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Several modules M over algebras with straightening law A have a structure which is
similar to the structure of A itself: M has a system of generators endowed with a natural
partial order, a standard basis over the ring B of coefficients, and the multiplication
A ×M → A satisfies a “straightening law”. We call them modules with straightening
law, briefly MSLs.

In section 1 we recall the notion of an algebra with straightening law together with those
examples which will be important in the sequel. Section 2 contains the basic results on
MSLs, whereas section 3 is devoted to examples: (i) powers of certain ideals and residue
class rings with respect to them, (ii) “generic” modules defined by generic, alternating or
symmetric matrices of indeterminates, (iii) certain modules related to differentials and
derivations of determinantal rings. The essential homological invariant of a module is its
depth. We discuss how to compute the depth of an MSL in section 4. The main tool are
filtrations related to the MSL structure.

The last section contains a natural strengthening of the MSL axioms which under
certain circumstances leads to a straightening law on the symmetric algebra. The main
examples of such modules are the “generic” modules defined by generic and alternating
matrices.

The notion of an MSL was introduced by the author in [Br.3] and discussed extensively
during the workshop. The main differences of this survey to [Br.3] are the more detailed
study of examples and the treatment of the depth of MSLs which is almost entirely
missing in [Br.3]

1. Algebras with Straightening Laws

An algebra with straightening law is defined over a ring B of coefficients. In order
to avoid problems of secondary importance in the following sections we will assume
throughout that B is a noetherian ring.

Definition. Let A be a B-algebra and Π ⊂ A a finite subset with partial order ≤. A is
an algebra with straightening law on Π (over B) if the following conditions are satisfied:
(ASL-0) A =

⊕
i≥0Ai is a graded B-algebra such that A0 = B, Π consists of homoge-

neous elements of positive degree and generates A as a B-algebra.
(ASL-1) The products ξ1 · · · ξm, m ≥ 0, ξ1 ≤ · · · ≤ ξm are a free basis of A as a B-
module. They are called standard monomials.
(ASL-2) (Straightening law) For all incomparable ξ, υ ∈ Π the product ξυ has a repre-
sentation

ξυ =
∑

aμμ, aμ ∈ B, aμ �= 0, μ standard monomial,
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satisfying the following condition: every μ contains a factor ζ ∈ Π such that ζ ≤ ξ, ζ ≤ υ.
(It is of course allowed that ξυ = 0, the sum

∑
aμμ being empty.)

The theory of ASLs has been developed in [Ei] and [DEP.2]; the treatment in [BV.1]
also satisfies our needs. In [Ei] and [BV.1] B-algebras satisfying the axioms above are
called graded ASLs, whereas in [DEP.2] they figure as graded ordinal Hodge algebras.

In terms of generators and relations an ASL is defined by its poset and the straightening
law:

(1.1) Proposition. Let A be an ASL on Π. Then the kernel of the natural epimorphism

B[Tπ : π ∈ Π] −→ A, Tπ −→ π,

is generated by the relations required in (ASL-2), i.e. the elements

TξTυ −
∑

aμTμ, Tμ = Tξ1 · · ·Tξm
if μ = ξ1 · · · ξm.

See [DEP.2, 1.1] or [BV.1, (4.2)].

(1.2) Proposition. Let A be an ASL on Π, and Ψ ⊂ Π an ideal, i.e. ψ ∈ Ψ, φ ≤ ψ
implies φ ∈ Ψ. Then the ideal AΨ is generated as a B-module by all the standard
monomials containing a factor ψ ∈ Ψ, and A/AΨ is an ASL on Π \ Ψ (Π \ Ψ being
embedded into A/AΨ in a natural way.)

This is obvious, but nevertheless extremely important. First several proofs by induc-
tion on |Π|, say, can be based on (1.2), secondly the ASL structure of many important
examples is established this way.

(1.3) Examples. (a) Let X be an m×n matrix of indeterminates over B, and Ir+1(X)
denote the ideal generated by the r+ 1-minors (i.e. the determinants of the r+ 1× r+ 1
submatrices) of X . For the investigation of the ideals Ir+1(X) and the residue class
rings A = B[X ]/ Ir+1(X) one makes B[X ] an ASL on the set Δ(X) of all minors of X .
Denote by [a1, . . . , at|b1, . . . , bt] the minor with row indices a1, . . . , at and column indices
b1, . . . , bt. The partial order on Δ(X) is given by

[a1, . . . , au|b1, . . . , bu] ≤ [c1, . . . , cv|d1, . . . , dv] ⇐⇒
u ≥ v and ai ≤ ci, bi ≤ di, i = 1, . . . , v.

Then B[X ] is an ASL on Δ(X); cf. [BV.1], Section 4 for a complete proof. Obviously
Ir+1(X) is generated by an ideal in the poset Δ(X), so A is an ASL on the poset Δr(X)
consisting of all the i-minors, i ≤ r.

(b) Another example needed below is given by “pfaffian” rings. Let Xij, 1 ≤ i <
j ≤ n, be a family of indeterminates over B, Xji = −Xij , Xii = 0. The pfaffian of the
alternating matrix (Xiuiv

: 1 ≤ u, v ≤ t), t even, is denoted by [i1, . . . , it]. The polynomial
ring B[X ] is an ASL on the set Φ(X) of the pfaffians [i1, . . . , it], i1 < · · · < it, t ≤ n. The
pfaffians are partially ordered in the same way as the minors in (b). The residue class
ring A = B[X ]/Pfr+2(X), Pfr+2(X) being generated by the (r+2)-pfaffians, inherits its
ASL structure from B[X ] according to (1.2). The poset underlying A is denoted Φr(X).
Note that the rings A are Gorenstein rings over a Gorenstein B—in fact factorial over a
factorial B, cf. [Av.1], [KL].



STRAIGHTENING LAWS ON MODULES 3

(c) A non-example: If X is a symmetric n × n matrix of indeterminates, then B[X ]
can not be made an ASL on Δ(X) in a natural way. Nevertheless there is a standard
monomial theory for this ring based on the concept of a doset , cf. [DEP.2]. Many results
which can be derived from this theory were originally proved by Kutz [Ku] using the
method of principal radical systems. —

For an element ξ ∈ Π we define its rank by

rk ξ = k ⇐⇒ there is a chain ξ = ξk > ξk−1 > · · · > ξ1, ξi ∈ Π,
and no such chain of greater length exists.

For a subset Ω ⊂ Π let
rk Ω = max{rk ξ : ξ ∈ Ω}.

The preceding definition differs from the one in [Ei] and [DEP.2] which gives a result
smaller by 1. In order to reconcile the two definitions the reader should imagine an
element −∞ added to Π, vaguely representing 0 ∈ A.

(1.4) Proposition. Let A be an ASL on Π. Then

dimA = dimB + rkΠ and htAΠ = rk Π.

Here of course dimA denotes the Krull dimension of A and htAΠ the height of the
ideal AΠ. A quick proof of (1.4) may be found in [BV.1, (5.10)].

2. Straightening Laws on Modules

It occurs frequently that a module M over an ASL A has a structure closely related
to that of A: the generators of M are partially ordered, a distinguished set of “standard
elements” forms a B-basis of M , and the multiplication A×M → A satisfies a straight-
ening law similar to the straightening law in A itself. In this section we introduce the
notion of a module with straightening law whereas the next section contains a list of
examples.

Definition. Let A be an ASL over B on Π. An A-module M is called a module with
straightening law (MSL) on the finite poset X ⊂ M if the following conditions are
satisfied:
(MSL-1) For every x ∈ X there exists an ideal I(x) ⊂ Π such that the elements

ξ1 · · · ξnx, x ∈ X , ξ1 /∈ I(x), ξ1 ≤ · · · ≤ ξn, n ≥ 0,

constitute a B-basis of M . These elements are called standard elements.
(MSL-2) For every x ∈ X and ξ ∈ I(x) one has

ξx ∈
∑
y<x

Ay.

It follows immediately by induction on the rank of x that the element ξx as in (MSL-2)
has a standard representation

ξx =
∑
y<x

(
∑

bξxμyμ)y, bξxμy ∈ B, bξxμy �= 0,

in which each μy is a standard element.
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(2.1) Remarks. (a) Suppose M is an MSL, and T ⊂ X an ideal. Then the submodule
of M generated by T is an MSL, too. This fact allows one to prove theorems on MSLs
by noetherian induction on the set of ideals of X .

(b) It would have been enough to require that the standard elements are linearly
independent. If just (MSL-2) is satisfied then the induction principle in (a) proves that
M is generated as a B-module by the standard elements. —

The following proposition helps to detect MSLs:

(2.2) Proposition. Let M,M1,M2 be modules over an ASL A, connected by an exact
sequence

0 −→M1 −→M −→M2 −→ 0.

Let M1 and M2 be MSLs on X1 and X2, and choose a splitting f of the epimorphism
M → M2 over B. Then M is an MSL on X = X1 ∪ f(X2) ordered by x1 < f(x2) for
all x1 ∈ X1, x2 ∈ X2, and the given partial orders on X1 and the copy f(X2) of X2.
Moreover one chooses I(x), x ∈ X1, as in M1 and I(f(x)) = I(x) for all x ∈ X2.

The proof is straightforward and can be left to the reader.
In terms of generators and relations an ASL is defined by its generating poset and its

straightening relations, cf. (1.1). This holds similarly for MSLs:

(2.3) Proposition. Let A be an ASL on Π over B, and M an MSL on X over A. Let
ex, x ∈ X , denote the elements of the canonical basis of the free module AX . Then the
kernel KX of the natural epimorphism

AX −→M, ex −→ x,

is generated by the relations required for (MSL-2):

ρξx = ξex −
∑
y<x

aξxyey, x ∈ X , ξ ∈ I(x).

Proof: We use the induction principle indicated in (2.1), (a). Let x̃ ∈ X be a maximal
element. Then T = X \{x̃} is an ideal. By induction AT is defined by the relations ρξx,
x ∈ T , ξ ∈ I(x). Furthermore (MSL-1) and (MSL-2) imply

(1) M/AT ∼= A/AI(x̃)

If ax̃x̃−
∑

y∈T ayy = 0, one has ax̃ ∈ AI(x̃) and subtracting a linear combination of the
elements ρξx̃ from ax̃ex̃ −

∑
y∈T ayey one obtains a relation of the elements y ∈ T as

desired. —
The kernel of the epimorphism AX →M is again an MSL:

(2.4) Proposition. With the notations and hypotheses of (2.3) the kernel KX of the
epimorphism AX →M is an MSL if we let

I(ρξx) = {π ∈ Π: π �≥ ξ}

and
ρξx ≤ ρυy ⇐⇒ x < y or x = y, ξ ≤ υ.
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Proof: Choose x̃ and T as in the proof of (2.3). By virtue of (2.3) the projection
AX → Aex̃ with kernel AT induces an exact sequence

0 −→ KT −→ KX −→ AI(x̃) −→ 0.

Now (2.2) and induction finish the argument. —
If a module M is given in terms of generators and relations, it is in general more

difficult to establish (MSL-1) than (MSL-2). For (MSL-2) one “only” has to show that
elements ρξx as in the proof of (2.3) can be obtained as linear combinations of the given
relations. In this connection the following proposition may be useful: it is enough that
the module generated by the ρξx satisfies (MSL-2) again.

(2.5) Proposition. Let the data M,X , I(x), x ∈ X , be given as in the definition, and
suppose that (MSL-2) is satisfied. Suppose that the kernel KX of the natural epimorphism
AX → M is generated by the elements ρξx ∈ AX representing the relations in (MSL-2).
Order the ρξx and choose I(ρξx) as in (2.4). If KX satisfies (MSL-2) again, M is an
MSL.

Proof: Let x̃ ∈ X be a maximal element, T = X \ {x̃}. We consider the induced
epimorphism

AT −→ AT

with kernel KT . One has KT = KX ∩AT . Since the ρξx satisfy (MSL-2), every element
in KX can be written as a B-linear combination of standard elements, and only the ρξx̃

have a nonzero coefficient with respect to ex̃. The projection onto the component Aex̃

with kernel AT shows that KT is generated by the ρξx, x ∈ T . Now one can argue
inductively, and the split-exact sequence

0 −→ AT −→M −→M/AT ∼= A/AI(x̃) −→ 0

of B-modules finishes the proof. —
Modules with a straightening law have a distinguished filtration with cyclic quotients;

by the usual induction this follows immediately from the isomorphism (1) above:

(2.6) Proposition. Let M be an MSL on X over A. Then M has a filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂ Mn = M such that each quotient Mi+1/Mi is isomorphic with one of the
residue class rings A/AI(x), x ∈ X , and conversely each such residue class ring appears
as a quotient in the filtration.

It is obvious that an A-module with a filtration as in (2.6) is an MSL. It would however
not be adequate to replace (MSL-1) and (MSL-2) by the condition that M has such a
filtration since (MSL-1) and (MSL-2) carry more information and lend themselves to
natural strengthenings, see section 5.

In section 4 we will base a depth bound for MSLs on (2.6). Further consequences
concern the annihilator, the localizations with respect to prime ideals P ∈ AssA, and
the rank of an MSL.

(2.7) Proposition. Let M be an MSL on X over A, and

J = A(
⋂

x∈X
I(x)).
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Then
J ⊃ AnnM ⊃ Jn, n = rkX .

Proof: Note that A(
⋂
I(x)) =

⋂
AI(x) (as a consequence of (1.2)). Since AnnM anni-

hilates every subquotient ofM , the inclusion AnnM ⊂ J follows from (2.6). Furthermore
(MSL-2) implies inductively that

J iM ⊂
∑

rk x≤rk Π−i

Ax

for all i, in particular JnM = 0. —

(2.8) Proposition. Let M be an MSL on X over A, and P ∈ AssA.
(a) Then {π ∈ Π: π /∈ P} has a single minimal element σ, and σ is also a minimal
element of Π.
(b) Let Y = {x ∈ X : σ /∈ I(x)}. Then Y is a basis of the free AP -module MP . Further-
more (KX )P is generated by the elements 
σx, x /∈ Y.

Proof: (a) If π1, π2, π1 �= π2, are minimal elements of {π ∈ Π : π /∈ P}, then, by
(ASL-2), π1π2 ∈ P . So there is a single minimal element σ. It has to be a single minimal
element of Π, too, since otherwise P would contain all the minimal elements of Π whose
sum, however, is not a zero-divisor in A ([BV.1, (5.11)]).

(b) Consider the exact sequence

0 −→ AT −→M −→ A/AI(x̃) −→ 0

introduced in the proof of (2.3). If x̃ /∈ Y , then x̃ ∈ APT by the relation 
σx̃, and we are
through by induction. If x̃ ∈ Y , then σ and all the elements of I(x̃) are incomparable,
so they are annihilated by σ (because of (ASL-2)). Consequently (A/AI(x̃))P

∼= AP , x̃
generates a free summand of MP , and induction finishes the argument again. —

We say that a module M over A has rank r if M ⊗L is free of rank r as an L-module,
L denoting the total ring of fractions of A. Cf. [BV.1, 16.A] for the properties of this
notion.

(2.9) Corollary. Let M be an MSL on X over the ASL A on Π. Suppose that Π has a
single minimal element π, a condition satisfied if A is a domain. Then

rankM = |{x ∈ X : I(x) = ∅}|.

3. Examples

In this section we list some of the examples of MSLs. The common patterns in their
treatment in [BV.1], [BV.2], and [BST] were the author’s main motivation in the creation
of the concept of an MSL. We start with a very simple example:

(3.1) Example. A itself is an MSL if one takes X = {1}, I(1) = ∅. Another choice is
X = Π ∪ {1}, I(ξ) = {π ∈ Π: π �≥ ξ}, I(1) = Π, 1 > π for each π ∈ Π. The relations
necessary for (MSL-2) are then given by the identities π1 = π, the straightening relations

ξυ =
∑

bμμ, ξ, υ incomparable,

and the Koszul relations
ξυ = υξ, ξ < υ.

By (2.1),(a) for every poset ideal Ψ ⊂ Π the ideal AΨ is an MSL, too.
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(3.2) MSLs derived from powers of ideals. (a) Suppose that Ψ as in (3.1) addition-
ally satisfies the following condition: Whenever φ, ψ ∈ Ψ are incomparable, then every
standard monomial μ in the standard representation φψ =

∑
aμμ, aμ �= 0, contains at

least two factors from Ψ. This condition appears in [Hu], [EH], and in [BV.1, Section 9]
where the ideal I = AΨ is called straightening-closed. See [BST] for a detailed treatment
of straightening-closed ideals. As a consequence of (b) below the powers In of I = AΨ
are MSLs. Observe in particular that the condition above is satisfied if every μ a priori
contains at most two factors and Ψ consists of the elements in Π of highest degree.

(b) In order to prove and to generalize the statements in (a) let us consider an MSL
M on X and an ideal Ψ ⊂ Π such that I = AΨ is straightening-closed and the following
condition holds:
(∗) The standard monomials in the standard representation of a product ψx, ψ ∈ Ψ,
x ∈ X , all contain a factor from Ψ.
Then it is easy to see that IM is again an MSL on the set {ψx : x ∈ X , ψ ∈ Ψ \ I(x)}
partially ordered by

ψx ≤ φy ⇐⇒ x < y or x = y, ψ ≤ φ,

if one takes
I(ψx) = {π ∈ Π: π �≥ ψ}.

Furthermore (∗) holds again. Thus InM is an MSL for all n ≥ 1, and in particular one
obtains (b) from the special case M = A.

The residue class module M/IM also carries the structure of an MSL on the set X of
residues of X if we let

I(x) = I(x) ∪ Ψ.

Combining the previous arguments we get that InM/In+1M is an MSL for all n ≥ 0.
Arguing by (2.2) one sees that all the quotients InM/In+kM are MSLs.

In the situation just considered the associated graded ring GrI A is an ASL on the
set Π∗ of leading forms (ordered in the same way as Π), cf. [BST] or [BV.1,(9.8)], and
obviously GrI M is an MSL on X ∗.

(c) If an ideal I = AΨ is not straightening-closed, one cannot make the associated
graded ring an ASL in a natural way. Under certain circumstances there is however a
“canonical” substitute, the symbolic associated graded ring

Gr()I (A) =
∞⊕

i=0

I(i)/I(i+1).

Suppose that every standard monomial in a straightening relation of A contains at most
two factors and that Ψ consists of all the elements of Π whose degree is at least d, d
fixed. Furthermore put

γ(π) =
{

0 if deg π < d,

deg π − d+ 1 else,
and γ(π1 . . . πm) =

∑
γ(πi)

for an element π ∈ Π and a standard monomial π1 . . . πm (deg denotes the degree in the
graded ring A). Then it is not difficult to show that the B-submodule Ji generated by
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the standard monomials μ such that γ(μ) ≥ i is an ideal of A and that
⊕
Ji/Ji+1 is

(a well-defined B-algebra and) an ASL over B on the poset given by the leading forms
of the elements of Π cf. [DEP.2, Section 10]. Therefore Ji and Ji/Ji+1 have standard
B-bases and one easily establishes that they are MSLs.

For B[X ], B a domain, X a generic matrix of indeterminates or an alternating matrix
of indeterminates, Ji indeed is the i-th symbolic power of the ideal I generated by all
minors or pfaffians resp. of size d, [BV.1, 10.A] or [AD]. Consequently Gr()I (A) is an ASL,
and I(i), I(i)/I(i+1) are MSLs for all i.

(3.3) MSLs derived from generic maps. (a) Let A = B[X ]/ Ir+1(X) as in (1.3),
(a), 0 ≤ r ≤ min(m,n) (so A = B[X ] is included). The matrix x over A whose entries
are the residue classes of the indeterminates defines a map Am → An, also denoted by x.
The modules Imx and Cokerx have been investigated in [Br.1]. A simplified treatment
has been given in [BV.1, Section 13], from where we draw some of the arguments below.
Let d1, . . . , dm and e1, . . . , en denote the canonical bases of Am and An. Then we order
the system e1, . . . , en of generators of M = Cokerx linearly by

e1 > · · · > en.

Furthermore we put

I(ei) =
{ {

δ ∈ Δr(X) : δ �≥ [1, . . . , r|1, . . . , î, . . . , r + 1]
}

for i ≤ r,

∅ else,

if r < n, and in the case in which r = n

I(ei) =
{
δ ∈ Δr(X) : δ �≥ [1, . . . , r − 1|1, . . . , î, . . . , r]

}
.

(where î denotes that i is to be omitted). We claim: M is an MSL with respect to these
data.

Suppose that δ ∈ I(ei). Then

δ = [a1, . . . , as|1, . . . , i, bi+1, . . . , bs], s ≤ r.

The element
s∑

j=1

(−1)j+i[a1, . . . , âj, . . . , as|1, . . . , i− 1, bi+1, . . . , bs]x(daj
)

of Imx is a suitable relation for (MSL-2):

(1) δei =
n∑

k=i+1

±[a1, . . . , as|1, . . . , i− 1, k, bi+1, . . . , bs]ek.

Rearranging the column indices 1, . . . , i− 1, k, bi+1, . . . , bs in ascending order one makes
(1) the standard representation of δei, and observes the following fact recorded for later
purpose:

(2) δ /∈ I(ek) for all k ≥ i+ 1 such that [a1, . . . , as|1, . . . , i− 1, k, bi+1, . . . , bs] �= 0.
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In order to prove the linear independence of the standard elements one may assume that
r < n since In(X) annihilates M . Let

M̃ =
n∑

i=r+1

Aei, Ψ =
{
δ ∈ Δr(X) : δ �≥ [1, . . . , r|1, . . . , r − 1, r+ 1]

}
and I = AΨ.

We claim:
(i) M̃ is a free A-module.
(ii) M/M̃ is (over A/I) isomorphic to the ideal generated by the minors [1, . . . , r|1, . . . , î,
. . . , r + 1], 1 ≤ i ≤ r, in A/I.
In fact, the minors just specified form a linearly ordered ideal in the poset Δr(X) \ Ψ
underlying the ASL A/I, and the linear independence of the standard elements follows
immediately from (i) and (ii).

Statement (i) simply holds since rankx = r, and the r-minor in the left upper corner
of x, being the minimal element of Δr(X), is not a zero-divisor in A. For (ii) one applies
(2.3) to show that M/M̃ and the ideal in (ii) have the same representation given by the
matrix ⎛⎝ x11 . . . x1r

...
...

xm1 . . . xmr

⎞⎠ ,

the entries taken in A/I: The assignment ei → (−1)i+1[1, . . . , r|1, . . . , î, . . . , r+1] induces
the isomorphism. The computations needed for the application of (2.5) are covered by
(1).

By similar arguments one can show that Imx is also an MSL, see [BV.1, proof of (13.6)]
where a filtration argument is given which shows the linear independence of the standard
elements. Such a filtration argument could also have been applied to prove (MSL-1) for
M , cf. (c) below.

(b) Another example is furnished by the modules defined by generic alternating maps.
Recalling the notations of (1.3), (b) we let A = B[X ]/Pfr+2(X) and M be the cokernel
of the linear map

x : F −→ F ∗, F = An.

In complete analogy with the preceding example M is an MSL on {e1, . . . , en}, the
canonical basis of F ∗, e1 > · · · > en, if one puts

I(ei) =
{ {

π ∈ Φr(X) : π �≥ [1, . . . , î, . . . , r + 1]
}

for i ≤ r,

∅ else,

if r < n, and in the case in which r = n

I(ei) =

{ {
π ∈ Φ(X) : π �≥ [1, . . . , î, . . . , r − 1]

}
for i ≤ n− 1,{

[1, . . . , n]
}

for i = n.

The straightening law (1) is replaced by the equation

(1′) πei =
n∑

k=i+1

±[1, . . . , i− 1, k, bi+1, . . . , bs] ek,
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obtained from Laplace type expansion of pfaffians as (1) has been derived from Laplace
expansion of minors. Observe that the analogue (2′) of (2) is satisfied. The linear
independence of the standard elements is proved in entire analogy with (d). With M̃ =∑n

i=r+1Aei and I = A[1, . . . , r] one has in the essential case r < n:
(i′) M̃ is a free A-module.
(ii′) M/M̃ is (overA/I) isomorphic to the ideal generated by the pfaffians [1, . . . , î, . . . ,
r + 1], 1 ≤ i ≤ r, in A/I.

A notable special case is n odd, r = n−1. In this case Cokerx ∼= Pfr(X) is an ideal of
grade 2 and projective dimension 2 [BE] and generated by a linearly ordered poset ideal
in Φ(X).

(c) The two previous examples suggest to discuss the case of a symmetric matrix of
indeterminates as in (1.3),(c), too. As mentioned there, the ring A = B[X ]/ Ir+1(X) is
not an ASL. Nevertheless the cokernel M of the map x : F → F ∗, F = An, has the same
structure relative to A as the modules in the two previous examples. With respect to
what is known about the rings A, it is easier to work with slightly different arguments
which could have been applied in (a) and (b), too, and were in fact applied in [BV.1] to
the modules of (a).

Taking analogous notations as in (b), we putMi =
∑n

j=i+1Aej , ej denoting the residue
class in M of the j-th canonical basis element of F ∗. One has a filtration

M = M0 ⊃M1 ⊃ · · · ⊃Mr.

We claim:
(i) Mr is a free A-module.
(ii) The annihilator Ji of M/Mi is the ideal generated by the i-minors of the first i
columns of x.
(iii) The generator ei of Mi−1/Mi is linearly independent over A/Ji.

Claim (i) is clear: rankx = r, and the first r columns are linearly independent, hence
rankM/Mr = 0 = rankM − (n− r)—none of the r−minors of x is a zero-divisor of A by
the results of Kutz [Ku]. (This may not be found explicitely in [Ku] for arbitrary B, it is
however enough to have it over a field B, cf. [BV.1, (3.15)]). Since M/Mi is represented
by the matrix (x | i) consisting of the first i columns of x, AnnM/Mi ⊃ Ji. On the other
hand the first i− 1 columns of (x | i) are linearly independent over A/Ji (again by [Ku]),
and by the same argument as used for (i) one concludes (iii) and (ii).

Altogether M has a filtration by cyclic modules whose structure can be considered
well-understood because of the results of [Ku] or the standard basis arguments based on
the notion of a doset [DEP.2]. In particular M is a free B-module. Taking into account
the remark below (2.6) one sees that one could call M an MSL relative to A. Of course
the modules in (a) and (b) have an analogous filtration as follows from (2.6). —

(3.4) MSLs related to differentials and derivations. Let A = B[X ]/ Ir+1(X). The
module Ω = ΩA/B of Kähler differentials of A and its dual Ω∗, the module of derivations,
have been investigated in [Ve.1], [Ve.2], and [BV.1]. A crucial point in the investigation
of Ω is a filtration which stems from an MSL structure on the first syzygy of Ω. In fact,
with I = Ir+1(X), one has an exact sequence

0 −→ I/I(2) −→ ΩB[X]/B ⊗A −→ Ω −→ 0,
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and it has been observed in (3.2),(c) that I/I(2) is an MSL.
The surjection ΩB[X]/B⊗A −→ Ω induces an embedding Ω∗ −→ (ΩB[X]/B⊗A)∗ whose

cokernel is denoted N in [BV.1, Section 15]. It follows immediately from the filtration
described in [BV.1, (15.3)] that N is an MSL. (It would take too much space to describe
this filtration in such a detail that would save the reader to look up [BV.1].)

4. The depth of an MSL

As usual let A be an ASL over B on Π. For any A-module M we denote the length
of a maximal M -sequence in AΠ by depthM . An MSL M over A is free as a B-
module, in particular flat. Let P be a prime ideal of A, P ⊃ AΠ, and put Q = P ∩ B,
κ(Q) = BQ/QBQ. By [Ma, (21.B)] one has

depthMP = depthBQ + depth(M ⊗ κ(Q))P .

Since all the prime ideals Q of B appear in the form P ∩B, it turns out that

depthM = min
P

depth(M ⊗ κ(Q))P , Q = P ∩B.

One sees easily that M ⊗ κ(Q) is an MSL over A⊗ κ(Q), an ASL over κ(Q). Therefore
eventually

depthM = min
Q

depthM ⊗ κ(Q).

This means: In computing depthM only the case in which B is a field is essential, and
if the result does not depend on the particular field (as will be the case below) it holds
automatically for arbitrary B. (Another possibility very often is the reduction to the
case B = Z in order to apply results on generic perfection, cf. [BV.1], [BV.2].)

Every MSL has a natural filtration by (2.6). Applying the standard result on the
behaviour of depth along short exact sequences one therefore obtains:

(4.1) Proposition. Let M be an MSL on X over A. Then

depthM ≥ min{depthA/AI(x) : x ∈ X}.

We specialize to ASLs over wonderful posets (cf. [Ei], [DEP.2], or [BV.1] for this notion
and the properties of ASLs over wonderful posets).

(4.2) Corollary. Let A be an ASL on the wonderful poset Π. If M is an MSL on X
over A, then

depthM ≥ min{rkΠ − rk I(x) : x ∈ X}.

Since M may be the direct sum of the quotients in its natural filtration there is no way
to give a better bound for depthM in general. Even when (4.2) does not give the best
possible result it may be useful as a “bootstrap”. While it is sometimes possible to find
a coarser filtration which preserves more of the structure of M , there are also examples
for which the exact computation of depthM requires completely different, additional
arguments. We now discuss the examples in the same order as in the preceding section.
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(4.3) MSLs derived from powers of ideals. As in (3.2) let I = AΨ be straightening-
closed. Applying (4.2) to In and changing to A/In then, one obtains:

(a) Suppose that Π is wonderful. Then mini depthA/Ii ≥ rk Π − rkΨ.

Elementary examples show that (a) is by no means sharp in general: Take A = B[X ],
X a 2 × 2 matrix, I the ideal generated by the elements in its first column. Then
obviously depthA/Ii = 2 for all i, and (a) gives the lower bound 2 if one takes Π =
{X11, X21, X12, X22}, its elements ordered in the sequence given. On the other hand,
the choice Π = Δ(X) gives the lower bound 1 only since Ψ then consists of X11, X21,
and [1 2|1 2], hence rkΨ = 3. Under special hypotheses the bound given by (a) is sharp
however:

(b) Suppose, in addition, that Ψ consists of elements of highest degree within Π and that
the standard monomials in the straightening relations of A have at most two factors.
Then mini depthA/Ii = rk Π − rkΨ.

This is [BST, (3.3.3)]. We sketch its proof: First one reduces the problem to the case
of a field B as above. Then one shows that GrI A/Π GrI A is isomorphic to the sub-ASL
of A generated by the elements of Ψ. The latter obviously has dimension rkΨ. Thus one
knows the analytic spread �(I) and obtains mini depthA/Ii = dimA−�(I) = rkΠ−rkΨ
since GrI A is a Cohen-Macaulay ring.

Completely analogous arguments can be applied to derive the same result for the ideals
discussed in (3.2),(c):

(c) Suppose that the monomials in the straightening relations of A have at most two
factors, and let Ψ be the ideal of Π generated by the elements of degree at least d, d fixed.
Then, with the notations of (3.3),(c) one has: mini depthA/Ji = rkΠ − rk Ψ.

See [BV.1, 10.B] for the case A = B[X ], Π = Δ(X), J = Id(X) in which, as mentioned
in (3.3),(c) already, Ji = Id(X)(i).

It would be interesting to find natural filtrations on the modules Ii (or A/Ii or Ii/Ii+1)
and Ji in order to obtain a good lower bound for the depth of each individual power.
This may be possible in special cases only. The instances for which we know depthR/Ii

precisely for all n have been discussed in [BV.1, (9.27)]. Note that these results are based
on free resolutions rather than filtrations.

(4.4) MSLs derived from generic maps. (a) Let first X be an m × n matrix of
indeterminates, and A = Rr+1(X). We consider the map x : Am → An as in (3.3),(a)
and its cokernel M . In determining depthM we assume rightaway that B is a field. Since
In(X) annihilates M the case r = n is covered by the case r = n− 1; therefore one can
restrict oneself to the case r < n. As shown in (3.3),(a) M fits into an exact sequence

0 −→ M̃ −→M −→ J −→ 0

in which M̃ is free over A and J is an ideal in A/I, I generated by the r-minors of the
first r columns of x. It is not difficult to show via (1.4) that depth J = depthA− 1: A/I
and (A/I)/J are Cohen-Macaulay again, and the dimensions of A, A/I, and (A/I)/J
differ successively by 1, cf. [BV.1, proof of (13.4)]. This implies

depthM ≥ depthA− 1.
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It turns out that this inequality is an equation exactly when m ≥ n, equivalently:
Ext1R(M,ωA) = 0 if and only if m ≥ n. Fortunately the computations needed to prove
this are not difficult—see [BV.1, 13.B] for the details.

(b) The case in which X is an alternating matrix and A = B[X ]/Pfr+2(X) is simpler
such that we can give complete arguments relative to standard results on the rings A
and ASLs in general.

There is one exceptional case: n = r + 1. As stated in (3.3),(b) already, one has
M ∼= Pfr(X), whence M is an ideal of grade 3 and projective dimension 2 in this case.
In particular depthM = depthA− 2.

Similarly to (a) one can now restrict oneself to the case r + 1 < n. Using the exact
sequence analogous to the one in (a) we get depthM ≥ depthA− 1: The defining ideal
of (A/I)/J as a residue class ring of A is generated by the pfaffians {π ∈ Φr(X) : π �≥
[1, . . . , r − 1, r + 2]}. Therefore (A/I)/J is an ASL over a wonderful poset, cf. [BV.1,
(5.10)]. Furthermore, computing the ranks of the underlying posets, one sees that the
dimensions of A, A/I, and (A/I)/J behave as in (a). (Note that in the exceptional case
dealt with above dimA/I = dim(A/I)/J + 2.)

Since the matrix x is skew-symmetric, M∗ = HomA(M,A) ∼= Kerx, hence depthM∗

≥ min(depthM + 2, depthA) = depthA. Furthermore A is a Gorenstein ring (over
any Gorenstein B), cf. [KL]. Since M∗ is a maximal Cohen-Macaulay module, its dual
M∗∗ is also a maximal Cohen-Macaulay module. Now it follows that M itself is a
maximal Cohen-Macaulay module over A, sinceM is reflexive: The inequality depthM ≥
depthA − 1 carries over to all localizations of M and A. A well-known criterion for
reflexivity (see [BV.1, 16.E] for example) therefore implies that it is enough to have MP

free over AP for all prime ideals P of A such that depthAP ≤ 2. MP is free if and only
if P does not contain one of the r-pfaffians; the ideal generated by them in A has height
2(n− r) + 1 ≥ 5.

(c) The main arguments in (a) and (b) are first the isomorphism M/M̃ ∼= J together
with precise information on depth J and secondly a duality argument. While the iso-
morphism could be established in the case of a symmetric matrix X as well and the
duality argument will be used below, one lacks information on depth J . This forces us
into a trickier line of proof which demonstrates the “bootstrap” function of a preliminary
depth bound based on the filtration by cyclic modules as established in (3.3),(c). Again
we assume that B is a field and that r < n.

(i) If n ≡ r + 1 (2), then depthM = depthA.
(ii) If n �≡ r + 1 (2), then depthM = depthA− 1.

Part (i) is almost as easy to prove as the same equation in (b). First we establish the
depth bound based on the filtration by cyclic modules:

(iii) For all n and all r one has

depthM ≥ depthA− r ≥ 1
2

depthA.

In fact, by [Ku]
depthA ≥ nr − r(r − 1)/2,

implying the second inequality. In (3.3),(c) we established that M has a filtration with
quotients A and A/Ji, i = 1, . . . , r. By [Ku] all these rings are Cohen-Macaulay, and
dimA/Ji = dimA+ i− r − 1. This proves the first inequality.
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We now introduce a standard induction argument (which exists similarly under the
conditions of (a) or (b) but was not necessary there). Take any prime ideal Q �= I1(x)
in A. Then there is (1) an element xii /∈ Q or (2) a 2-minor xiixjj − (xij)2 /∈ Q, by
symmetry x11 /∈ Q or x11x22 − (x12)2 /∈ Q. Over B[X ][X−1

11 ] one performs elementary
row and column transformations to obtain⎛⎜⎜⎝

X11 0 . . . 0
0 Y11 . . . Y1,n−1

...
...

. . .
...

0 Y1,n−1 . . . Yn−1,n−1

⎞⎟⎟⎠ ,

Yij = Yji = Xi+1,j+1X11 −X1,i+1X1,j+1. It is easy to see that the elements Yij , 1 ≤ i ≤
j ≤ n, are algebraically independent over B and that A[x−1

11 ] is a Laurent polynomial
extension of B[Y ]/ Ir(Y ). A similar argument works in case (2), now reducing both n
and r by 2.

(iv) There are families Yij, 1 ≤ i ≤ j ≤ n−1, and Zij, 1 ≤ i ≤ j ≤ n−2, of algebraically
independent elements over B such that A[x−1

11 ] is a Laurent polynomial extension of
Sr−1 = B[Y ]/ Ir(Y ), and A[(x11x22−x2

12)
−1] is a Laurent polynomial extension of Tr−2 =

B[Z]/ Ir−1(Z). In both cases M is the extension of the modules defined by Y and Z resp.

Now we can already prove (i) under whose hypotheses A is a Gorenstein ring. Let
P ⊂ A be the irrelevant maximal ideal. Arguing inductively via (iv) one may suppose
that MQ is a maximal Cohen-Macaulay module for all primes Q different from P . Let
D = Cokerx∗ be the Auslander-Bridger dual of M . Because x is symmetric, D ∼= M .
The assumptions so far imply that MP is a d-th syzygy module, d = depthMP , hence

Exti
AP

(MP , AP ) = Exti
AP

(DP , AP ) = 0 for i = 1, . . . , d,

(cf. [BV.1, 16.E] for example). On the other hand depthMP ≥ d is equivalent to

Exti
AP

(MP , AP ) = 0 for i = depthAP − d+ 1, . . . , depthAP

by local duality. Hence Exti
AP

(MP , AP ) = 0 for all i > 0, and MP is a maximal Cohen-
Macaulay module. This establishes (i).

Next we show that depthM < depthA under the hypotheses of (ii). Again induction
via (iv) can be applied to reduce to the case r = 1 first. Then Ext1A(M,ωA) �= 0 is
obvious since ωA is generated by the entries of the first row (or column) of x, cf. [Go].

It remains to verify that depthM ≥ depthA−1 in (ii). Since depthA/Jr = depthA−1,
it is enough to show the following statements which hold for all n and all r:

(v) As an (A/Jr)-module M/Mr is reflexive.
(vi) Its dual over A/Jr is isomorphic to Jr−1/Jr.
(vii) M/Mr is a maximal Cohen-Macaulay module over A/Jr.
(In order to include the case r = 1: A 0-minor has the value 1.)

To simplify the notation write A for A/Jr and M for M/Mr. Let us first observe
that (vii) holds in case n ≡ r + 1 (2) since, as has just been proved, M is a maximal
Cohen-Macaulay module over A.
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Next one notices that the case r = 1 is indeed trivial, M/M1 being free of rank 1
over A/J1. Suppose that r > 1 and proceed by induction. Then, via M and (iv), it
follows that MP is a maximal Cohen-Macaulay module over AP for all P ∈ SpecA,
P �⊃ I1(x)/Jr.

For (v) it is enough to show that (1)MP is free for all primes P such that depthAP ≤ 1,
and (2) depthMP ≥ 2 for the remaining ones. (1) is clear: grade Ir−1(x | r)/Jr ≥ 2, and
MP is free if P �⊃ Ir−1(x | r)/Jr. In order to verify (2) one may now assume that n ≥ r+2,
r > 1, and P ⊃ I1(x)/Jr. Then (iii) implies (2).

The dual ofM is isomorphic to the kernel of the mapAr → An defined by the transpose
y of (x | r). Taking the determinantal relations of the rows of y, one sees that Jr−1/Jr

is embedded in Ker y such that this embedding splits at all prime ideals not containing
Ir−1(x | r)/Jr, in particular at all primes P such that depthAP ≤ 1. Since Jr−1/Jr is a
maximal Cohen-Macaulay module over A, (vi) follows easily.

It remains to prove (vii) for n �≡ r + 1 (2). In this case Jr is the canonical module of
A, so A = A/Jr is a Gorenstein ring, cf. [HK, 6.13]. By (vi) the dual of M is Cohen-
Macaulay, so is M by (v).

The results of (b) and (c) are also contained in [BV.2].

(4.5) MSLs related to differentials and derivations. We resume the hypotheses
and notations of (3.4). One obtains a first depth bound for I/I(2) from (4.3),(c) above
which is already quite good; it suffices to prove that Ω is reflexive. In order to get a
precise result one has however to work with a coarser filtration, cf. [BV.1, Section 14].

A similar filtration yields that depthN ≥ depthA − 2, so depth Ω∗ ≥ depthA − 1
for all values of m, n, and r. While Ω∗ cannot be a maximal Cohen-Macaulay module
for a determinantal ring A if A is a non-regular Gorenstein ring, i.e. when m = n,
1 ≤ r < min(m,n), it has this property in all the other cases. Similar to (4.4),(a)
this is shown by verifying that Ext1A(Ω∗, ωA) = 0. Unfortunately the details of this
computation, for which we refer the reader to [BV.1, Section 15], are rather complicated.

5. Modules with a Strict Straightening Law

Some MSLs satisfy further natural axioms which strengthen (MSL-1) and (MSL-2).
Let M be an MSL on X over A. The first additional axiom:
(MSL-3) For all x, y ∈ X : x < y ⇒ I(x) ⊂ I(y).
The property (MSL-3) implies that Π∪X is a partially ordered set if we order its subsets
Π and X as given and all other relations are given by

x < ξ ⇐⇒ ξ /∈ I(x).

(MSL-3) simply guarantees transitivity. If it is satisfied, one can consider the following
strengthening of (MSL-2):
(MSL-4) ξx =

∑
y<x,ξ aξxyy for all x ∈ X , ξ ∈ I(x).

Definition. We say that M has a strict straightening law if it is an MSL satisfying
(MSL-3) and (MSL-4).

An ideal I ⊂ A generated by an ideal Ψ ⊂ Π is a trivial example of a module with
a strict straightening law, and the generic modules (3.3),(a) and (b) may be considered



16 BRUNS

significant examples. On the other hand not every MSL has a strict straightening law.
The following proposition which strengthens (2.7) excludes all the modules M/InM , n ≥
2, as in (3.2), in particular the residue class rings A/InA, n ≥ 2, I = AΨ straightening-
closed.

(5.1) Proposition. Let M be a module with a strict straightening law on X over A.
Then

AnnM = A(
⋂

x∈X
I(x)).

Proof: In fact, if ξ ∈
⋂

I(x), then ξx = 0 for all x ∈ X , since there is no element
y ∈ X , y < ξ. —

Suppose that X is linearly ordered. Then the straightening laws (MSL-4) and (ASL-2)
constitute a set of straightening relations on Π ∪ X , and the following question suggests
itself: Is the symmetric algebra S(M) an ASL over B? In general the answer is “no”, as
the following example demonstrates: A = B[X1, X2, X3], X1 < X2 < X3,

M = A3/(A(X1, 0, 0) + A(X2, 0, 0) +A(0, X1, X3)),

the residue classes of the canonical basis ordered by e1 > e2 > e3. On the other hand S(I)
is an ASL if I is generated by a linearly ordered poset ideal, cf. [BV.1, (9.13)] or [BST];
one uses that the Rees algebra R(I) of A with respect to I is an ASL, and concludes
easily that the natural epimorphism S(I) → R(I) is an isomorphism. We will give a new
proof of this fact below.

The following proposition may not be considered ultima ratio, but it covers the case
just discussed and also the generic modules.

(5.2) Proposition. Let M be a graded module with strict straightening law on the lin-
early ordered set X = {x1, . . . , xn}, x1 < · · · < xn. Put Xi = {x1, . . . , xi}, Mi = AXi,
M i+1 = M/Mi, i = 0, . . . , n. Suppose that for all j > i and all prime ideals P ∈
Ass(A/AI(xj)) the localization (M i)P is a free (A/AI(xi))P -module, i = 1, . . . , n.
(a) Then S(M) is an ASL on Π ∪ X .
(b) If I(x1) = ∅, then S(M) is a torsionfree A-module.

Proof: Since Π∪X generates S(M) as a B-algebra (and S(M) is a graded B-algebra in
a natural way) and (ASL-2) is obviously satisfied, it remains to show that the standard
monomials containing k factors from X are linearly independent for all k ≥ 0. Since
S0(M) = A this is obviously true for k = 0, and it remains true if AnnM = AI(x1)
is factored out; since this does not affect the symmetric powers Sk(M), k > 0, we may
assume that AnnM = 0. If n = 1, then M is now a free A-module and the contention
holds for trivial reasons.

The hypotheses indicate that an inductive argument is in order. Independent of the
special assumptions on Mi and I(xi) there is an exact sequence

(∗) Sk(M)
g−→ Sk+1(M)

f−→ Sk+1(M/Ax1) −→ 0

in which f is the natural epimorphism and g is the multiplication by x1. Let P ∈ AssA.
By (2.8) x1 generates a free direct summand of MP . Therefore (5) splits over AP , and
g⊗AP is injective. It is now enough to show that Sk(M) is torsionfree; then g is injective
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itself and (∗) splits as a sequence of B-modules as desired: By induction the standard
elements in Sk(M) as well as in Sk+1(M/Ax1) are linearly independent.

The linear independence of the standard elements in Sk(M) implies that Sk(M) is an
MSL over A on the set of monomials of length k in X with respect to a suitable partial
order and the choice

I(xi1 · · ·xik
) = I(xik

), i1 ≤ · · · ≤ ik.

Let P ∈ SpecA, P /∈ AssA. Then P /∈ Ass(A/AI(x1)), since I(x1) = ∅ by assumption.
If P /∈ Ass(A/AI(xj)) for all j = 2, . . . , n, then P /∈ Ass Sk(M) by virtue of (2.6);
otherwise Sk(M)P is a free AP -module by hypothesis. Altogether: Ass Sk(M) = AssA,
and Sk(M) is torsionfree. —

(5.3) Corollary. With the notations and hypotheses of (5.2), the symmetric algebra
S(Mi) is an ASL on Π∪Xi for all i = 1, . . . , n. S(Mi) is a sub-ASL of S(M) in a natural
way.

Proof: There is a natural homomorphism S(Mi) → S(M) induced by the inclusion
Mi →M . Since S(Mi) satisfies (ASL-2), it is generated as a B-module by the standard
monomials in Π∪Xi. Since these standard monomials are linearly independent in S(M),
they are linearly independent in S(Mi), too, and S(Mi) is a subalgebra of S(M). —

The following corollary has already been mentioned:

(5.4) Corollary. Let A be an ASL on Π, and Ψ ⊂ Π a linearly ordered ideal. Then
S(AΨ) is an ASL on the disjoint union of Π and Ψ.

Proof: For each ψ ∈ Ψ the poset Π \ I(ψ) has ψ as its single minimal element. Let
Ψ = {ψ1, . . . , ψn}, ψ1 < · · · < ψn. If P ∈ Ass(A/AI(ψj)), then ψj /∈ P since ψj is not a
zero-divisor of the ASL A/AI(ψj). Consequently (AΨ/(

∑i
k=1Aψk))P is isomorphic to

(A/I(ψi))P for all i < j. —

We want to apply (5.2) to the generic modules discussed in (3.3), (a), and recall the
notations introduced there: A = B[X ]/ Ir+1(X) is an ASL on Δr(X), the set of all i-
minors, i ≤ r, of X . M is the cokernel of the map Am → An defined by the matrix x,
e1, . . . , en are the residue classes of the canonical basis e1, . . . , en of An. (Thus Mk is the
submodule of M generated by en−k+1, . . . , en.)

(5.5) Corollary. (a) With the notations just recalled, the symmetric algebra of a generic
module M is an ASL. If r + 1 ≤ n, S(M) is torsionfree over A.
(b) Let B be a Cohen-Macaulay ring. S(M) is Cohen-Macaulay if and only if r + 1 ≤ n
or r = m = n.

Proof: (a) Factoring out the ideal generated by I(en) we may suppose that r < n.
Note that with the notations introduced in (3.3),(a) one has en < · · · < e1. Because of
statement (ii) in (3.3),(a) the validity of the hypothesis of (5.2) for i ≥ n− r+ 1 follows
from the proof of (5.4).

Let i ≤ n − r, j > i, k = n − j + 1, δ = [1, . . . , r|1, . . . , r] for k ≥ r + 1 and
δ = [1, . . . , r|1, . . . , k̂, . . . , r + 1] for k ≤ r. Then δ is the minimal element of the poset
underlying A/I(xj) = A/I(ek), thus not contained in an associated prime ideal of the
latter. On the other hand (M i)P is free for every prime P not containing δ.
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(b) in order to form the poset Π ∪ {e1, . . . , en} one attaches {e1, . . . , en} to Π as
indicated by the following diagrams for the cases r+1 ≤ n and r = m = n resp. In the first
case we let δi = [1, . . . , r|1, . . . , î, . . . , r+1], in the second δi = [1, . . . , r−1|1, . . . , î, . . . , r].

e1

e2

er

er+1

er+2

en

δ1

δ2

δr

δr+1

e1

e2

en

δ1

δ2

δn

[1, . . . , n|1, . . . , n]

It is an easy exercise to show that Π∪{e1, . . . , en} and Π∪{en−k+1, . . . , en} are wonderful,
implying the Cohen-Macaulay property for ASL’s defined on the poset ([BV.1, Section 5]
or [DEP.2]).

In the case in which m > n = r, the ideal In(X) S(M) annihilates
⊕

i>0 Si(M), and
dim S(M)/ In(X) < dim S(M) by (1.3), excluding the Cohen-Macaulay property. —

Admittedly the preceding corollary is not a new result. In fact, let Y be an n × 1
matrix of new indeterminates. Then

S(M) ∼= B[X, Y ]/(Ir+1(X) + I1(XY ))

can be regarded as the coordinate ring of a variety of complexes, which has been shown
to be a Hodge algebra in [DS]. The results of [DS] include part (b) of (5.5) as well as
the fact that S(M) is a (normal) domain if r + 1 ≤ n and B is a (normal) domain. The
divisor class group of S(M) in case r + 1 ≤ b, B normal, has been computed in [Br.2]:
Cl(S(M)) = Cl(B) if m = r < n − 1, Cl(S(M)) = Cl(B) ⊕ Z else. The algebras S(M),
in particular for the cases r + 1 > min(m,n), i.e. A = B[X ], and r + 1 = min(m,n),
have received much attention in the literature, cf. [Av.2], [BE], [BKM], and the references
given there. Note that (5.5) also applies to the subalgebras S(Mk). In the case A = B[X ],
m ≤ n, these rings have been analyzed in [BS].

The analogue (5.6) of (5.5) seems to be new however. We recall the notations of
(3.3),(b): X is an alternating n × n-matrix of indeterminates, A = B[X ]/Pfr+2(X),
F = An, x : F → F ∗ given by the residue class of X , and M = Cokerx.

(5.6) Corollary. (a) With the notations just recalled, the symmetric algebra of an “al-
ternating” generic module M is an ASL. If r < n, S(M) is a torsionfree A-module.
(b) Let B be a Cohen-Macaulay ring. Then S(M) is Cohen-Macaulay if and only if
r < n.
(c) Let B be a (normal) domain. Then S(M) is a (normal) domain if and only if r < n.
(d) Let B be normal and r < n. Then Cl(S(M)) ∼= Cl(B) ⊕ Z if r = n − 1, and
Cl(S(M)) ∼= Cl(B) if r < n − 1. In particular S(M) is factorial if r < n − 1 and B is
factorial.

Proof: (a) and (b) are proved in the same way as (5.5).
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Standard arguments involving flatness reduce (c) to the case in which B is a field
(cf. [BV.1, Section 3] for example). Thus we may certainly suppose that B is a normal
domain.

In the case in which r = n − 1 the module M is just I = Pfn−1(X) as remarked
above, an ideal generated by a linearly ordered poset ideal. Then (i) GrI A is an ASL, in
particular reduced, and (ii) S(M) is the Rees algebra of A with respect to I (cf. [BST]
for example). Thus we can apply the main result of [HV] to conclude (c) and (d).

Let r ≤ n− 2 now. In the spirit of this paper a “linear” argument seems to be most
appropriate: By [Fo, Theorem 10.11] and [Av.1] it is sufficient that all the symmetric
powers of M are reflexive. Since MP , hence Sk(MP ) is free for prime ideals P �⊃ Pfr(x)
it is enough to show that Pfr(x) contains an Sk(M)-sequence of length 2 for every k.
Each Sk(M) is an MSL whose data I(. . . ) coincide with those of M itself. Therefore
(2.6) can be applied and we can replace the Sk(M) by the residue class rings A/Ii,
Ii = A{π ∈ Φr(x) : π �≥ [1, . . . , î, . . . , r + 1]}, i = 1, . . . , r. One has Pfr(X) ⊃ Ii.

The poset Π underlying A/Ii is wonderful (cf. [DEP.2, Lemma 8.2] or [BV.1, (5.13)]).
Therefore the elements

[1, . . . , î, . . . , r + 1] =
∑
π∈Π

rkπ=1

π and
∑
π∈Π

rkπ=2

π

form an A/Ii-sequence by [DEP.2, Theorem 8.1]. Both these elements are contained in
Pfr(x).
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