Realization problems in algebraic topology

Martin Frankland
Universität Osnabrück

Adam Mickiewicz University in Poznań
Geometry and Topology Seminar
June 2, 2017
Outline

1. Background
2. Obstruction theory
3. Quillen cohomology
4. Classification results
5. Realizability results
6. Related work
Let X be a space.

- $H^*(X; \mathbb{F}_p)$ is an unstable algebra over the Steenrod algebra \mathcal{A}.
- $H_*(X; \mathbb{F}_p)$ is an unstable coalgebra over \mathcal{A}.
- $H^*(X; \mathbb{Q})$ is graded commutative \mathbb{Q}-algebra.
- π_*X is a Π-algebra, i.e., graded group with action of primary homotopy operations.

Let X be a spectrum and E a ring spectrum, e.g., $E = H\mathbb{F}_p$ or KU.

- E^*X is an E^*E-module.
- E_*X is an E_*E-comodule.
- π_*X is a π^S_*-module, where $\pi^S_* = \pi_*(S)$ is the stable homotopy ring.
Π-algebras

Π-algebra ≈ graded group with additional structure which looks like the homotopy groups of a space.

Definition

- Π := full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \geq 1$.
- Π-algebra := product-preserving functor $A: \Pi^{\text{op}} \to \text{Set}_*$.

Example

$\pi_* X = [-, X]$ for a pointed space X.

Notation

Write $A_n := A(S^n)$.
Primary operations

Example

\[S^n \xrightarrow{\text{pinch}} S^n \vee S^n \]

induces the group structure

\[A_n \times A_n \xrightarrow{A(\text{pinch})} A_n. \]

Example

\[S^{p+q-1} \xrightarrow{w} S^p \vee S^q \]

induces the Whitehead product

\[A_p \times A_q \xrightarrow{A(w)} A_{p+q-1}. \]
Realizations

Realization Problem
Given a \(\Pi \)-algebra \(A \), is there a space \(X \) satisfying \(\pi_* X \cong A \) as \(\Pi \)-algebras?

Classification Problem
If \(A \) is realizable, can we classify all realizations?
Some examples

- Simplest Π-algebras: Only one non-trivial group A_n.
 - Answer: Always realizable (uniquely), by an Eilenberg–MacLane space $K(A_n, n)$.
- Next simplest case: Only 2 non-trivial groups A_n, A_{n+k}. Assume $n \geq 2$.
 - Answer: **Not** always realizable...

Warm-up

Case $k = 1$: Always realizable (classic).
Case $k = 2$: Always realizable (a bit of work).
Simply connected rational \(\Pi \)-algebra, i.e., \(A_1 = 0 \) and \(A_n \) is a \(\mathbb{Q} \)-vector space (for every \(n \geq 2 \)).

Same as a reduced graded Lie algebra \(L_* := A_{*+1} \) over \(\mathbb{Q} \), with respect to Whitehead products.

Answer: Always realizable as the homotopy Lie algebra \(L_* \cong \pi_{*+1}X \) of a rational space \(X \), by Quillen’s theorem.

A realization may not be unique, e.g., if \(X \) is not formal.
Classify?

- Naive: List of realizations $= \pi_0 \mathcal{T} \mathcal{M}(A)$.
- Better: **Moduli space** $\mathcal{T} \mathcal{M}(A)$ of realizations.

Remark

Relative moduli space $\mathcal{T} \mathcal{M}'(A)$: Realizations X with identification $\pi_* X \simeq A$. Have fiber sequence:

\[\mathcal{T} \mathcal{M}'(A) \xrightarrow{\text{forget}} \mathcal{T} \mathcal{M}(A) \to B \text{Aut}(A) \]

and $\mathcal{T} \mathcal{M}(A) \simeq \mathcal{T} \mathcal{M}'(A)_{h \text{Aut}(A)}$.

Martin Frankland (Osnabrück)

Realization problems

Poznań, June 2017 10 / 45
\(\mathcal{M}(A) = \text{nerve of the category with} \)

- Objects: Realizations \(X \).
- Morphisms: Weak equivalences \(X \to X' \).

\[
\mathcal{M}(A) \simeq \bigsqcup_{\langle X \rangle} B \text{Aut}^h(X).
\]
Building $\mathcal{T}M(A)$

- Blanc–Dwyer–Goerss (2004): Obstruction theory for building $\mathcal{T}M(A)$.
- ∞-categorical reinterpretation by Pstrągowski (2017).
- Successive approximations $\mathcal{T}M_n(A)$, $0 \leq n \leq \infty$.
Building $\mathcal{T}M(A)$

\[
\begin{array}{c}
\mathcal{T}M \\
\sim \\
\mathcal{T}M_\infty \longrightarrow \text{holim}_n \mathcal{T}M_n \\
\Downarrow \\
\vdots \\
\Downarrow \\
\mathcal{T}M_1 \\
\Downarrow \\
\mathcal{T}M_0
\end{array}
\]
Building $\mathcal{T}M(A)$

- $\mathcal{T}M_0(A) \simeq B\text{Aut}(A)$.
- $\mathcal{T}M_n(A) \to \mathcal{T}M_{n-1}(A)$ related by a fiber square.
- For Y in $\mathcal{T}M_{n-1}$ and $M(Y) \subseteq \mathcal{T}M_{n-1}$ its component, we have:
 \[
 \mathcal{H}^{n+1}(A; \Omega^n A) \to \mathcal{T}M_n(A)_Y \to M(Y)
 \]
 where fiber $=$ Quillen cohomology “space”.

- Obstruction to lifting $\in HQ^{n+2}(A; \Omega^n A)$
- Lifts classified by $\pi_0(\text{fiber}) = HQ^{n+1}(A; \Omega^n A)$.

Problem

Can we compute the obstruction groups?
Beck modules

Definition

Let \(C \) be an algebraic category and \(X \) an object in \(C \). A (Beck) module over \(X \) is an abelian group object in the slice category over \(X \):

\[(C/X)_{ab}.\]

Example

\(C = \text{Groups} \). A Beck module over \(G \) is a split extension:

\[G \ltimes M \twoheadrightarrow G.\]

Note: \((g, m)(g', m') = (gg', m + gm')\).
Example

$C = \text{Commutative rings. A Beck module over } R \text{ is a square-zero extension:}$

$$R \oplus M \rightarrow R.$$

Note: $(r, m)(r', m') = (rr', rm' + mr').$
Definition

Quillen cohomology of X with coefficients in a module M is:

$$
HQ^*(X; M) := \pi^* \text{Hom}(C\ldots, M)
$$

where $C\ldots \sim X$ is a cofibrant replacement in sC, the category of simplicial objects in C.

Example

For $C =$ Commutative rings, this is the classic André–Quillen cohomology.
Truncated Π-algebras

Definition

A Π-algebra A is n-truncated if it satisfies $A_i = \ast$ for all $i > n$.

- Postnikov truncation $P_n : \Pi\text{Alg} \rightarrow \Pi\text{Alg}^n_1$.
- P_n is left adjoint to inclusion $\iota : \Pi\text{Alg}^n_1 \rightarrow \Pi\text{Alg}$.
- Unit map $\eta_A : A \rightarrow P_nA$.
Let A be a Π-algebra and N a module over A which is n-truncated. Then the natural comparison map

$$\text{HQ}_{\Pi\text{Alg}}^n(P_nA; N) \xrightarrow{\approx} \text{HQ}_{\Pi\text{Alg}}(A; N).$$

induced by the Postnikov truncation functor P_n is an isomorphism.
Highly connected Π-algebras

Definition

A Π-algebra A is **n-connected** if it satisfies $A_i = \ast$ for all $i \leq n$.

- n-connected cover $C_n : \Pi\text{Alg} \to \Pi\text{Alg}_n$.
- C_n is *right* adjoint to inclusion $\iota : \Pi\text{Alg}_n \to \Pi\text{Alg}$.
- Counit map $\epsilon_A : C_nA \to A$.

Martin Frankland (Osnabrück)
Realization problems
Poznań, June 2017
22 / 45
Theorem (F.)

Let B be an n-connected Π-algebra and M a module over ιB. Then the natural comparison map

$$\text{HQ}^*_{\Pi \text{Alg}}(\iota B; M) \xrightarrow{\text{R}} \text{HQ}^*_{\Pi \text{Alg}}^{\infty}(B; C_n M)$$

induced by the connected cover functor C_n is an isomorphism.

Remark

More general comparison theorem for adjunctions $F : C \rightleftarrows D : G$ between algebraic categories.
2-stage Example

- Take $A_i = 0$ for $i \neq 1, n$.
- A is realizable, e.g., Borel construction

$$BA_1(A_n, n) := EA_1 \times_{A_1} K(A_n, n) \to BA_1.$$

Theorem

$$\mathcal{TM}(A) \simeq \text{Map}_{BA_1}(BA_1, BA_1(A_n, n + 1))_{h \text{Aut}(A)}.$$

Upshot

Classification by a k-invariant is promoted to a moduli statement: The moduli space of realizations is the mapping space where the k-invariant lives.
Corollary

- \(\pi_0 \mathcal{TM}(A) \simeq H^{n+1}(A_1; A_n)/Aut(A) \)

- For any choice of basepoint in \(\mathcal{TM}(A) \), we have:

\[
\pi_i \mathcal{TM}(A) \simeq \begin{cases}
0, & i > n \\
\text{Der}(A_1, A_n), & i = n \\
H^{n+1-i}(A_1; A_n), & 2 \leq i < n
\end{cases}
\]

and \(\pi_1 \mathcal{TM}(A) \) is an extension by \(H^n(A_1; A_n) \) of a subgroup of \(Aut(A) \) corresponding to realizable automorphisms.
Stable 2-types

- Take $A_i = 0$ for $i \neq n, n + 1$, for some $n \geq 2$.
- A is realizable.

Theorem

$\mathcal{T} \mathcal{M}'(A)$ is connected and its homotopy groups are:

$$
\pi_i \mathcal{T} \mathcal{M}'(A) \simeq \begin{cases}
0, & i \geq 3 \\
\text{Hom}_\mathbb{Z}(A_n, A_{n+1}), & i = 2 \\
\text{Ext}_\mathbb{Z}(A_n, A_{n+1}), & i = 1.
\end{cases}
$$
Corollary

\[TM(A) \cong TM' (A)_{h \text{Aut}(A)} \text{ is connected; its homotopy groups are:} \]

\[\pi_i TM(A) \cong \begin{cases} 0, & i \geq 3 \\ \text{Hom}_\mathbb{Z}(A_n, A_{n+1}) i = 2 & \end{cases} \]

and \(\pi_1 TM(A) \) is an extension of \(\text{Aut}(A) \) by \(\text{Ext}_\mathbb{Z}(A_n, A_{n+1}) \). In particular, all automorphisms of \(A \) are realizable.

Remark

Few higher automorphisms.
Homotopy operation functors

A \(\Pi \)-algebra \(A \) concentrated in degrees \(n, n + 1, \ldots, n + k \) can be described inductively by abelian groups and structure maps:

\[
\begin{align*}
A_n \\
\eta_1 : \Gamma_n^1(A_n) &\rightarrow A_{n+1} \\
\eta_2 : \Gamma_n^2(A_n, \eta_1) &\rightarrow A_{n+2} \\
&\ldots \\
\eta_k : \Gamma_n^k(\pi_n, \eta_1, \ldots, \eta_{k-1}) &\rightarrow A_{n+k}.
\end{align*}
\]

Example

\[
\Gamma_n^1(A_n) = \begin{cases}
\Gamma(A_n) & \text{for } n = 2 \\
A_n \otimes_{\mathbb{Z}} \mathbb{Z}/2 & \text{for } n \geq 3.
\end{cases}
\]

and \(\eta_1 : \Gamma_n^1(A_n) \rightarrow A_{n+1} \) is precomposition by the Hopf map \(\eta : S^{n+1} \rightarrow S^n \).
A 2-stage Π-algebra A consists of the data

$$\eta_k : \widetilde{\Gamma}_n^k(A_n) := \Gamma_n^k(A_n, 0, \ldots, 0) \to A_{n+k}.$$

Example

$$\widetilde{\Gamma}_3^2(A_3) = \Lambda(A_3) = A_3 \otimes A_3/(a \otimes a),$$

the exterior square, and

$$\eta_2 : \Lambda(A_3) \to A_5$$

encodes the Whitehead product.
2-stage case (cont’d)

Notation

\(Q_{k,n} \) := indecomposables of \(\pi_{n+k}(S^n) \)

In the stable range \(k \leq n - 2 \), we have \(Q_{k,n} = Q_k^S \), where \(Q_k^S := \) indecomposables of the graded ring \(\pi_*^S \).

Proposition

Assuming \(k \neq n - 1 \), we have

\[
\widetilde{\Gamma}^k_n(A_n) = A_n \otimes_{\mathbb{Z}} Q_{k,n}.
\]

In particular, in the stable range we have \(\widetilde{\Gamma}^k_n(A_n) = A_n \otimes_{\mathbb{Z}} Q_k^S \).
Criterion for realizability

Theorem (Baues,F.)

The 2-stage Π-algebra given by $\eta_k : \tilde{\Gamma}_n^k(A_n) \to A_{n+k}$ is realizable if and only if the map η_k factors through the map $\gamma_K(A_n,n)$:

$$
\begin{array}{cc}
\tilde{\Gamma}_n^k(A_n) & A_{n+k} \\
\gamma_K(A_n,n) & H_{n+k+1}(K(A_n,n)) \\
\eta_k & \downarrow \\
& \gamma
\end{array}
$$
Corollary

Fix $n \geq 2$ and $k \geq 1$. Then an abelian group A_n has the property that “every Π-algebra concentrated in degrees $n, n + k$ with prescribed group A_n is realizable” if and only if the map

$$\gamma_{K(A_n, n)} : \Gamma_n^k(A_n) \to H_{n+k+1}K(A_n, n)$$

is split injective.
First few stable homotopy groups of spheres π_*^S and their indecomposables Q_*^S.

<table>
<thead>
<tr>
<th>k</th>
<th>π^S_k</th>
<th>Q^S_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>1</td>
<td>$\mathbb{Z}/2\langle \eta \rangle$</td>
<td>$\mathbb{Z}/2\langle \eta \rangle$</td>
</tr>
<tr>
<td>2</td>
<td>$\mathbb{Z}/2\langle \eta^2 \rangle$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\mathbb{Z}/24 \simeq \mathbb{Z}/8\langle \nu \rangle \oplus \mathbb{Z}/3\langle \alpha \rangle$</td>
<td>$\mathbb{Z}/12 \simeq \mathbb{Z}/4\langle \nu \rangle \oplus \mathbb{Z}/3\langle \alpha \rangle$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>$\mathbb{Z}/2\langle \nu^2 \rangle$</td>
<td>0</td>
</tr>
</tbody>
</table>
Look at stem $k = 3$.

Proposition

Let $n \geq 5$. The (stable) Π-algebra concentrated in degrees $n, n + 3$ given by $A_n = \mathbb{Z}$ and $A_{n+3} = \mathbb{Z}/4$ with structure map

$$\eta_3 : A_n \otimes_\mathbb{Z} Q^S_3 \cong \mathbb{Z}/4 \langle \nu \rangle \oplus \mathbb{Z}/3 \langle \alpha \rangle \to \mathbb{Z}/4$$

sending ν to 1 is not realizable.

Proof.

$HZ_4HZ \cong \mathbb{Z}/6$

$$\gamma : Q^S_3 \cong \mathbb{Z}/4 \langle \nu \rangle \oplus \mathbb{Z}/3 \langle \alpha \rangle \to HZ_4HZ \text{ sends } 2\nu \text{ to } 0.$$
Infinite families

Look at Greek letter elements in the stable homotopy groups of spheres π^S_*.

Proposition

Assume $p \geq 3$.

1. The first alpha element $\alpha_1 \in Q^{S}_{2(p-1)-1}$ is **not** in the kernel of γ.

2. Higher alpha elements $\alpha_i \in Q^{S}_{2i(p-1)-1}$ for $i > 1$ are in the kernel of γ.

3. Generalized alpha elements $\alpha_{i/j} \in Q^{S}_{*}$ for $j > 1$ satisfy $p\alpha_{i/j} \neq 0$ but $\gamma(p\alpha_{i/j}) = 0$.

Proof.

(3) $\alpha_{i/j}$ has order p^i in π^S_*.

The p-torsion in HZ_*HZ is all of order p (and not p^2, p^3, etc.).
Infinite families (cont’d)

Upshot
This provides infinite families of non-realizable 2-stage (stable) Π-algebras.
Let E be a homotopy commutative ring spectrum.

X an E_∞ ring spectrum $\rightsquigarrow E_*X$ is an E_*-algebra in E_*E-comodules.

Realizations of E_*E correspond to E_∞ ring structures on E.

Applications to chromatic homotopy theory. Morava E-theory E_n admits a unique E_∞ ring structure.
Realizing unstable algebras over the Steenrod algebra as $H^*(X; \mathbb{F}_p)$ for some space X.

Classifying realizations via higher order cohomology operations [Blanc–Sen (2017)].

Realizing unstable coalgebras over the Steenrod algebra as $H_*(X; \mathbb{F}_p)$ for some space X. [Blanc (2001), Biedermann–Raptis–Stelzer (2015)]

Stable analogues.
Let E be an H_∞ ring spectrum.

- X an H_∞ E-algebra $\sim \pi_* X$ is an E_*-algebra with power operations.
- $E = H_{\mathbb{F}_p}$: Dyer-Lashof operations, e.g., acting on the mod p homology of an infinite loop space.
- $E = K^\wedge_p$: θ-algebras over the p-adic integers \mathbb{Z}_p.
- $E = \text{Morava } E$-theory E_n: power operations have been studied.
Higher order operations

X a space or spectrum $\sim H^*(X; \mathbb{F}_p)$ a module over the Steenrod algebra (primary cohomology operations)
+ secondary operations
+ tertiary operations
+ etc.

With all higher order cohomology operations, we can recover the p-type of X.
Thank you!
