let \(R \) be a noetherian ring, \(a \) an ideal of \(R \), and \(S \) a flat \(R \)-algebra. Then \(\sup^\infty a \leq \text{ht } (aS + p)/p \) for every associated prime ideal \(p \) of \(S \).

Proof. According to Proposition 1 it is enough to prove that \(\sup^\infty a \leq \sup^\infty (aS + p)/p \). An associated prime ideal \(p \) is the annihilator of an element \(x \in S \). As a consequence of the lemma of Artin–Rees (cf. [8, (3.12)]), there exists an integer \(j \) such that

\[
(a^jS) : xS \subset p + a^{i-j}S
\]

for \(i > j \). Let \(x_1, \ldots, x_n \) be elements of \(a^{m+j} \), where \(m \) is chosen such that \(\sup (a^mS + p)/p = \sup (a^{m}S + p)/p \). In case \(n > \sup (a^{m}S + p)/p \), one can find a form \(F \in S[X_1, \ldots, X_n] \), which is not contained in \((a^mS + p)S[X_1, \ldots, X_n] \) and vanishes at \((x_1, \ldots, x_n) \) modulo \(p \). Then \(xF(x_1, \ldots, x_n) = 0 \), and at least one coefficient of \(xF \) lies outside \(a^{m+j}S \) because of \((*)\). Since the extension from \(R \) to \(S \) is flat by hypothesis, every \(S \)-relation of elements of \(R \) is a linear combination of \(R \)-relations. Therefore \(x_1, \ldots, x_n \) can not be \(a^{m+j} \)-independent.

As an immediate consequence of Proposition 3 one obtains \(\sup^\infty m_R \leq \min \{ \dim \hat{R}/p : p \in \text{Ass } \hat{R} \} \) for the maximal ideal of a local ring \(R \). The lemma below is the first step towards the proof of the opposite inequality.

Lemma. Let \(R \) be a complete local ring with a single associated prime ideal \(p \), and \(x_1, \ldots, x_r \) a system of parameters of \(R \). Then there is a ring \(S \subset R \) with the following properties:

(a) \(S \) is a complete local ring. \(S \) is regular or a residue class ring of a regular local ring modulo a power of a prime element;
(b) \(R \) is a finitely generated torsionfree \(S \)-module;
(c) the elements \(x_1, \ldots, x_r \) form a system of parameters in \(S \);
(d) for every non-zero \(x \in R \) there exists a \(f \in \text{Hom}_S(R, S) \) with \(f(x) \neq 0 \).
Proof. We use the structure theorems for complete local rings [5]. If \(R \) is equicharacteristic, then we choose \(S = K[[x_1, \ldots, x_r]] \) where \(K \) is a coefficient field of \(R \). Otherwise there exist a complete discrete valuation domain \(V \) and a local homomorphism \(\phi : V[[X_1, \ldots, X_r]] \to R \), which sends \(X_i \) to \(x_i \) and induces an isomorphism \(V/m_v \cong R/m_R \). Then we take \(S = V[[X_1, \ldots, X_r]]/\text{Ker } \phi \). In both cases \(S \) is complete, \(R \) is a finitely generated \(S \)-module by [8; (30.6)], and \(S \) is regular in the equicharacteristic case. The fundamental theorems on integral extensions imply that the dimensions of \(R \) and \(S \) coincide, that \(x_1, \ldots, x_r \) is a system of parameters in \(S \), and that \(p \cap S \) is the only associated prime ideal of \(S \). Therefore every non-zero divisor of \(S \) is a non-zero divisor of \(R \): the \(S \)-module \(R \) is torsionfree. Since

\[
\dim V[[X_1, \ldots, X_r]] = \dim R + 1 = \dim S + 1,
\]

\(\text{Ker } \phi \) is an ideal of height 1, and has a single prime divisor, as was just shown. Hence \(\text{Ker } \phi \) is generated by a power of a prime element in the factorial ring \(V[[X_1, \ldots, X_r]] \). This completes the proof of (a), (b) and (c).

Property (d) follows from (a) and (b): Every finitely generated torsionfree module \(M \) over \(S \) is torsionless, i.e. the natural homomorphism

\[
M \to \text{Hom}_S(\text{Hom}_S(M, S), S)
\]

is injective. In fact, it suffices that the localization of \(S \) with respect to its associated prime ideal is a Gorenstein ring [12; Theorem (A.1)].

PROPOSITION 4. Let \(R \) be a complete local ring with a single associated prime ideal, and \(x_1, \ldots, x_r \) a system of parameters in \(R \). Then, given an integer \(m \), the elements \(x_1^i, \ldots, x_r^i \) are independent with respect to \(m^i \) for \(i \) sufficiently large.

Proof. We choose \(S \) as in the preceding lemma. Let \(a_i \) denote the ideal generated by \(x_1^i, \ldots, x_r^i \) in \(S \), and put

\[
N_i := \bigcap \{ f^{-1}(a_i) : f \in \text{Hom}_S(R, S) \}.
\]

A theorem of Chevalley [8; (30.1)] tells us: If \((b_i) \) is a descending chain of ideals in a complete local ring such that \(\bigcap b_i = 0 \), then \(b_i \subseteq m_i^d \) for all sufficiently large \(i \). This theorem remains valid if one replaces \((b_i) \) by a descending chain \((M_i) \) of submodules of a finitely generated \(T \)-module \(M \) and, correspondingly, \(m_i^d \) by \(m_i^d M \).

The \(S \)-modules \(N_i \) of \(R \) form a descending chain, Since \(\bigcap a_i = 0 \), property (d) of \(S \), as given by the lemma, guarantees that \(\bigcap N_i = 0 \), and thus \(N_i \subseteq m_i^d R \subseteq m_i^d \) as soon as \(i \) is large enough. Let now

\[
F = \sum_{j_1 + \ldots + j_r = d} a_{j_1 \ldots j_r} X_1^{j_1} \ldots X_r^{j_r}
\]

be a form in \(R[[X_1, \ldots, X_r]] \) such that \(F(x_1^i, \ldots, x_r^i) = 0 \). Then for all \(f \in \text{Hom}_S(R, S) \) we obtain

\[
f(F(x_1^i, \ldots, x_r^i)) = \sum_{j_1 + \ldots + j_r = d} f(a_{j_1 \ldots j_r}) x_1^{j_1 i} \ldots x_r^{j_r i} = 0.
\]
By Proposition 2, all the elements \(f(a_1, \ldots, a_r) \) are contained in \(a_i \), hence \(a_1 \cdot \ldots \cdot a_r \in N_i \subseteq m_R^n \) if \(i \) is sufficiently large.

The idea, by which we shall now derive the first main result, has already been used in the proof of [4; Satz 6].

Theorem 1. Let \(R \) be a local ring, and \(n_1 \cap \ldots \cap n_s = 0 \) a reduced primary decomposition of the zero ideal in \(\hat{R} \). Let the images of \(x_1, \ldots, x_s \in R \) under the natural homomorphism \(R \to \hat{R}/n_t \) form part of a system of parameters in \(\hat{R}/n_t \) for \(t = 1, \ldots, s \). Then, given \(m \), the elements \(x'_1, \ldots, x'_s \) are independent with respect to \(m_R^n \) for \(i \) sufficiently large.

Proof. Since \(m_R^n \cap R = m_R^n \), we may assume that \(R = \hat{R} \). By the preceding proposition, the elements \(x'_1, \ldots, x'_s \) modulo \(n_t \) are independent with respect to the \(k \)-th power of the maximal ideal of \(\hat{R}/n_t \) if \(i \) is chosen large enough. Hence \(x'_1, \ldots, x'_s \) themselves are independent with respect to

\[
a_k := \bigcap_{i=1}^s (m_R^k + n_t).
\]

Now we only need to prove that the inclusion \(a_k \subseteq m_R^n \) holds for large \(k \). This, however, is again a consequence of Chevalley's theorem since we have

\[
\bigcap_k a_k = \bigcap_{i=1}^s \left(\bigcap_k (m_R^k + n_t) \right) = \bigcap_{i=1}^s n_t = 0.
\]

Corollary. Let \(R \) be a local ring. Then

\[
\sup^\infty m_R = \min \{ \dim \hat{R}/p : p \in \text{Ass } \hat{R} \}.
\]

Proof. With the notation of Theorem 1, we can find elements \(x_1, \ldots, x_s \in R \), satisfying the hypothesis of that theorem, by elementary prime avoidance arguments, as long as \(r \leq \min \{ \dim \hat{R}/p : p \in \text{Ass } \hat{R} \} \).

The minimal dimension of an associated prime divisor of \(\hat{R} \) was thoroughly investigated in [2], and was (under mild restrictions) characterized as the maximal length of so-called quasi-\(R \)-sequences [2; (5.5)]. The preceding corollary provides another characterization by intrinsic properties of \(R \).

Now we can compute \(\sup^\infty a \) for ideals \(a \) in arbitrary noetherian rings, and simultaneously improve the lower bound of Proposition 1. Brodmann [3] recently showed that the set of prime ideals in \(R \), which are associated to \(R/a^nR \), is independent of \(n \) for \(n \) sufficiently large. We denote this collection of prime ideals by \(\text{Ass}^\infty a \). (To avoid any ambiguity: \(\hat{R}_p \) is the \(\mathbb{P}R_p \)-adic completion of \(R_p \).)

Theorem 2. Let \(R \) be a noetherian ring, and \(a \) an ideal in \(R \). Then

\[
\sup a \geq \min \{ \text{ht} (a\hat{R}_p + q)/q : p \in \text{Ass } R/a, \quad q \in \text{Ass } \hat{R}_p \},
\]

and

\[
\sup^\infty a = \min \{ \text{ht} (a\hat{R}_p + q)/q : p \in \text{Ass}^\infty a, \quad q \in \text{Ass } \hat{R}_p \}.
\]
Proof. In view of Proposition 3 it is enough to prove the inequality. We use an obvious localization argument. The ideal a has a reduced primary decomposition:

$$a = \bigcap_{i=1}^{s} b_i, \quad b_i \text{ being primary to a prime ideal } p_i, \text{ and } \{ p_1, \ldots, p_s \} = \text{Ass } R/a.$$

Let r denote the number on the right hand side of the inequality. Using Krull's Principal Ideal Theorem and elementary prime avoidance arguments one constructs elements $x_1, \ldots, x_r \in a$, which have the following property: their images under each of the natural homomorphism $R \rightarrow \hat{R}_p/q$ form part of a system of parameters in \hat{R}_p/q, $p \in \text{Ass } R/a$, $q \in \text{Ass } \hat{R}_p$. Then x_1, \ldots, x_r satisfy the requirements of Theorem 1 in every localization \hat{R}_p, $p \in \text{Ass } R/a$. Hence x_1', \ldots, x_r' are $b_i R_p$-independent, $b_i R_p$ containing a power of $p_i R_p$, as soon as i is large enough. This suffices to render x_1', \ldots, x_r' independent with respect to a since $a = \bigcap_{i=1}^{s} b_i$ and $b_i = b_i R_p \cap R$.

Theorem 2 answers many questions raised in [1] and [11]. In particular, we can describe the rings in which $\sup a = \text{ht } a$ for all ideals.

Corollary 1. Let R be a noetherian ring. Then $\sup a = \text{ht } a$ for all ideals a of R if and only if $\dim \hat{R}_p/q = \text{ht } p$ for all prime ideals p of R and all associated prime ideals q of \hat{R}_p.

Proof. If $\sup a = \text{ht } a$ for all ideals a of R, then in particular $\sup^\infty p = \text{ht } p$, and

$$\sup^\infty p \leq \text{ht } (p \hat{R}_p + q)/q \leq \text{ht } p \hat{R}_p = \text{ht } p$$

by Proposition 3. On the other hand, if $\dim \hat{R}_p/q = \text{ht } p$ for all prime ideals p and all associated prime ideals q of \hat{R}_p, then

$$\text{ht } a = \min \{ \dim R_p : p \in \text{Ass } R/a \}$$

$$= \min \{ \dim \hat{R}_p/q : p \in \text{Ass } R/a, \quad q \in \text{Ass } \hat{R}_p \}$$

$$\leq \sup a \leq \text{ht } a$$

by Proposition 1 and Theorem 2.

Nagata gave an example of a two dimensional local domain R [8; pp. 204, 205] such that \hat{R} has an associated prime ideal q with $\dim \hat{R}/q = 1$. Thus, even in local domains $\sup a$ does not always equal $\text{ht } a$. However, in a class of rings, which behave well under completion, we can simplify our formula considerably:

Corollary 2. Let R be an excellent integral domain. Then for every ideal a in R one has $\sup a = \text{ht } a$.

Proof. The localizations of R are excellent again, and the completions of excellent local domains are (reduced and) equi-dimensional (cf. [7]).
ON THE NUMBER OF ELEMENTS INDEPENDENT WITH RESPECT TO AN IDEAL

References

Fachbereich 3, Naturwissenschaften/Mathematik,
Universität Osnabrück,
– Abt. Vechta –,
Driverstraße 22,
D-2848 Vechta,
West Germany.