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My research area of study is commutative algebra (i.e. the study of ideals and
modules over commutative rings). I have an energetic and wide-ranging research
program, with many collaborators representing several distinct research projects.
My methods include prime characteristic, homological, and non-commutative alge-
bra. My work has close connections with algebraic geometry, combinatorics, and
even complex-valued continuous functions. I hope to continue many of my ex-
tant projects in the future, as well as develop new directions at my next place of
employment.
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1. Continuous closure, axes closure, and natural closure: compare,
contrast

Consider the following definition by H. Brenner.

Definition 1.1. [Bre06] Let P := C[x1, . . . , xn], J an ideal of P , and R := P/J .
Let X := {p ∈ Cn | g(p) = 0 for all g ∈ J} be the corresponding algebraic set,
and let I be an ideal of R. The continuous closure Icont of I is the set of elements
g ∈ R that can be written as linear combinations of elements of I with coefficients
from the ring of C-valued continuous (in the Euclidean topology) functions on X.
That is, if I = (f1, . . . , fk), then g ∈ Icont if there exist continuous functions
φ1, . . . , φk : X → C such that

g =
k∑

i=1

φifi.
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This yields an ideal that is sometimes larger than the original ideal. For example,
when R = C[x, y] and I = (x3, y3), one has x2y2 ∈ Icont. To see this, note that the
functions αj : C2 \ {0} → C given by

α1(x, y) :=
x2y2x̄3

|x|6 + |y|6
and α2(x, y) :=

x2y2ȳ3

|x|6 + |y|6

(where ¯ denotes complex conjugation) satisfy the property

lim
(x,y)→(0,0)

αj(x, y) = 0.

Thus, the maps α̃j : C2 → C, defined by

α̃j(x, y) =

{
αj(x, y) if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

are continuous, and x2y2 = α̃1 · x3 + α̃2 · y3 as maps from C2 → C.
Brenner also introduced the notion of axes closure Iax in such a ring R. Namely,

let Yn be the union of the n complex coordinate axes in Cn (i.e. the set of n-tuples
with at most one nonzero coordinate), and let An := C[x1, . . . , xn]/(xixj | 1 ≤ i <
j ≤ n) be its coordinate ring; then the axes closure of I := (f1, . . . , fk) is the set
of all elements g ∈ R such that for all n ≥ 1 and all ring maps ψ : R → An, there
exist a1, . . . , ak ∈ An such that

ψ(g) =
k∑

i=1

aiψ(fi).

He showed that Iax always contains Icont, and he raised the question of whether they
coincide, showing that they do so for monomial ideals primary to the homogeneous
maximal ideal in polynomial rings over C.

In joint work with Melvin Hochster [10], we extend axes closure to general Noe-
therian rings and define natural closure I\ for ideals in any Noetherian ring, in
such a way that one always has I\ ⊆ Iax, and in rings where continuous closure is
defined we show that I\ ⊆ Icont ⊆ Iax. Here is a sample of our results concerning
their equality:

Theorem 1.2. Let R be a quotient of a polynomial ring over C, and I an ideal.
(1) If R is a locally factorial domain of dimension at most 2, then Icont = Iax.

[10, Theorem 8.5]
(2) If R is a polynomial ring over C and I is a monomial ideal, then I\ = Icont.

[10, Theorem 10.3]
(3) If I has no embedded primes, then I = I\ iff I = Iax iff I = Icont. [10,

Corollary 7.14] Hence if dimR/I = 0, then I\ = Iax = Icont. [10, Corollary
7.15]

However, there is a monomial ideal I in the ring R = C[x, y, z] such that Icont 6= Iax

(thus providing a negative answer to Brenner’s question) [10, Example 9.2]. There
are also examples where I\ 6= Icont.

Here are the examples we give to show that I\, Icont, and Iax are distinct:

Example 1.3. Consider the polynomial map γ : C2 → C4 given by γ(a, b) :=
(a3, a2, ab, b). Let X := im γ; then R := C[a3, a2, ab, b] is its coordinate ring.
Consider the ideal I := bR of R. In the Euclidean topology, γ is a homeomorphism
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onto its image. Hence, a is a continuous function on X, which shows that ab =
a · b ∈ (bR)cont. On the other hand, we show that ab /∈ (bR)\.

Example 1.4. Let R := C[x, y, z] (the coordinate ring of complex 3-space), and
I := (y2, z2, x2yz). Then xyz ∈ Iax because of the limited structure of axes rings.
However, if xyz ∈ Icont, then after specialization (i.e. setting x = λ for particular
values of λ ∈ C) it would follow that yz ∈ (y2, z2)cont (that is, yz = y2F + z2G for
continuous functions F and G) on a neighborhood of the origin in C2. But then
taking limits as (y, z) → (0, 0) along the lines y = z and y = −z respectively, one
obtains the contradiction that 1 = F (0, 0) +G(0, 0) = −1.

Along the way, we show that if R is a polynomial ring over C (so that X = Cn)
and f ∈ R has the property that it vanishes at all the points where its first partial
derivatives all vanish, then it is a continuous linear combination of its first partial
derivatives. That is, f is in the continuous closure of its Jacobian ideal.

Many additional research projects may be based on our work. This last result
in particular provides a good project for a student, even one whose background in
commutative algebra is minimal. Namely, investigate (algebraically, geometrically,
and/or analytically) the property of a function being in the continuous closure of
its Jacobian ideal.

Inspired by our work and that of Brenner, Kollár [Kol10] has worked out an
algebraic-geometric description of continuous closure in many important cases. See
also [FK11].

2. A version of tight closure that commutes with localization

Tight closure is an operation primarily on rings of prime characteristic (also
defined in equal characteristic 0), introduced in a seminal article by Hochster and
Huneke [HH90]. In the beginning, it was used in providing surprisingly simple
proofs (and interesting extensions) of theorems in apparently disparate areas of
commutative algebra, including the Briançon-Skoda theorem and the homologi-
cal conjectures. Later on, striking connections were found between test ideals in
characteristic p (ideals of elements that kill the tight closures of all ideals ) and
multiplier ideals (a concept arising in complex analysis and in resolution of sin-
gularities). Indeed, tight closure theory has established itself as a central topic of
interest in commutative algebra.

For twenty years, an open question in tight closure theory was whether tight
closure commuted with localization in finitely generated algebras over locally ex-
cellent equicharacteristic Noetherian rings, a central property for operations with
geometric content. The surprising answer of “no” by Brenner and Monsky [BM10]
raises the question of whether there is a tight closure-like operation that does com-
mute with localization. In joint work with Melvin Hochster [11], we provide such
a theory. We define the homogeneous tight closure I∗h of an ideal and show the
following:

Theorem 2.1. Let R be an excellent Noetherian ring of equal characteristic. Then
for any ideal I and any multiplicative subset W of R, (W−1I)∗h = W−1(I∗h).

This confirms that homogeneous tight closure does not always coincide with
ordinary tight closure. In general it is smaller. However, we give a number of
important cases where tight closure does coincide with homogeneous tight closure,



4 NEIL EPSTEIN

which in turn provide insight into past localization (and non-localization) results
in tight closure theory:

Theorem 2.2. Let R be an excellent Noetherian ring which is either of prime
characteristic p > 0 or of equal characteristic 0.

(1) If I is a parameter ideal (or more generally, if R/I has finite phantom
projective dimension as an R-module), then I∗ = I∗h.

(2) If R is a finitely generated and positively-graded k-algebra, where k is an
algebraic extension of Fp or of Q, and I is an ideal generated by forms of
positive degree, then I∗ = I∗h.

(3) If R is a binomial ring over any field k (that is, R = k[X1, . . . , Xn]/J ,
where the Xj are indeterminates and J is generated by polynomials with at
most two terms each), then for any ideal I of R, I∗ = I∗h.

Moreover, homogeneous tight closure is very much like ordinary tight closure.
Indeed, we show that homogeneous tight closure captures colons and contractions
from finite extensions, yields a Briançon-Skoda theorem, is trivial in regular rings,
and may be tested by maps to complete local domains.

If all ideals in an excellent equicharacteristic local ring R are tightly closed, does
the same property hold for all its localizations? This question has been open for over
two decades, to the great consternation of many researchers. To give an affirmative
answer, it would be enough to show that the tight closure of any m-primary ideal
equals its homogeneous tight closure.

3. Reductions, spreads, and special parts of closures

My innovations in this area have caused a change in the way that some people
think about tight closure, and to some extent about closure operations (see below)
in general. Indeed at least five papers in which I was not involved ([Vra06, Vra08,
Vra10, FV10, FVV11]) have used this work.

Let (R,m) be a Noetherian local ring. In [NR54], Northcott and Rees introduce
the idea of a (minimal) reduction of an ideal. Namely, if J ⊆ I are ideals, J is
a reduction of I if JIn = In+1 for some n (equivalently, J and I have the same
integral closure, that is, J− = I−). A minimal reduction is then a reduction that
is minimal with respect to inclusion. Cleverly using the Nakayama lemma, they
show that any reduction of I contains a minimal reduction of I, and by use of an
auxillary ring they show that if R/m is infinite, then all minimal reductions of an
ideal I have the same size minimal generating set, the analytic spread, denoted `(I).

In [4], I generalize these notions to an arbitrary closure operation1 c. Namely,
J ⊆ I is a (minimal) c-reduction if Jc = Ic (resp. if J is minimal with respect to this
property), and if all minimal c-reductions have the same size minimal generating
set, I call this the c-spread `c(I) of I. Not all closure operations c admit minimal
reductions (e.g. c=radical does not). However, Nakayama closures do. I define a
closure c on a local ring (R,m) to be Nakayama if whenever J , I are ideals such
that J ⊆ I ⊆ (J + mI)c, it follows that Ic = Jc. With this tool, we have the
following:

1A closure operation c is a set map on the ideals of R such that I ⊆ Ic = (Ic)c for all I,

and such that whenever J ⊆ I we have Jc ⊆ Ic. Examples include tight closure, integral closure,
continuous closure, axes closure, natural closure, the radical, and homogeneous tight closure. For

an overview, see my recent survey article [9], also available on arXiv.
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Theorem 3.1. Let (R,m) be a Noetherian local ring.
(1) Suppose c is a Nakayama closure. Then for any ideal I, any c-reduction of

I contains a minimal c-reduction of I. [4]
(2) Under mild hypotheses, Frobenius closure [7], tight closure [4], and plus

closure [3] are Nakayama closures; hence they admit minimal reductions as
in (1).

As for c-spread, I show among other things the following:

Theorem 3.2. Let (R,m) be a complete Noetherian local domain of prime char-
acteristic p. Then `F (I), `+(I) and `∗(I) are well-defined for every ideal I of R.

To show this, instead of using an auxillary ring, I use Vraciu’s theory [Vra02,
HV03] of special tight closure (expanding it to the more general notion of special
parts of closures to deal with the Frobenius- and plus-closure cases in [7] and [3]
respectively) to show that the minimal generating sets of the minimal c-reductions
of an ideal I (where c = F , +, or ∗) form a matroid, and hence are equicardinal.
This led to the paper [1] with Joseph Brennan discussed in §9.

In [16], Adela Vraciu and I give a numerical limit to express the ∗-spread of an
ideal in a normal ring with perfect residue field. Surprisingly, when the ideal is
m-primary, this number can be expressed entirely in terms of Hilbert-Kunz multi-
plicities!

Vraciu uses these theorems in [Vra06] to show that if J ⊆ I are tightly closed
ideals in a normal ring, there is an intervening ideal I ′ such that λ(I/I ′) = 1; in
particular when J , I are m-primary, she can construct a finite filtration consisting
of tightly closed ideals with constrained colengths. In [Vra08] and [Vra10], a new
version of a-tight closure is defined and many properties are developed, using ∗-
spread and the Nakayama property of tight closure.

Let c be a Nakayama closure. In [FV10], Fouli and Vassilev define the c-core of
an ideal I as the intersection of all minimal c-reductions of I. They show among
other things that `∗(I) generic elements of any given lift of I/mI will generate a
minimal ∗-reduction of I. Then in [FVV11] with Vraciu, they give a formula for
the ∗-core in a number of important cases.

In recent work with Holger Brenner [2], we investigate special parts of closures
from the viewpoint of forcing algebras.

4. Flatness and injectivity

The most important classes of modules, homologically speaking, are flat, in-
jective, and projective modules. In joint work with Yongwei Yao [17], we take a
number of criteria that were generally known to be implied by flatness (resp. in-
jectivity), and show that they in fact characterize flatness (resp. injectivity) of a
module over a Noetherian (reduced) ring. The criteria for flatness are useful even
when trying to show that a given finitely generated module over a local ring is free.
As a sample,

Theorem 4.1. [17, from Theorem 2.3] Let R be a reduced Noetherian ring, and M
an R-module. The following are equivalent.

(1) M is flat.
(2) Ass(L⊗R M) ⊆ AssR L for every R-module L.
(3) P ⊗R M is torsion-free for every P ∈ SpecR.
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We use our methods to give a criterion for regularity of Noetherian rings of prime
characteristic p (or any ring with a locally contracting endomorphism, the theory
of which we develop in the article). Namely,

Theorem 4.2. [17, from Theorem 3.10] Let R be a Noetherian ring of prime
characteristic p > 0. Let eR denote the left R-module given by restriction of scalars
via the ring map r 7→ rpe

. Let F e(−) be the usual Peskine-Szpiro functor [PS73]
of tensoring with the action of the Frobenius homomorphism. The following are
equivalent.2

(1) R is regular.
(2) eR is flat as a left R-module for all e > 0.
(3) ∃e > 0 such that F e(m) is torsion-free for every maximal ideal m of R.

Note that our methods involve such commutative algebra notions as torsion-
freeness and associated primes, which would seem not strong enough to characterize
flatness. Dually, we use the notions of divisibility and coassociated primes to char-
acterize injectivity, and we prove and make use of a local criterion for injectivity
(dual to Grothendieck’s local criterion for flatness).

In a future project, we hope to extend our results to non-Noetherian rings.

5. Phantom homology

Ian Aberbach [Abe94] invented the notion of phantom M -regular sequences and
phantom depth (analogues of M -regular sequences and depth, respectively) to go
along with Hochster and Huneke’s notion (c.f. the monograph [HH93]) of stable
phantom exactness. Aberbach proved a “phantom Auslander-Buchsbaum” theo-
rem, and the three of them together [AHH93] used this theory to get some of the
best results to date on the then-unsolved problem of whether tight closure always
commutes with localization. However, foundational questions on phantom depth
remained: For example, do all maximal phantom M -regular sequence have the same
length? Does phantom depth behave well along a flat local homomorphism with a
good closed fiber?

In [6], I show that the answer to the first question is “yes” by coming up with
alternate characterizations of phantom M -regular sequences and phantom depth.
In [5], I built on these observations to prove the following theorem, answering the
second question.

Theorem 5.1. Let φ : (R,m) → (S, n) be a flat local homomorphism of excellent
Noetherian local rings of prime characteristic such that R is complete or contains
an uncountable field. Suppose that R and S share a weak test element (e.g. if φ
is smooth) and that S/mS is Cohen-Macaulay and F -injective. Then for any finite
R-module M ,

ph.depthRM + depthS/mS = ph.depthS(S ⊗R M).

Hence, ph.depthRM = ph.depthR̂M̂ .

These ideas can be seen in terms of the notion of almost ring theory (a concept
originally due to Faltings [Fal88] and used in Paul Roberts’ work, for instance
[Rob08, Rob10]). A good project would be to make this connection explicit.

2Special cases of the equivalence (1) ⇐⇒ (2) are due to Kunz [Kun69], so the point is really
that (3) is also strong enough to imply regularity.
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6. Hilbert-Kunz multiplicity and generalizations

One of the most important tools of characteristic p algebra precedes tight closure
theory – namely, that of the Hilbert-Kunz multiplicity (shown to exist as a real
number in [Mon83] for all m-primary ideals). However, it is extremely useful in
tight closure theory. If (R,m) is an excellent quasi-unmixed Noetherian local ring
of prime characteristic and J ⊆ I are m-primary ideals, then J∗ = I∗ if and only
if eHK(J) = eHK(I). In other words, the Hilbert-Kunz multiplicity is a numerical
measure of whether J is a ∗-reduction of I (see §3). Ideas from the theory of
Hilbert Kunz multiplicities were used in Brenner and Monsky’s counterexample
[BM10] showing that tight closure does not commute with localization.

But what about non-m-primary ideals? Is there a numerical criterion in the
general case? Using the fact that tight closure is a Nakayama closure, Yongwei
Yao and I show [18] that there is such a numerical criterion – namely, given two
arbitrary ideals J ⊆ I, we give a number that is as computable as the Hilbert-Kunz
multiplicity itself, and is zero precisely when J∗ = I∗ [18, §6]. However, we explore
a number of more fine-grained measurements of the ideals as well, showing that
some of them also characterize when two ideals have the same tight closure in some
important cases (and in any case we get a one-way implication). For instance, given
an arbitrary pair J ⊆ I of nested ideals in a local ring (R,m), we define an invariant
u−(J, I) (the relative multiplicity), such that the following holds:

Theorem 6.1. Let R be a Noetherian ring of characteristic p such that R̂p is
equidimensional for all p ∈ SpecR. Let J ⊆ I be a nested pair of ideals.

(1) If u−(Jp, Ip) = 0 for all p ∈ SpecR, then I ⊆ J∗. [18, from Theorem 2.4]
(2) Conversely, suppose that I ⊆ J∗ and that either

• J has finite projective dimension and no embedded primes, or
• R has finite F -representation type, or
• a certain module over a certain non-commutative ring derived from R,
I, and J is finitely generated.

then u−(Jp, Ip) = 0 for all p ∈ SpecR. [18, Proposition 3.1 and Theorems
3.4 and 3.5]

We also give other non-trivial cases [18, §4] where a converse to (1) holds.
In another direction, for an ideal I, we define the so-called unmixed Hilbert-Kunz

multiplicity of I [19] in such a way that if J ⊆ I, we have eun(J) = eun(I) if and
only if J and I have the same tight closure “up to unmixedness” – that is iff for all
top dimensional associated primes p of I, we have (Ip)∗ = (Jp)∗. We extend this
moreover to a notion of the Hilbert-Kunz multiplicity of a triple of R-modules.

On the other hand, many questions about ordinary Hilbert-Kunz multiplicity
of m-primary ideals are still unanswered. For instance, given m-primary ideals J
and I, what can one say about eHK(IJ) in terms of eHK(J) and eHK(I)? What
can one say about tight closure containments between I and J when there is no
containment between I and J? In joint work with Javid Validashti [15], we give
some surprising answers to these questions. Here is a sample of what we prove:

Theorem 6.2. Let (R,m) be an excellent quasi-unmixed Noetherian local ring of
prime characteristic, and let J , I be m-primary ideals. Then

(1) eHK(IJ) ≤ `∗(J)eHK(I) + eHK(J).
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(2) Suppose `∗(J) ≥ 2 (which holds e.g. if dimR ≥ 2) and equality holds in
part (1). Then J ⊆ I∗.

(3) If J∗ = a∗ for some parameter ideal a, then

eHK(IJ) ≥ `∗(J)eHK(I + J) + eHK(J).

(4) Hence, if J has the same tight closure as a parameter ideal and dimR ≥ 2,
equality holds in part (1) if and only if J ⊆ I∗.

7. Liftable integral closure

In joint work with Bernd Ulrich [14], we define a new closure operation on sub-
modules, called liftable integral closure which agrees with ordinary integral closure
of ideals and of submodules of finitely generated free modules, but in general is
smaller than ordinary integral closure3. Using this tool, we investigate the prop-
erties of an “integral closure test ideal” τI :=

⋂
ideals I(I : I−). We obtain the

following partial classification theorem.

Theorem 7.1. Let (R,m) be a Noetherian local ring.
(1) If dimR = 0, then τI = ann m.
(2) Suppose dimR = 1 and R/m is infinite. Then R is Cohen-Macaulay if and

only if τI is the conductor of R.
(3) Suppose dimR ≥ 2 and R is excellent and equidimensional with no embed-

ded primes. Then τI = 0.

A consequence of our work is that for rings like those in part (3), any finite
length module may be represented as a quotient of torsionless modules with the
same integral closure. That is:

Theorem 7.2. Let R be a Noetherian local ring of dimension at least 2, whose
completion is equidimensional with no embedded primes, and let A be an finite
length R-module. Then there are finitely generated R-modules L ⊆ M ⊆ F such
that F is free, M is integral over L, and A ∼= M/L.

This raises the very interesting question of what other sorts of modules lend
themselves to being quotients of integrally dependent modules. We hope to answer
this in future work.

We also provide an alternate strategy toward solving the homological conjectures,
via the work of Dietz [Die10].

8. Tight interior

One of the most important notions in tight closure theory is the notion of a test
ideal, and duality is of course an important concept in all of mathematics. In joint
work with Karl Schwede [13], we take the approach that test ideals are somehow
dual to tight closure, and make it explicit in a flexible framework. That is, we
define the tight interior M∗R (or M∗ when the ring is clear from context) of any
R-module M in such a way that the tight interior of R itself is the (big) test ideal.
Then we show that tight interior is dual to tight closure in three different senses
– in terms of Matlis duality, annihilation, and in terms of the duality of sum and
intersection. By dualizing statements in tight closure theory we obtain sometimes

3For the usual notion of integral closure of a submodule, see [EHU03] or [HS06, chapter 16].
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surprising correspondences (and explanations and generalizations of known theo-
rems) about test ideals. On the other hand, statements about test ideals can be
seen as statements about R∗R that can be generalized to statements about M∗R for
general M . We avoid the machinery of tight closure itself, emphasizing the point
of view that tight interior appears to be a more fundamental operation, at least in
the F -finite reduced case. Here is a sample of some important properties.

Theorem 8.1. Let R be a prime characteristic F -finite reduced Noetherian ring,
and M an arbitrary R-module.

(1) (M∗)∗ = M∗
(2) For any multiplicative set W , we have (M∗R)W = (MW )∗RW

.
(3) If R is local, R̂⊗R M∗R ∼= (R̂⊗R M)∗R̂.
(4) Let p1, . . . , pn be the minimal primes of R. Then M∗R =

∑n
i=1(0 :M

pi)∗(R/pi), thus allowing us to reduce to the domain case.
(5) Let R→ S be a ring homomorphism such that Sred is F -finite. Then if ε :

HomR(S,M)→M is the natural map, we have ε(HomR(S,M)∗S) ⊆M∗R.

Since the tight interior of the ring is the big test ideal, our work yields results for
test ideals and suggests avenues to explore test ideals further. For instance, part
(4) of the above theorem suggests (and implies part of) the following.

Theorem 8.2. Let R be a prime characteristic F -finite reduced Noetherian ring.
Let p1, . . . , pn be the minimal primes of R.

(1) τb(R) (resp. τ(R)) ⊆
∑n

i=1(0 : pi), with equality if each R/pi is strongly
(resp. weakly) F -regular.

(2) If the normalization of R is strongly F -regular, then C(R) = τ(R) = τb(R),
where C(R) is the conductor of R.

We also obtain a dual to the theory of phantom homology. Moreover, our frame-
work also provides an explicit construction in many cases for the test submodules
of Blickle [Bli09].

This work is wide open to further development and research projects, as it puts
test ideals into a whole new framework as a special case of an interior operation.

9. Generic matroids

A matroid is a set E along with a nonempty collection B of finite subsets of E
(called its bases) such that for all distinct pairs B,B′ ∈ B and elements b ∈ B, we
have B * B′ and there exists b′ ∈ B′ such that (B \ {b}) ∪ {b′} ∈ B. Examples
include edge sets of finite graphs with spanning forests, finite-dimensional vector
spaces along with their bases, and field extensions of finite transcendence degree
along with their transcendence bases. As I showed in [4, 3, 7], when R is a complete
local domain of prime characteristic and I is an ideal, the set I along with the
minimal generating sets of its minimal c-reductions (where c = ∗,+, F respectively)
also forms a matroid. It is a basic fact of matroid theory that all bases have the
same cardinality (called the rank of a matroid), so this shows that `c(I) exists for
these closure operations. Since `−(I) (the analytic spread of [NR54]) also exists, a
natural question is whether we get a matroid when c = −.

In joint work with Joseph Brennan [1], after showing the answer to be “no”
with a counterexample, we find a new combinatorial-topological construction (the
generic matroid), jointly generalizing the notions of matroid and topological space.
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Intuitively, a generic matroid is a bunch of bona-fide matroids glued together to form
an overarching matroid-like structure with some wiggle-room. We exhibit a generic
matroid structure not only in the case of ideals and minimal reductions (over a local
ring with infinite residue field), but also for graded Noether normalizations of a
standard graded k-algebra (k an infinite field) and for minimal complete reductions
of a finite set of ideals. This then gives reasons for equicardinality in all these
situations.

One of the strengths of matroid theory is the notion of “cryptomorphic” defini-
tions, allowing the theory great combinatorial flexibility. That is, a matroid may
be equivalently defined in terms of bases (as above), independent sets, circuits,
flats, etc. In future work, we hope to obtain cryptomorphic definitions of generic
matroids in the same way.

10. Zero-divisor graphs

Let S be a commutative multiplicative semigroup with zero (i.e. an element 0
such that s0 = 0 for all s ∈ S). Then one defines the zero-divisor graph Γ(S) to
be the graph whose vertices are the nonzero zero-divisors of S, where there is an
edge from s to t precisely when s 6= t and st = 0 ([DMS02]; originally defined for
commutative rings in [AL99]).

In joint work with Peyman Nasehpour [12], we investigate the interplay between
the structure of nilpotent-free semigroups (i.e. we require for all s ∈ S that if
sn = 0 then s = 0) and their corresponding zero-divisor graphs. In doing so,
we introduce the notion of an Armendariz map between semigroups, which we
show preserves many important invariants of the corresponding zero-divisor graphs,
including diameter and chromatic number. We give applications to topological
spaces (especially those occurring in algebraic geometry), lattice theory, Boolean
algebra, contents of polynomials, comaximal ideals, and tensor products.

This topic provides research project potential at all levels, involving as it does
so many areas of mathematics.
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