
Semantic values as latent parameters:
Testing a fixed threshold hypothesis for cardinal readings of few & many

Abstract

Certain uses of vague quantifiers few and many intuitively compare a true quantity to a priori
expectations about that quantity. A concrete proposal for the truth conditions of such readings stipu-
lates a contextually-stable threshold on a contextually-variable representation of a priori expectations
(Clark 1991, Fernando and Kamp 1996). The main goal of this paper is to introduce data-driven com-
putational modeling as a means to implement and test complex semantic theories of this kind, which
may be hard to assess based on solitary introspection of meaning intuitions. Based on an empirical
measure of a priori expectations, we use Bayesian inference to estimate likely values of the latent
threshold parameters given empirical data from production and comprehension tasks. We demon-
strate how posterior inference and statistical model comparison can help assess the plausibility of the
fixed threshold hypothesis.
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1 Introduction

A striking, but well-known feature of vague quantifiers few and many is their extreme contextual vari-
ability and vagueness (e.g. Hörmann 1983, Moxey and Sanford 1993). The number of Ben’s siblings
needed to make (1a) true is much lower than the number of points that are needed to make (1b) true.
Similarly, the number of shoes Melanie needs to own for (2a) to be true is much lower than the number
of watchers in (2b). Indeed, precise truth conditions seem to be impossible to determine.

(1) a. Ben has many siblings.
b. Chris’ team scored many points in the last basketball match.

(2) a. Melanie owns few pairs of shoes.
b. Few people watched the Olympics this time.

It is a challenge for linguistic theory to explain how speakers and listeners successfully communicate
with expressions so context-dependent and vague and how children can acquire proficiency of their use.
To address this challenge, we could try to identify a stable core meaning of these expressions: a complex
yet systematic function from contexts to precise denotations. This paper focuses on one potential candi-
date for such a stable core meaning which was first suggested by Clark (1991) and formally worked out
by Fernando and Kamp (1996). According to this approach, a sentence of the form “Many As are B”
is true if the actual cardinality n = |A ∩B | exceeds a fixed threshold θmany on a measure of surprise,
which is derived from a contextually supplied measure of a priori expectations PE about likely values of
n. In simpler terms, “Many As are B” is true if the actual number of n = |A ∩B | is surprisingly high.
Even with a fixed and contextually-stable threshold for what counts as sufficiently surprising, whether a
certain n counts as surprisingly high can still vary dramatically for numbers of siblings and points scored
during a basketball match, because we may have dramatically different prior expectations PE . Whence
that context-dependence and vagueness can be possible despite a systematic, calculable and learnable
stable core meaning.

While such a surprise-based semantics may seem like an appealing idea, it also raises methodolog-
ical concerns. Since the precise nature of what counts as surprising is hard to assess based on solitary
introspection, it becomes exceedingly hard to test the predictions of such an account. The main contri-
bution of this paper is therefore methodological. We seek to demonstrate how data-driven computational
modeling can be a helpful addition to the linguists’ toolbox, exactly where solitary introspection fails
and the theory under scrutiny concerns latent parameters that are not directly observable, like a thresh-
old on a measure of surprise. In other words, we argue here, by means of a case study on the meaning of
many and few, for the usefulness of a particular approach to theoretically inspired statistical modeling of
empirical data.
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Section 2 introduces the necessary theoretical background on the meaning of few and many. Sec-
tion 3 motivates our approach to data-driven computational modeling and gives the concrete model to be
applied here. Section 4 describes experiments aimed to elicit representations of a priori expectations, as
well as production and comprehension of cardinal uses of few and many. Section 5 discusses Bayesian
inference of latent threshold parameters and the use of model comparison to assess the plausibility of the
hypothesis that a context-independent threshold governs the experimental data from our production and
comprehension tasks.

2 A fixed threshold semantics for many and few

Partee (1989) famously distinguished a cardinal and a proportional reading of few and many. The cardi-
nal reading is exemplified in (1) and (2). According to Partee, it has a meaning “like that of the cardinal
numbers, at least [xmin], with the vagueness located in the unspecified choice of [xmin] . . . . The cardinal
reading of few is similar except that it means at most [xmax], and [xmax] is generally understood to be
small” (Partee 1989: 1). Truth-conditions of “Few/Many A are B” under such a cardinal reading are
given in (3).1

(3) Cardinal reading of “Few/Many As are B”

a. Few: |A ∩B| ≤ xmax b. Many: |A ∩B| ≥ xmin

Proportional readings ensue when an upper-bound on |B| exists, as in (4) and (5).

(4) a. Chris ate many of the 12 muffins on the table.
b. Many Germans eat bread every day.

(5) a. Few of Martha’s grandchildren could afford to buy a car when turning 18.
b. Few US adults receive the recommended amount of physical activity each week.

Partee suggests that sentence (4a) is true if Chris ate a large proportion of the muffins; at least k, where
“[w]e may think of k either as a fraction between 0 and 1 or as a percentage” (Partee 1989: 2). Truth-
conditions of “Few/Many A are B” under a proportional reading are given in (6).

(6) Proportional reading of “Few/Many As are B”

a. Few: |A∩B||A| ≤ kmax b. Many: |A∩B||A| ≥ kmin

The semantics in (3) and (6) leave open the question of how the thresholds xmin/max and kmin/max are
to be fixed in any given context. We will here consider one idea, which was first suggested tentatively by
Clark (1991), and formally spelled out by Fernando and Kamp (1996). Let us call it the Clark-Fernando-
Kamp (CFK) semantics. Neither Clark nor Fernando and Kamp commit to the idea that a single fixed
threshold governs all the uses of many and few. Here, we focus on the extent to which this approach can
explain in particular unstressed cardinal readings (see Section 6 for further discussion).

The idea behind the CFK semantics is that, e.g., few could be taken to denote “the 25th percentile
(range: 10th to 40th percentile) on the distribution of items inferred possible in [the current] situation”
(Clark 1991: 271). This approach explains the “cardinal surprise reading” of few and many in sentences
like (7) as intensional, comparing the actual number of cups of coffee that Andy drank last week to
a probabilistic belief PE about the expected number of consumed cups of coffee in some contextually
provided comparison class (say, American males relevantly similar to Andy, or Andy’s individual coffee-
drinking habits).

(7) Andy drank few / many cups of coffee last week.
 Andy drank less / more cups of coffee than expected.

1Italicized A/B is the extension of predicate A/B.
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Figure 1: Illustration of the CFK-semantics

The prior expectation PE is highly context-dependent, both in terms of what PE quantifies over (i.e.,
the comparison class) and also in terms of the precise shape of PE . In contrast, the context-independent
lexical meaning of few and many is a pair of fixed thresholds θfew and θmany on the cumulative distribution
of PE . Truth conditions of the CFK semantics for sentences as in (7) are given in (8).

(8) CFK Semantics
a. JFew As are BK = 1 iff |A ∩B | ≤ xmax

where xmax = max {n ∈ N | PE(|A ∩B | ≤ n) < θfew}

b. JMany As are BK = 1 iff |A ∩B | ≥ xmin

where xmin = min
{
n ∈ N | PE(|A ∩B | ≤ n) > θmany

}
From (8b), the sentence “Many As are B” is true if the number n = |A ∩B | is no smaller than xmin. In
turn, xmin is specified as the lowest number for which the cumulative density mass of our prior expecta-
tion PE about the number of As with property B is higher than the semantically fixed threshold θmany.
As a result, “Many As are B” is true if the actual number of As with property B is sufficiently surpris-
ing, where surprise is relative to contextually-variable PE and what is sufficient surprise is encoded in
contextually-stable θmany.

To illustrate, consider the example in Figure 1 for the many-sentence in (7). Prior expectations
PE could look like in Figure 1a: they would assign a probability to any natural number n, indicating
how likely we think it is that Andy drank n cups of coffee last week. Figure 1b shows the cumulative
distribution of the distribution in Figure 1a. If θmany was fixed to, say, 0.8, then the CFK-semantics
would identify xtextmin to be 8. Accordingly, for this PE , the many-sentence in (7) would be false for
any n < 8 and true for any n ≥ 8.

3 Computational model

Evaluating the CFK semantics in (8) is a challenge for standard methods from theoretical linguistics inso-
far as they rely on intuitions about truth, entailment and the like. This is because, in almost all real-world
cases, a precise enough determination of prior expectations PE seems to elude solitary introspection.
To test a CFK semantics, we therefore turn to data-driven computational modeling. For one, we use
recent experimental methodology to obtain approximate empirical measures of introspectively inacces-
sible “prior expectations” (e.g., Kao et al. 2014, Franke et al. 2016). For another, we show how the core
semantics in (8) can be turned into probabilistic models of speaker production and listener interpretation
behavior. Finally, feeding empirically measured prior expectations into production and interpretation
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models, we use production and interpretation data from suitable experimental tasks to infer plausible
values of θmany and θfew.

This approach effectively considers the contextually stable thresholds θmany and θfew as latent pa-
rameters: their values cannot be directly observed but must instead be reconstructed from observ-
able behavior. Bayesian inference is one way to do so. Given values for latent parameters, a proba-
bilistic model makes predictions about how likely certain observable choices in production and com-
prehension of relevant sentences are. In technical terms, the model specifies a likelihood function
P (observation | θmany, θfew) mapping values of latent parameters onto a probability of seeing a par-
ticular choice in a suitable experiment. We will use data from a production and a comprehension task
to infer, via Bayes rule, which values of the latent parameters are credible, given the likelihood function
and some prior over latent parameters:2

P (θmany, θfew | observation) ∝ P (θmany, θfew) P (observation | θmany, θfew) .

Our goal, then, is to see whether a single pair of threshold values θmany and θfew explains our empirical
data well enough. We focus on many in the exposition, but the case for few is parallel.

Our computational model consists of a production and a comprehension rule, both probabilistic. A
probabilistic production rule is a function that assigns a probability distribution over expressions or ut-
terances to any given meaning, while a probabilistic comprehension rule is the same in reverse, assigning
a probability distribution over meanings or interpretations for each possible utterance that needs to be
interpreted (e.g., Franke and Jäger 2016, Goodman and Frank 2016). Here, a production rule should
give us the probability PS(“many” | n, PE) with which a speaker, or speakers in general, would find the
sentence “Many As are B” applicable to n = |A ∩B | under prior expectation PE . A comprehension
rule should give us the probability PL(n | “many”, PE) with which a listener, or listeners in general,
would believe in interpretation n when they hear the relevant statement with many in a context where PE

captures the relevant statistical properties of the assumed comparison class.
A production rule that implements the CFK semantics in (8) is straightforward:3 PS(“many” |

n, PE ; θmany) = 1 if n ≥ xmin and otherwise 0, where xmin is derived from PE , as in (8), based
on θmany, which is a free parameter for this rule (indicated by writing it after a semicolon). This proba-
bilistic production rule is only a degenerate probabilistic rule: it only assigns the extreme values 0 and
1; it does not allow for slack, mistakes or other trembles. As such, it would not apply well to noisy
empirical data. So, instead of a step-function we look at a parameterized, smoothed-out version.

PS(“many” | n, PE ; θmany, σ) =

n∑
k=0

∫ k+0.5

k−0.5
N (y;xmin, σ)dy (1)

Here, σ is another free model parameter that regulates the steepness of the curve, andN (y;xmin, σ) is the
probability density of y under a normal distribution with mean xmin and standard deviation σ. Essentially,
this gives us a noisy implementation of speaker behavior under a CFK semantics where the amount of
noise is controlled by σ. Illustrations of this probabilistic production rule are shown in Figure 2a for the
example started in Figure 1. The degenerate, non-noisy production rule is the case of σ = 0.

The idea behind Equation (1) is this. Assume that a hypothetically true value of θmany exists. Then,
given a prior expectationPE over the contextually relevant domain, the CFK semantics in (8) gives a clear
cutoff for the minimum number xmin of, say, cups of coffee that some particular Andy must minimally
drink per week to license applicability of many in a sentence like (7). We should assume that speakers do
not know for sure the actual xmin that is entailed by θmany and PE , most likely because they do not know

2The notation “∝” for “proportional to” says that the expression on the right must yet be normalized. So, P (x) ∝ f(x) for
some function f is short for P (x) = f(x)∑

x′ f(x′) .
3We will here propose a relatively simple computational model. For instance, we will not consider genuine pragmatic

competition between alternative expressions. Other models are conceivable and may or may not give rise to similar conclusions
about the tenability of a CFK semantics. We believe that this is normal: testing an abstract hypothesis (like the CFK semantics)
alongside empirical data will require auxiliary assumptions about how the hypothesis relates to data observations (e.g., Quine
1951).

4



● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

x_min

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
n

sigma
● 0

2

4

probability of using "many": P_S("many" | n)

(a) Production rule examples

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

x_min

0.0

0.1

0.2

0.3

0 5 10 15 20 25
n

sigma
● 0

2

4

probability of interpretions of "many": P_L(n | "many")

(b) Comprehension rule examples

Figure 2: Illustration of production and comphrenension rules for the example from Figure 1

PE for certain, but that speakers nonetheless approximate it. More concretely, we assume that when a
speaker decides whether some n licenses many, she “samples”, so to speak, a noise-perturbed “subjective
threshold” x′min from a Gaussian distribution whose mean is xmin and whose standard deviation σ is a
free model parameter that captures speaker uncertainty (about θmany, PE , and perhaps other things). If
the sampled value is below n, the speaker finds many applicable to cardinality n; otherwise, she does not.
This gives us a probabilistic prediction of how likely a speaker would, on occasion, find many applicable
to n as a probabilistic function of θmany, PE and noise parameter σ.

A derivation of a reasonable probabilistic comprehension rule follows suit:

PL(n | “many”, PE ; θmany, σ) ∝ PE(n) · PS(“many” | n, PE ; θmany, σ) . (2)

This rule, which is illustrated in Figure 2b, can be motivated in two conceptually distinct ways that
yield the same mathematical result. For one, we can think of Equation (2) as an application of Bayes’
rule. Under this interpretation, the listener tries to infer likely world states based on a model of reverse
production by taking into account how likely each world state is and how likely the speaker would use the
observed many-statement in these states. But since the production rule in Equation (1) is just encoding
“noisy truth-conditions” (rather than a genuine pragmatic choice of which out of several alternatives to
use), the formulation in (2) also follows from the same considerations that motivated the production
rule in (1): the formula in (2) captures interpretation based on the CFK semantics, given (Gaussian)
uncertainty about threshold xmin.

4 Cardinal few and many

To test the CFK semantics through the lens of the computational model from the previous section we
need two types of empirical data. First, we need estimates of subjects’ prior expectations PE . Second,
we need data on how sentences with few and many are used and interpreted. This section presents three
experiments aimed to give us such data. All three experiments use the same 14 contexts about everyday
events, objects or people which all involve a quantity of some sort (see Appendix A for the full list of
test items). No subject participated in more than one experiment.

4.1 Experiment 1: Prior elicitation

Design. To get an empirical estimate of participants’ prior expectations, we used the binned histogram
task of Kao et al. (2014). Participants saw descriptions of a context as in (9a) and a question as in (9b).
Subjects were presented with 15 intervals, whose ranges were determined by a pre-test, and rated the
likelihood that the true value lies in each interval, by adjusting a slider labeled from “extremely unlikely”
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Figure 3: Empirically measured prior expectations. Error bars are estimated 95% confidence intervals.

to “extremely likely.” For example, they would adjust a slider each for the probability that Andy drank
0–1, 2–3, . . . , 26–27 or more than 28 cups of coffee last week.

(9) Prior elicitation example
a. BACKGROUND: Andy is a man from the US.
b. QUESTION: How many cups of coffee do you think Andy drank last week?

Participants. 80 subjects were recruited via Amazon’s Mechanical Turk with US-IP addresses.

Materials & Procedure. After initial instructions that explained the task, each subject saw all of the
14 contexts from Appendix A one after another. For each context, the 15 intervals were presented
horizontally on the screen in ascending order from left to right. On top of each interval was a vertical
slider. Participants had to adjust or at least click on each slider before being able to proceed.

Results. We excluded one participant for not being a self-reported native speaker of English. An-
other participant was excluded for blatantly uncooperative behavior because she had not adjusted any
slider. Participants’ ratings for each item were normalized and these normalized ratings were then av-
eraged across participants. The outcome is visualized in Figure 3. These probability distributions can
be conceived of as approximations to the central tendencies of the beliefs held within the population of
participants (Franke et al. 2016). This average measure of PE from Figure 3 will be input to the model.

4.2 Experiment 2: Judgment task as a production study

Design. In a binary judgment task we measured participants’ production behavior of few and many.
Participants were presented with a context which introduced a situation and an interval as in (10a). The
interval was randomly chosen from 8 of the 15 intervals from the prior elicitation task, for example 10-
12; see Appendix A. We presented only every other interval to avoid too large a number of combinations.
The context was described by a statement as in (10b) which contained either few or many. Participants
were asked to rate whether the statement is a good description of the context by clicking on TRUE or
FALSE.

(10) Production study example
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Figure 4: Proportion of TRUE answers from Experiment 2

a. CONTEXT: Andy is a man from the US who drank [2–3 | 6–7 | . . . | 26–27] cups of coffee
last week.

b. STATEMENT: Compared to other men from the US, Andy drank [few |many] cups of coffee.
c. QUESTION: Is this statement a good description of the context?

Participants. We recruited 301 participants with US-IP addresses via Amazon’s Mechanical Turk.

Materials & Procedure. After reading a short explanation of the task, each subject saw all of the 14
contexts from Appendix A one after another. For each context, one of 8 intervals and few or many were
assigned randomly. Participants had to click on one of two radio buttons labeled with TRUE or FALSE

before being able to proceed to the next item.

Results. Data was excluded of 9 participants who reported not to be native speakers of English. Fig-
ure 4 shows the proportion of TRUE answers. We want the production rule PS in Equation (1) to predict
the data from this experiment.

4.3 Experiment 3: Comprehension task

Design. To measure how participants interpret few and many in different contexts, we used a forced-
choice task. Participants saw descriptions of a context containing one of the quantifiers as in (11a) and a
question as in (11b). They were presented with all 15 intervals for the given context and were asked to
choose the interval that they thought is most likely given the background information.

(11) Comprehension task example
a. BACKGROUND: Andy is a man from the US who drank [few | many] cups of coffee last

week.
b. QUESTION: How many cups of coffee do you think Andy drank last week?
c. INTERVALS: 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25,

26-27, 28 or more

Participants. 200 subjects were recruited via Amazon’s Mechanical Turk with US-IP addresses.
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Figure 5: Proportions of interval choices from Experiment 3

Materials & Procedure. First participants read a short introduction that explained the task. Then
each subject saw all of the 14 contexts in a random order. For each context, the quantifier was selected
randomly and the 15 intervals were presented horizontally on the screen in ascending order from left to
right. Participants had to select one interval before being able to proceed.

Results. Data from two subjects who did not identify themselves as native speakers of English was
excluded. Figure 5 shows the proportions of interval choices. The comprehension rule PL in Equation (2)
is to predict the data from this experiment.

5 Model evaluation

As explained in Section 3, our goal is to learn about θmany and θfew from the observed experimental
data. To this end, we feed the empirically measured prior expectations PEi for each item i (see Figure 3)
into the production and comprehension rules in (1) and (2). This gives us likelihood functions for the
production and comprehension data as described presently. We only explicitly cover the case of many
wherever that for few is analogous.

Let Opm
ij be the number of true answers for item i and interval j in production experiments for many

and let Ocm
ij be the number of times interval j has been selected as the interpretation for the relevant

many-statement about item i in comprehension experiments. Let Npm
ij be the number of participants that

saw a production trial for many, item i and interval j. Likewise, N cm
i is the number of participants that

saw a comprehension trial for many and item i. Opf
ij , Ocf

ij , Npf
ij and N cf

i hold the same information for
conditions involving few. Finally, let Iij be the jth interval of numeric values for item i. Let | Iij | be
the length of interval Iij . The probabilistic rules from Section 3 then give us (parameterized) likelihood
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functions for observable data.

P (Opm
ij | θmanyi , σi) = Binomial

Opm
ij , N

pm
ij ,

∑
n∈Iij

PS(“many” | n, PEi ; θmanyi , σi)

| Iij |


P (Ocm

ij | θmanyi , σi) = Binomial

Ocm
ij , N

cm
i ,

∑
n∈Iij

PL(n | “many”, PEi ; θmanyi , σi)


Here, Binomial(k, n, p) is the probability of observing k instances of a coin coming up heads out of n
coin tosses when each toss has an (independent) chance p of coming up heads.

Using Bayes rule, we can therefore make inferences about credible parameter values given the data
that we observed.

P (θmanyi , θfewi , σi | Opm , Ocm , Opf , Ocf ) ∝ P (θmanyi , θfewi , σi) · (3)∏
j

P (Opm
ij | θmanyi , σi) · P (O

cm
ji | θmanyi , σi) · P (O

pf
ij | θfewi , σi) · P (O

cf
ji | θfewi , σi)

Two remarks. Firstly, we assume here that each item has its own σi, but that σi is the same for production
and comprehension, as well as for many and few. This is because we think of σi (and the vagueness it
brings) as mainly affected by uncertainty about the contextual distribution PEi . Secondly, the formula
above contains as a factor the joint prior probability P (θmanyi , θfewi , σi) of parameter values θmanyi , θfewi

and σi for each item i. Here, we simply assume that θmanyi , θfewi and σi are independent of each other
and that they have uniform priors over a large-enough interval of a priori plausible values.

P (θmanyi , θfewi , σi) = Uniform[0;1](θmanyi) · Uniform[0;1](θfewi) · Uniform[0;10](σi)

To approximate the joint posterior distribution defined in (3), we used MCMC sampling, as imple-
mented in JAGS (Plummer 2003). We collected 10,000 samples from 2 MCMC chains after a burn-in
of 10,000. This ensured convergence, as measured by R̂ (Gelman and Rubin 1992). Figure 6 shows the
estimated 95% credible intervals for the marginalized posteriors over θmanyi and θfewi for all items.4

If for all i the credible intervals for θmanyi in Figure 6 overlapped, and likewise for θfewi , then this
would very clearly speak in favor of a CFK semantics. Unfortunately, such clear evidence is not forth-
coming. For many, 13 of the 14 items’ credible intervals overlap in [0.687 , 0.699]. For few, 12 of the 14
items’ credible intervals overlap in [0.148 , 0.151]. This is close to uniformity, but there are exceptions:
“movies watched per year” for many as well as “students in class” and “facebook friends” for few. In
effect, we do not see clear evidence in favor of a uniform CFK semantics, but we also do not see clear
evidence against it.

Another possibility of assessing the idea of a uniform CFK semantics is to compare different models.
The approach in (3) assumes that each item i has its own semantic threshold values θmanyi and θfewi . Let
us call it the Individual Threshold Model (ITM). We can compare the ITM with the outcome of a model
that allows for only one θmany and one θfew, call this the General Threshold Model (GTM). Its posterior
is defined as follows:

P (θmany, θfew, σi | Opm , Ocm , Opf , Ocf ) ∝ P (θmany, θfew, σi) ·∏
j

P (Opm
ij | θmany, σi) · P (Ocm

ji | θmany, σi) · P (O
pf
ij | θfew, σi) · P (O

cf
ji | θfew, σi) .

It is also possible to use information from either only the production or the comprehension data to make
inferences about latent thresholds. We will make use of that possibility too in order to see whether

4A 95% credible interval is, intuitively put, an interval of values that are sufficiently plausible to warrant belief in (see
Kruschke 2014). For example, a 95% credible interval for θmanyi of [0.6; 0.8] for some item i would tell us that, given the data
used to condition the inference, we should be reasonably certain that the true value of θmanyi is in [0.6; 0.8].
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Figure 6: 95% HDIs of the estimated posteriors for thresholds for different contexts i. The horizontal
lines give the biggest interval in which most contexts’ HDIs overlap.

a uniform CFK semantics might work well for production or comprehension only. For example, an
inference about likely item-specific thresholds based on production data only would use the posterior
distribution given by:

P (θmanyi , θfewi , σi | Opm , Opf ) ∝ P (θmany, θfew, σi) ·
∏
j

P (Opm
ij | θmany, σi) · P (O

pf
ij | θfew, σi) .

The question we are interested in is then: which model is better suited to explain the data? This
question can be addressed by statistical model comparison. There are different measures for model
comparison, all based on different purposes and reasons for preferring one model over another (Vehtari
and Ojanen 2012). Given our modest theoretical purposes here, we use an approach that is easy to
compute based on the output of our MCMC sampling results, the so-called deviance information criterion
(DIC) (Spiegelhalter et al. 2002, Plummer 2008). The DIC may be conceived of as a Bayesian cousin of
classical model-choice criteria, in particular Akaike’s information criterion (AIC). Like the AIC, the DIC
weighs goodness of fit (here: the likelihood of the data given the model “trained” on the data) against
the model’s complexity (here: the number of its effective free parameters). Where the AIC looks at a
maximum likelihood fit for the model’s free parameters, the DIC consider the full posterior distribution
over these, given the data. A high value of the DIC indicates a lot of deviance of the model’s predictions
from the data it is applied to. This is undesirable, of course. At the same time, the model should stay
as concise as possible and not include unnecessary parameters. This is measured by the pD, the number
of effective free parameters, a measure of model complexity. Higher values of pD suggest higher model
complexity.

Table 1 gives estimated DICs for the GTM and the ITM, based only on production data, based only
on comprehension data and based on both data sets at once. We see that the GTM is roughly equal to, if
not better than the ITM based on the production data only. It is a bit worse based on interpretation data
and both data sets combined. Still, both models are clearly in the same ballpark. What the GTM misses
in terms of goodness of fit, it makes up in terms of reduced model complexity. Based on our data alone,
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data used

model production interpretation both

GTM DIC = 4191.6, pD = 16.0 DIC = 2239.6, pD = 17.0 DIC = 6546.7, pD = 16.5
ITM DIC = 4196.0, pD = 37.9 DIC = 2182.4, pD = 46.1 DIC = 6529.5, pD = 40.2

Table 1: Estimated DIC values and effective free parameters

there is no clear reason to prefer either model in terms of DICs. That means that there is no reason,
provided by our data, to reject the “null assumption” that a single θmany and a single θfew governs the use
of many and few. The alternative model ITM did not do any better.

What is more, the ITM allows no possibility to generalize beyond the 14 items used here. Put
differently, the ITM would assume that θmany would be anywhere between 0 and 1 (its prior) for a
context which was not part of the data used to condition it on. The GTM would be able to use its
posterior distribution for θmany. The utter lack of generalizability in ITM speaks, at least conceptually, in
favor of GTM. Whether this is an empirical advantage would have to be tested. Given the data at hand
and the fact that the ITM is not obviously better for this data set, there is no good reason to dismiss the
hypothesis that a single pair of fixed thresholds θmany and θfew may have generated the production and
interpretation data that we have seen.

6 Discussion and Conclusion

This paper tried to make a methodological contribution, exemplifying a potential use of data-driven com-
putational modeling in formal semantics/pragmatics. By measuring subjects’ prior expectations about
real-world events experimentally, we set out to test a proposal for a semantics of few and many that
is hard to assess introspectively. We showed how to couch the CFK semantics for few and many in a
probabilistic model for production and comprehension. With the help of this model, we inferred a pos-
teriori credible values for latent threshold parameters θmany and θfew from experimental data that aimed
to measure production and comprehension behavior. Posterior credible values of individual threshold
parameters θmanyi and θfewi for different experimental items i are very similar, with overlap in the 95%
HDIs of almost all items. Moreover, statistical model comparison in terms of DICs does not favor a
model with individual thresholds for each item over a more parsimonious model that assumes only one
fixed threshold for many and one for few. The question whether a fixed threshold CFK semantics is
plausible can be answered positively, at least for the data set at hand.

The benefits of theoretically informed statistical modeling of this kind are many. The computational
model makes explicit all modeling assumption including any link hypotheses regarding how theoretical
notions relate to each other in producing the observable data (e.g. Chemla and Singh 2014, Franke 2016).
The model considered here, for instance, assumes that the production and comprehension data are only
driven by considerations of truth. In other words, the model assumes that participants in, say, Experi-
ment 3 would not reason about what other expressions a speaker may have used other than many or other
than few. This is a stark simplification. The benefit of probabilistic modeling is not only in bringing
these assumptions and simplification to the fore, but in providing direct means of testing whether they
are correct or, by means of model comparison, which link hypotheses may actually be better suited to
explain the data.

The methodological approach introduced here opens a number of interesting venues for future re-
search. Firstly, inference of latent thresholds could naturally be applied beyond our example case of few
and many. Context-dependent threshold values are also assumed to form part of the semantics of grad-
able adjectives (Kennedy and McNally 2005, Kennedy 2007) and of other vague quantifiers like most
(Hackl 2009). Computational models in combination with experimental data put themselves forward as
a promising method to investigate these phenomena within a uniform framework.

Secondly, we can use probabilistic modeling to compare the CFK semantics against alternatives. For
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example, a different account for the meaning of few and many was proposed by Solt (2011). Here, the
threshold is derived as a positive or negative deviation from the median of the comparison class. This
theory can just as well be couched in a probabilistic model and its predictions can then be compared
against the CFK semantics, using statistical model comparison.

Thirdly, as mentioned briefly in Section 2, it is an open issue whether a CFK semantics, as formulated
here, can also account for other readings of many and few. Fernando and Kamp (1996) apply a similar
idea also to proportional readings. But there may be even more potential readings of few and many, such
as the inverse proportional reading of (12) that would make the sentences true if the proportion of Scan-
dinavians among Nobel prize winners was bigger than the proportion of people from other contextually
salient alternative world regions who won a Nobel prize (c.f. Westerståhl 1985, Eckardt 1999, Cohen
2001, Romero 2015).

(12) Many SCANDINAVIANS won the Nobel prize.

(13) Inverse proportional reading of “Few/Many As are B”

a. Few: |A∩B||A| ≤
|
⋃

Alt(A)∩B|
|
⋃

Alt(A)| b. Many: |A∩B||A| ≥
|
⋃

Alt(A)∩B|
|
⋃

Alt(A)|

It could be hypothesize that it is just be a matter of specifying the right PE to account for these cases
as well within a CFK-approach. For the inverse proportional reading of (12) in (13) we would need
to consult the cumulative probability of the actual number of Scandinavians with a Nobel prize to an
expectation PE that takes, presumably, the average number of Nobel laureates in the set of all relevant
world regions. It would need to be seen how far the CFK-approach can be pushed in this direction (c.f.
Fernando and Kamp 1996). Still, data-driven computational modeling seems like just the right tool to
help in this investigation.

Finally, it would be interesting to not only infer plausible threshold values but to try to explain
why we see the threshold values that we apparently see. Focusing on the case of gradable adjectives,
Lassiter and Goodman (2015) give a model that suggests that threshold values are the result of pragmatic
inferences; another approach tries to explain why particular threshold values as evolutionarily optimal
for successful communication (Franke 2012, Qing and Franke 2014). Testing these theoretical accounts
with data-driven inferences of credible thresholds and applying statistical model comparison would be a
natural next step.

A Experimental material
1. book — A friends favorite book has been published only recently (and has few/many pages). — How many pages do

you think the book has? — intervals: 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280, 281-320, 321-360,
361-400, 401-440, 441-480, 481-520, 521-560, 560 or more

2. bus — Vehicle No. 102 is a school bus (which has seats for few/many passengers). — How many passengers do you
think can sit in Vehicle No. 102? — intervals: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-59, 60-64, 65-69, 70 or more

3. calls — Lisa is a woman from the US (who made few/many phone calls last week). — How many phone calls do
you think Lisa made last week? — intervals: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-59, 60-64, 65-69, 70 or more

4. class — Erin is a first grade student in primary school. (There are few/many children in Erins class.) — How many
children do you think are in Erins class? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29,
30-32, 33-35, 36-38, 39-41, 42 or more

5. coffee — Andy is man from the US (who drank few/many cups of coffee last week). — How many cups of coffee do
you think Andy drank last week? — intervals: 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23,
24-25, 26-27, 28 or more

6. cook — Tony is a man from the US (who cooked himself few/many meals at home last month). — How many meals
do you think Tony cooked himself at home last month? — intervals: 0-3, 4-7, 8-11, 12-15, 16-19, 20-23, 24-27, 28-31,
32-35, 36-39, 40-43, 44-47, 48-51, 52-55, 56 or more

7. facebook — Judith is a woman from the US (who has few/many Facebook friends). — How many Facebook friends
do you think Judith has? — intervals: 0-69, 70-139, 140-209, 210-279, 280-349, 350-419, 420-489, 490-559, 560-629,
630-699, 700-769, 770-839, 840-909, 910-979, 980 or more
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8. friends — Lelia is a woman from the US (who has few/many friends). — How many friends do you think Lelia has?
— intervals: 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27, 28 or more

9. hair — Betty is a woman from the US (who washed her hair few/many times last month). — How many times do you
think Betty washed her hair last month? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29,
30-32, 33-35, 36-38, 39-41, 42 or more

10. movie — Nick is a man from the US (who saw few/many movies last year). — How many movies do you think Nick
saw last year? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38, 39-41,
42 or more

11. poem — A friend wants to read you her favorite poem (which has few/many lines). — How many lines do you think
the poem has? — intervals: 0-3, 4-7, 8-11, 12-15, 16-19, 20-23, 24-27, 28-31, 32-35, 36-39, 40-43, 44-47, 48-51,
52-55, 56 or more

12. restaurants — Sarah is a woman from the US (who went to few/many restaurants last year). — To how many
restaurants do you think Sarah went last year? — intervals: 0-3, 4-7, 8-11, 12-15, 16-19, 20-23, 24-27, 28-31, 32-35,
36-39, 40-43, 44-47, 48-51, 52-55, 56 or more

13. shoes — Melanie is a woman from the US (who owns few/many pairs of shoes). — How many pairs of shoes do you
think Melanie owns? — intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38,
39-41, 42 or more

14. tshirts — Liam is a man from the US (who has few/many T-shirts). — How many T-shirts do you think Liam has? —
intervals: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-38, 39-41, 42 or more
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