THE QUEST FOR COUNTEREXAMPLES IN TORIC GEOMETRY

WINFRIED BRUNS

ABSTRACT. We discuss an experimental approach to open problemsingeometry:
are smooth projective toric varieties (i) projectively mal and (ii) defined by degree 2
equations? We discuss the creation of lattice polytopesidgfismooth toric varieties
as well as algorithms checking properties (i) and (ii) andhfer potential properties, in
Particular a weaker version of (ii) asking for scheme-tk&ordefinition in degree 2.

1. INTRODUCTION

Two of the most tantalizing questions in toric geometry @ndhe arithmetic normal-
ity and the degree of the defining equations of smooth priggtdric varieties:

(N) (Oda) Is every equivariant embedding of such a variétynto projective space
arithmetically normal?
(Q) (Bggvad) Is the ideal of functions vanishing ¥ngenerated in degree 27?

Both questions have affirmative answers in dimension 2, lgibpen in dimensiox 3.
They were the major themes of workshops at the Mathemassiecistitut Oberwolfach
(2007) and the American Institute of Mathematics (2009)e Tberwolfach report [16]
gives a good overview of the subject. See Ogata [21], [22k@one positive results in
dimension 3.

Toric geometry has developed a rather complete dictiortaay translates properties
of projective toric varieties into combinatorics of lagipolytopes, and therefore both
guestions can be formulated equivalently in the languadatbte polytopes and their
monoid algebras. In the following, lattice polytopes reyar@ting smooth projective toric
varieties are calledmooththose representing a normal projective toric variety atked
very ample and those representing an arithmetically normal subiyaaee normal A
very brief overview of the connection between toric vagstnd lattice polytopes is given
in Section 2.

An algorithmic approach for the search of counterexamplas siscussed by Gube-
ladze and the author about 10 years ago, and taken up by @abelad Hosten in 2003,
however not fully implemented. Such an implementation veadized by the author in
2007, and completed and augmented in several steps. A seftiseary on which the
implementation is based had previously been developedhéoinvestigation of unimod-
ular covering and the integral Carathéodory property [B], Moreover, Normaliz [10]
proved very useful (and profited from the experience gainetis project).

Unfortunately the search for counterexamples has beetegsito this day. Neverthe-
less we hope that a discussion of the algorithmic approa¢@}and (N) and several

related properties of smooth lattice polytopes is welcome.
1
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The main experimental line consists of three computer rogrfor the following
tasks:

(1) the random creation of smooth projective toric vargtia their defining fans;
(2) the computation of support polytopes;
(3) the verification of various properties, in particulan @hd (Q).

The implementation of the first two tasks is described iniSa@.

Testing normality (Section 4) is much easier and faster teating quadratic gener-
ation, and amounts to a Hilbert basis computation that isllysa light snack for the
Normaliz algorithm described in [11] and [9]. Quadratic geation requires more discus-
sion (Section 5). One of the results found in connection Withexperimental approach
is a combinatorial criterion for scheme-theoretic defomtin degree 2. In contrast to
ideal-theoretic definition in degree 2, as asked for in (Q¢an be tested efficiently for
polytopes with a large number of lattice points.

For an arbitrary lattice polytope the multiplescP are normal forc > dimP — 1 and
their toric ideals are generated in degree 2dor dimP [7]. Therefore one expects
counterexamples to have few lattice points, and so we trgdage smooth lattice points
in size without giving up smoothness, of course. In Sectiare@xplain the technique of
chiseling already suggested by Gubeladze and Hosten, that spiiteatk polytope in
two parts unless it isobust It is then not hard to see that a minimal counterexample to
(Q) or (N) must be robust.

After a discussion of some further potential propertiesmbsth polytopes, in partic-
ular the positivity of the coefficients of their Ehrhart pobmials, we widen the class
of lattice polytopes by including the very ample ones. Int fdowvould already be very
interesting to find simple polytopes that are very ample lotthormal.

One can interpret the failure of the search for counterexasn@s an indication that
(N) and (Q) hold. However, the main difficulty is not the intigation of given smooth
polytopes: it is their construction for which we depend aa¢bnstruction of fans, objects
that live in the space dual to that of the polytopes. It is diuibvhether we can generate
a sufficient amount of complexity in the dual space withoosliag the passage to primal
space. An argument supporting this viewpoint is given inisad.

The software on which our experiments have been based was poidtic in 2009 and
has recently been updated [3]. Its documentation disculssgsactical aspects of its use.
They will be skipped in the following.

AcknowledgementThe author is very grateful to Joseph Gubeladze and Serkatehio
for sharing their ideas. Without Joseph’s enthusiasm, igpiring comments and the
perpetual discussions with him (almost never controvBrstas project would not have
been started.

The author is also indebted to Mateusz Michalek for his carefiding of the paper, in
particular for pointing out a mistake in the author’s firstsien of Theorem 5.1 and for
suggesting the correction.
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2. LATTICE POLYTOPES AND TORIC VARIETIES

We assume that the reader is familiar with the basic notidmésorete convex geom-
etry, combinatorial commutative algebra and toric algebgaometry. These notions are
developed in the books by Fulton [14], Oda [19] and Cox—&#8chenck [12]. We will
follow the terminology and notation of [6].

Nevertheless, let us briefly sketch the connection betweejegive toric varieties,
projective fans and lattice polytopes since the experiai@pproach to the questions (N)
and (Q) is based on it. The main actors in the experimentabayp are lattice polytopes,
and therefore it is natural, but opposite to the conventadnisric geometry, to have them
live in the primal vector spadé = RY whereas (their normal) fans reside in the dual space
V* = Homg (V,R). By L we denote the latticE9, andL* is its dual inV*.

LetP CV be a lattice polytope. In order to avoid technicalities @is®lary importance
we will assume that the lattice pointsihgeneratd. as an affine lattice whenever we are
free to do so. In particulaP has dimensiom, and we need not distinguistormal and
integrally closedattice polytopes (in the terminology of [6]).

The setE(P) = P x {1} nZ%*1 generates a submonald(P) of Z4+1. The monoid
algebraR = K[P] = K[M(P)] over a fieldK has a natural grading and is generated by
monomials of degree 1 (that, by construction, corresporhledattice points oP). Thus
¥ = ProjR is a projective subvariety of the projective spate n=#E(P) —1. The
natural affine charts of” are the spectra of monoid algebras obtained by dehomoggnizi
R with respect to the monomials that correspond to the vertoéd: for such a vertex
v the corresponding chart is given by SpeM(P),] where the monoid(P), c Z¢ is
generated by the difference vectors- v, x € PNL. (In multiplicative notationx — v
corresponds to the quotient of two monomials of degree 1.)

In classical terminology, a toric variety is required to lwemal, and this is the case if
and only if all the algebral& [M(P),] are normal. A polytop® with this property is called
very amplesince it represents a very ample line bundleonUnder our assumptions on
P, normality ofK[M(P),] is equivalent to the equalityl(P), = C(P)c.NL whereC(P)y is
thecorner(or tangenj cone ofP atv: it is generated by the vectoxs-v, x € P.

The variety?” is smooth if and only if the algebr&§M (P),] are polynomial rings. In
terms ofP, this property can be characterized as follows: exatiygges emanate from
each vertex, and thed vectorsw — v, wherew is the lattice point next te on an edge,
are a basis of. Such polytopes are callessnooth

The combinatorial approach to the open questions (N) ands({@ktified by the fact
that the homogeneous coordinate rings considered in thesstigns are all of typK[P]
whereP is a smooth polytope.

The rather elementary passage from a lattice polyRomea projective toric variety has
been sketched above. In order to justify the last claim we baveverse the construction.
Every projective toric variety of dimensiahintrinsically defines a complete projective
fan . in V* (we remind the reader on our convention on primal and duatepand
the coordinate rings of the equivariant embedding¥ ahto projective space are given
in the form ProK|[P] whereP is a very ample lattice polytope (satisfying all our basic
assumptions) such that"(P) = .. Such a polytope is called support polytopeof
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Z. The corner cones d? are exactly the cones dual to the conesZiffl (the set ofd-
dimensional faces of#), and since duality preserves unimodularityjs smooth if and
only if % is unimodular.

The correspondence between unimodular projective fansanmbth projective toric
varieties is not only of fundamental theoretical impor&nét offers a way to construct
smooth polytopes from “random data”.

3. POLYTOPES FROM FANS

3.A. Creating unimodular projective fans. As just explained, the choice of a smooth
projective variety is equivalent to the construction of ajective unimodular fan. It can
be carried out as follows:

(UF1) Choose vectorpy,...,ps In L* such that the origin is in the interior @ =
conv(py,...,Ps). The cones spanned by the face€fwith apex in 0) then form
a projective fan7 .

(UF2) Choose a regular triangulation of the boundar@avith vertices in lattice points,
and replace# by the induced simplicial refinement.

(UF3) For each maximal cone o¥ compute its Hilbert basis and refi& by stellar
subdivision, inserting all these vectors in some randoneiord

(UF4) Repeat (UF3) until a unimodular fan is reached.

This is nothing but the algorithm producing an equivariaggidgularization of the pro-
jective toric variety defined by the choice &f in (UF1). It terminates in finitely many
steps since stellar subdivision by Hilbert basis elemenitsly reduces the multiplicities
of the simplicial cones. Computing unimodular fans is fasttrary to the computation
of support polytopes.

3.B. Computing support polytopes. Once we have a unimodular fa#, we must find
support polytopes of#. Let us first assume tha¥ is just an arbitrary complete fan.
The algorithm that we describe in the following will decidéether.# is projective by
providing lattice polytopeB such that 4" (P) = .# in the projective case, and ending with
a negative outcome otherwise. The set of rayPois denoted byZ 1, and its elements
are listed apy, ..., Ps.

Each support polytope is the solution set of a system of timesgualities

pi(X) > —b;, bhezZ i=1...,s

(The choice of the minus sign will turn out natural.) We ararshing for the right hand
sidesb = (by,...,bs) € # = Z?3, such that the following conditions are satisfied:

(LP) For each con& e .#l9 there exists a vectors € L such thatp;(vs) = —b; for
pi€2.

(CP) The pointws are indeed the vertices of their convex H(b).

(VA) P(b) is very ample.

In fact, for eachs € .Z19), the hyperplanes with equatiopgx) = —h;, pi € %, must
meet in a lattice points € L. Thus condition (LP) selects a sublatti€eof ', and there
is a well-defined linear map vert ¥ — L that assignd € % the prospective vertex.
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In the unimodular case, (LP) is satisfied for blE # = ¥, and this simplifies the
situation significantly! Also (VA) is automatically satisti. Therefore we concentrate on
condition (CP) which requires that the poingsare in convex position. This is equivalent
to the system

pj(verts(b)) > —bj+1, j=1,...,s pj¢%, ZecZF. (1)

of inequalities being satisfied. Convexity is a local coiodit and therefore one can re-
strict the system to a smaller set of inequalities: one needsnsider only the inequalities
pj(verts(b)) > —bj such thap; ¢ Zis aray in acond@ < .# sharing a facet witl. (This
condition is easily checked algorithmically.) The set afp&Z, j) just defined is denoted
by .7.

We summarize and slightly reformulate our discussion devid. Set

N ={be R®: pj(vertz(b)) +b; >0, (Z,]) € .}.
Then the lattice polytopes we are trying to find corresponthéopoints ing Nint(N’).
The coneN'’ is not pointed since it contains a copy \6f namely the vector$p;(v)).
However, we loose nothing if we choose a c@iyec .79 and setvs, = 0. In this way
we intersecN’ with a linear subspadg, and the intersection

N=NnU

is indeed pointed. Moreover, since 0 is one vertex of thetpplys to be found, we have
b; > 0 for all j and all pointsb € N'. In particular this implies

P(b) c P(b+b)

forallb,b e NN¥Z.

Heuristically, and for the reasons pointed out above, thdicktes for counterexamples
should appear among tireclusion minimabpolytopesP with .% = 4/ (P). In view of the
inclusion just established, it is enough to determine theimmal system of generators of
% NintN as an ideal of the monoid N N. After homogenization of the system (1) and
fixing verts, = 0, this amounts to a Hilbert basis calculation in the cbhe RS-d+1
defined by the inequalities

pj(verts(b)) +bj—h >0, (Z,]) e,
h>0.

From the Hilbert basis computed we extract the elements kithl, and obtain a col-
lection of polytopes among which we easily find the inclusainimal ones. (If no such
element exists, the fan has proved to be non-projective.)

Remark 3.1. (a) The letters#” and% have been chosen sin@ represents the group
of torus invariant Weyl divisors and the group of torus invariant Cartier divisors. By
fixing one of the vertices at the origin, we have chosen atsgiof the epimorphism
¢ — Pic(7).

Remark 3.2. (a) Since we favor small examples and since very large omaktte be
intractable, we limit the construction of unimodular fansat mostd + 20 rays (in other
words, rankPi¢?’) < 20) and 150 maximal simplicial cones. These numbers can be
varied, of course, but they allow the computation of suppolytopes.
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(b) Computing all minimal support polytopes is only possitblthe rank of the Picard
group is not too large. In practice, 10 is a reasonable boGme& way out is to compute
the extreme rays dfl and to select those with= 1. Though there is no guarantee for the
existence of such extreme rays, they almost always exist.

(c) Not every element of the Hilbert basis computed definaaension minimal sup-
port polytope of the given fan. The reason is that the diffeesof the corresponding
support functions of the fan need not be convex.

4. NORMALITY

4.A. Checking normality. For this purpose we use the Hilbert basis algorithm of Nor-
maliz (in the author’s experimental library). We refer td]nd [9] for the details. The
algorithm is fast for the polytopes that have been invetgga

4.B. Extending corner covers. One reason for which one could expect smooth poly-
topesP to be normal is that each corner is covered by unimodularIgieg—in fact, it

is such a simplex—and that it should be possible to extengkthevers far enough into
P such thatP is covered by the extensions. In order to define the exteasioe can
identify the corner con€(P), with the coneD generated by the sums of unit vectors
e,e +6e,...,e+---+e4 in RY and transfer the Knudsen-Mumford triangulatiorDof

to a triangulatiork of C(P), (compare [6, Ch. 3]. Then we l&k,(P) be the union of those
unimodular simplices ok that lie inP. If P = J,Uy(P), thenP is evidently normal. It
would be possible to test whether= J,,Uy(P). However, a direct test for normality is
much faster. We will come back to this point in 7.A below.

Uv(P)

5. GENERATION IN DEGREE?Z2

In the following we must work with the toric ideal of a polyt®jpnd its dehomogeniza-
tions, and some precise notation is needed. The monoidralg@h (P)] has a natural
presentation as a residue class ring of a polynomial ring

Ap =KX xePNZI LKIM(P)], X (x,1) € M(P) C K[M(P)].

The kernel ofgp is the toric ideal of. It is generated by all binomials
X —[X>*  such that ax=S b
[T 28X= 2

The lattice pointsv next to a vertex of P on an edge oP will be calledneighborsof v.
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5.A. Testing generation in degree2. There seems to be no other way for testing gen-
eration in degree 2 than computing the toric ideal via a Geblibasis method. (For toric
ideals, special algorithms have been devised; see [17]]0r [& order to access also
rather large polytopes we only test whether the toric ilé) needs generators in degree
3 as follows, lettingl denote the ideal generated by the degree 2 binomia{din

(GB2) We compute the degree 2 compon@&nf a Grobner basis af with respect to
a reverse lexicographic term order by simply scanning alrele 2 binomials in
[(P).

(GB3) Next we compute the degree 3 component of the Grolams lofJ by the Buch-
berger algorithm in a specialized data structure.

(HV3) Then we compute thie-vector ofJ up to degree 3, using the initial ideal from the
preceding steps.

(NMZ2) Finally the result is compared to thevector of K[P] computed by Normaliz.
(This h-vector gives the numerator polynomial of the Ehrhart Seoid.)

Clearly,| (P) has no generators in degree 3 if and only if the tweectors coincide up to
hat degree. The time consuming step is (GR3) while the otrersery fast.

As we will see next, there is a generalization of generatiodegree 2 that is very
natural from the viewpoint of projective geometry and muas$tér to decide.

5.B. Scheme-theoretic generationin degre2. Letl C K[Xy,...,Xn] be a homogeneous
ideal (with respect to the standard grading). We say lthatscheme-theoretically gen-
eratedin degree 2 if there exists an ideathat is generated by homogeneous elements
of degree 2 such thatandJ have the same saturation with respect to the maximal ideal
m= (X]_,...,Xn)I

18— {x: m¥x e | for somek} = J5&

Equivalently, we can require thatandJ define the same ideal sheaf on FRojClearly
Jc lif I =158 and this is the case for prime idealfike toric ideals, whence we may
assume thal = | ,) is the ideal generated by the degree 2 elemenis of

Letv be a vertex oP, R= K[M(P)] andS= R/(X,— 1) be the dehomogenization Bf
with respect toX,. The presentatioK[M(P)] = Ap/I (P) induces a presentation

Bv=Ap/(Xy—1) — S with kernel 1(P)B,.

The residue classes of th& are denoted by, andBy is again a polynomial ring in
the Yy, x # v. But Sis already the image of the subalgelBa= K[Yyx: x—v € H/,
Hy = Hilb(M(P)y). Clearlyly is generated by the extension of the toric idgdd,) =
| (P)ByN B, and any choice of polynomial — p, wherez—v ¢ Hy, and u; € B} is a
monomial representing— v as aZ_ -linear combination of the Hilbert basks,. The
smooth case is characterized by the conditigd,) = 0. This simplifies the situation
considerably. For the proof of the next theorem one shoutd titl (P)B, = JB, for a
homogeneous idedlin Ap if and only if I (P)[X; %] = J[X; 1.

In order to prove thatt(P) is the saturation off(P) ) have also to check the dehomog-
enization with respect to indeterminabgsfor non-vertices< of P. However, as we will
see, the comparison can be reduced to the consideratiomtiwioge
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Theorem 5.1. Let P be a smooth lattice polytope. Then the following arawedent:

(1) 1(P) is scheme-theoretically generated in deglee
(2) (a) for all vertices v of P and all lattice points x that are not gebors of v the
polytope P (x+ Vv — P) contains a lattice point ¥ v, X, and
(b) every non-vertex lattice point x of P is the midpoint of a Esgmenty, Z,
y,ze PNZY,y,z+# x.

Proof. For the implication (2) = (1) we note that for every vertex and each non-
neighborx we have a binomial

Xy Xx — Xy Xz € 1 (P)

by (2)(a). Thusx—YY; € I(P)2By. As a positive monoidM(P)y has a grading, and
we can use induction on degree to find monomjasn theY,,, w—v € H,, such that
Y« — Ux € 1(P)(2)By. In fact, dedy —v),degz—v) < degx— V), so thatyy — ty, Y, — [z €
1 (P)(2)Byv. ThenYx— ypz € 1(P)(2)By as well, and we can sgk = pylz. This argument
shows that (P)By = | (P) 2By or, equivalently) (P)[X, ] = 1 (P)»[X, '] for all vertices
vof P.

It remains to comparg(P) andl (P) 5 after the inversion oK for non-vertices. Let

Q be the convex hull of all lattice point® such thatX is a unit moduld (P) 2 [Xp—l].
One hax) # 0 sincep € Q. Letx be a vertex of). If xis a vertex ofP, we can inveriXy
first and use what has been shown above as a consequenceadf §)ppose thatis a
non-vertex ofP. Then (2)(b) implies thaX? — XyX; € 1(P) for suitable lattice pointg, z.
But only one ofy,zcan belong t®, and both are units together wiXy after the inversion
of Xp. This is a contradiction, and thuds a vertex ofP.

For (1) = (2)(a) we consider the binomia} — Ly € 1 (P)By. Homogenizing and
clearing denominators with respectXpyields a binomial

B =X XX € 1(P).
Multiplying by a high power o, sends it intq(P) ). So we may assume th@tbelongs

to (P)(2). But thenX*X, must be divisible by a monomial appearing in a degree 2 biabmi

in 1(P). The only potential degree 2 divisors aXg andX,Xx. Sincev is a vertex, no
powerX[", m> 1, can appear in a binomiglin | (P) as one of the summands (unlgss



THE QUEST FOR COUNTEREXAMPLES IN TORIC GEOMETRY 9

is divisible byX,). This implies that there exists a degree 2 binorKigd — Xy Xz in | (P),
andy andz both belong td® N (x+ v — P) since they both belong te.

The argument for (b) is similar. In fact, I be the smallest face d&? containing
X. Sincex is a non-vertexF must contain at least one more lattice pant Modulo
|(P)[X 1] all X, for lattice pointsw in F are units. Sincé(P)[X; ] = 1(P)[X '] by
hypothesis, the same holds modul®) ») X, 1]. By similar arguments as above this
implies the existence of a binomial

X>I<( — XwHw
in 1(P)2). But then we must have a nonzero binonX@l— X,X; € | (P). O

Remark 5.2. The implication (2)=— (1) can be generalized as follows: smoothness is
replaced by the hypothesis that for each vexteéle ideall (Hy) is generated by homo-
geneous binomials of degree 2. In fdobmogeneoukinomials inl (Hy) lift to homoge-
neous binomials ih(P), and we need only add the binomiagXy — XyX; andX? — XyXz
existing by (2) in order to find a degree 2 subid&aif | (P) such thatlB, = I (P)By for
all lattice pointsx € P.

For the implication (1)= (2) holds for arbitrary lattice polytopes if one restricts
(2)(a) to thosex for whichx—v ¢ Hy. However, one cannot conclude that the idégts,)
are generated in degree 2. We will come back to this point mék 5.4.

By condition (2) of the theorem, scheme-theoretic genemati degree 2 can be tested
very quickly. In most casescan be chosen as a neighbowdbr (2)(a). Thus the number
of lattice pointsy € P to be tested is very small on average. However, the theoreyn ve
strongly indicates that finding a counterexample to schéraeretic generation in degree
2 is extremely difficult.

Remark 5.3. In the author’s first formulation of Theorem 5.1 condition(f was miss-
ing. This mistake was pointed out by Mateusz Michalek who algggested the inclusion
of (2)(b). The problem is discussed in [18, Remark 12.2].

5.C. Abundant degree 2 relations. All smooth polytopes that have come up in the
search for counterexamples satisfy an even stronger comdi¢t us say tha® hasabun-
dant degree? relationsif condition (2)(a) continues to hold if we replace the vgrte
by an arbitrary lattice point: for all lattice pointsx € P (including the case& = x) the
midpoint of the segmerjt, x| is also the midpoint of a different line segmeéwntz] C P,
apart from the following obvious exceptions: onevof is a vertex, say, andx = v or X
is a neighbor ofr. In terms of the toric idedl(P): it contains a binomiaK,Xy — XyX; # 0
for all lattice pointsv,x unless this is priori impossible. (This includes condit{@nb).)
The property of having abundant degree 2 relations clearplies scheme-theoretic
generation in degree 2 for smooth polytopes, but it is nardew it is related to gen-
eration in degree 2. For arbitrary lattice polytopes it doeesfollow from generation in
degree 2. As an example one can take the join of two line setgmetih midpoints whose
toric ideal is generated DX, — XZ, XuXw — X¢: the midpoint offy, v, both non-vertices,
is not the midpoint of any other line segment sidgX, does not appear in the generating
binomials.
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One is tempted to prove that abundant degree 2 relationy iggpieration in degree 2
by a Grobner basis argument. While we cannot exclude tlcaitan argument is possible,
itis very clear that its success depends on the choice oéthedrder. A simple example
is the following polytope with the term order that induces timnimodular triangulation:
the corresponding Grobner basis conta{¥,X; — x,?,

X

Remark 5.4. An important class of polytopes that have abundant degre&fians, but
are not known to be quadratically defined, are given by mddétoBee [24] for a rather
recent result and references for this very hard problem.

In fact, it is not difficult to see that the symmetric exchamgeatroids supplies abun-
dant degree 2 relations. So one could try to apply the gdnatian 5.2 of Theorem 5.1,
(2) = (1), in order to show scheme-theoretic generation in degfee matroid poly-
topes. But this does not work since the ide@dfl,) need not be generated in degree 2,
even ifl (P) is.

An example for this phenomenon is given by the matroid wha@se$ are the triples
li1,i2,i3] indicating the vector space bases contained in the famity , andu;;3 =
g+e, =123 1<j<k<3,i# |k Forthe vertew = [1,2,3] the ideall (Hy) is
generated by a degree 3 binomial.

5.D. Squarefree divisor complexes.Whether the toric idedl(P) needs generators in a
certain multidegree can be tested by checking the conrgotivthe squarefree divisor
complex of the given degree. For example, see [8] for theiteriogy and the details.
(According to Stanley [25, 7.9], the result goes back to Hteh) Such a test has been
implemented and is applied to a random selection of multieleg) of total degree 3 for
polytopes that are too large for the approach describedAn Bowever, it seems rather
hopeless to find a counterexample to quadratic generatidhibyest since it can only
deal with a single multidegree at a time.

6. CHISELING

As pointed out above, one should expect counterexamples smtall, but “compli-
cated”. In particular, one can try to pass from a smooth pplgP to a smooth sub-
polytope by splitting? along a suitable hyperplane. In its simplest form this an®tm
cutting corners offP as illustrated in the figure below. The operation descrilmethe
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following is calledchiseling—it sounds less cruel than “cutting faces”.

» . . .

7

H 7 P

Supposé- is a face of the smooth polytofeand aff P) the intersection of the support
hyperplaned,...,Hs wheres=d —dimF. Let H; be given by the equatiok (x) = b;.
Setg = A1 +---+As. Theno has constant value=b; +---+bsonF. Letc be the
minimum value ofg on the lattice pointx of P that do not lie inF, and suppose that
b < c—1 (clearlyb < ¢). In this case the hyperplakéwith equationo(x) = c— 1 splits
P into the polytopes

P, = {x:xePando(x) >c—1},

P,={x:xecPando(x) <c—1}. (@)

Lemma 6.1. P, and B are smooth lattice polytopes of full dimension.

This is easily seen by considering the normal fan®ycindP.. The normal fan oP;
is a stellar subdivision of#"(P). The next theorem shows that it suffices to investigate
andP; in the search for counterexamples. As in [6] we say that atppéyisintegrally
closedf PNZY generateg affinely and the monoid rink [P] is normal, or, equivalently,
K[P] is integrally closed irK [Z9+1].

Theorem 6.2. Let P be a lattice polytope and H a rational hyperplane sucht A =
PNH"™ and B = PN H™ are lattice polytopes.

(1) If P and B are integrally closed, then P is integrally closed.

(2) If P and B are integrally closed and the toric ideals of Bnd B are generated
in degrees gand & respectively, then the toric ideal of P is generated in degre
< max2,ds,dy).

Proof. (1) is obvious.

(2) We define a weight function on the lattice poirtsf P (or the generators dfl(P))
by w(x) = |A(X)| whereA is the primitive integral affine linear form definirtg by the
equation (x) = 0. This weight “breaksP alongH, and it breaks the monoid (P)into
the monoidal complex consisting Bf(P,) andM(P»), glued alondH. We refer the reader
to [6, Chapter 7] for the terminology just used.

Let | be the toric ideal oP. The normality ofP; andP, implies thatM(P) "H* =
M(P) andM(P)NH™ = M(P). By [6, Corollary 7.19] this is equivalent to the fact that
inw(l) is a radical ideal.

Therefore iR(P) is the defining ideal of the monoidal complex by [6, Theored8].
On the other hand, the defining ideal of the monoidal comeagenerated by the bino-
mial toric ideals ofP, andP, and the monomial ideal representing the subdivisioR of
alongH [6, Proposition 7.12]. The latter is of degree 2 since a maabwith support not
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in P, or P, must have a factor of degree 2 with this property (as is alwagase by sub-
divisions along hyperplane arrangements). This showsn{élt) is generated in degrees
< max2,ds,dy) and it follows that itself is generated in degreesmax(2,d;,d>). O

For a special case, Theorem 6.2 is contained in an unpublistaauscript of Gube-
ladze and Hosten, but with a proof using squarefree divieorplexes.

The following counterexample shows that part (1) of the theocannot be reversed,
and that part (2) does no longer hold if one omits the assempghatP; and P, are
integrally closed: set

x=(0,0,0), y=(1,0,0), z=(0,1,0),
v=(1,1,2), w=(0,0,-1),

and letP be the polytope spanned by them. One can easily check thgivée points
are the only lattice points d? sinceP is the union of the simpliceB;, = conux,y,z,V)
andP, = conv(x,y,z,w). The toric ideals oP; andP, are both 0, but(P) is generated by
the binomialXXyX; — X,X2. Condition (a) is violated since the lattice pointFindo not
spanz? as an affine lattice.

Let us say that a lattice polytope isbustif it cannot be chiseled into two lattice
subpolytopes of the same dimension along a hyperptinas described by (2). The
robust smooth polytopd3 can be characterized as follows: from each facef P there
emanates an edge of length 1.

Corollary 6.3. (1) In every dimension, a minimal counterexample to the nomsnali
guestion is robust.
(2) In every dimension, a normal counterexample to generatiategree? is robust.

Chiseling has been used in two ways: (1) to reduce the sizelgtgpes that had
been computed from unimodular fans, and (2) to produce ppéa from large smooth
polytopes by chiseling them parallel to faces chosen in s@meéom order.

Remark 6.4. In our search, we only investigak further, although we cannot exclude
that “bad” properties oP come fromP.. NeglectingP, is however justified if the face
F is a vertex. In this cask is a multiple of the unit simplex anP) is generated in
degree 2 sincK[M(P»)] is a Veronese subalgebra of a polynomial ring.

7. MISCELLANEOUS PROPERTIES OF SMOOTH POLYTOPES

7.A. Superconnectivity and strong connectivity. Let v be a vertex oP. A Hilby-path
is a sequence of lattice points= X, X1, . .., Xm in P such thak; .1 —X; € Hilbo(M(P)y) for
alli=0,...,m—1. We say thaP is superconnecteifievery lattice pointinP is connected
to every vertex by a Hilb,-path. However, superconnectivity is rarely satisfied, eveh
in dimension 2 one easily finds counterexamples. Considesthooth polygon with
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vertices(0,0), (4,0), (4,1), (3,3), (2,4), and(0,4):

The lattice poin{3,0) is reachable by a Hilppath fromv = (3, 3), but the origin is not.

On the other hand, every smooth polytope encountered ineduels satisfies the fol-
lowing weaker condition: for each lattice pomthere exists at least one verteto which
X is connected by a Hilppath. We call such polytopesrongly connectedf strong con-
nectivity should fail for a smooth polytog® thenP has a lattice point ¢ |, Uy(P), and
in particularP # |, Uy(P) (compare 4.B).

Superconnectivity oP is equivalent to the following condition: the lattice poyin
condition (2)(a) of Theorem 5.1 can always be chosen amangéighbors of.. There-
fore superconnectivity can be considered to be a strong $ochrame-theoretic generation
in degree 2 fosmoothpolytopes without non-vertex lattice points.

The matroid polytopes discussed briefly in Remark 5.4 arersomnected since the
symmetric exchange of single elements produces neighbors.

7.B. Positivity of coefficients of the Ehrhart polynomial. Since we are computing the
Ehrhart series of smooth polytopes anyway, checking thbahpolynomial for positiv-
ity of its coefficients costs no extra time. In fact, for alleoth polytopes found in our
search these coefficients proved to be positive. Theref@@eims reasonable to ask the
following question:

Question 7.1.Do the Ehrhart polynomials of smooth polytopes have pasitoeffi-
cients?

See De Loera, Haws and Koppe [13] for a discussion of thetipibgiquestion for
another class of polytopes.

8. VERY AMPLE POLYTOPES

Smooth polytopes can be considered as special instandes fafllowing class:

(HC) for each vertex of the (simple) polytop® the pointsxsuch thak—v € Hilb (M (P)y)
are contained in the polytope spannedvgnd its neighbors.

Such polytope® are automatically very ample, provided the lattice point® spanZz?
affinely. (As usual, a polytope isimpleif exactly d hyperplanes meet in each of its
vertices.)

Generalizing question (N), one may ask whether polytopaedass (HC) are normal.
As the counterexample below shows, the answer is “no” for-sioiple polytopes, but
seems to be unknown for simple ones. In fact, we do not knomypganple very ample,
but non-normal polytope.
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The question (HC) fits into a line of research that relatesnadity of polytopes to
the length of their edges; see Gubeladze [15] for an edgdeHdmgund guaranteeing
normality.

8.A. Very ample non-normal polytopes. The first example of a very ample, but non-
normal lattice polytope was given in [4]. Its vertices are Di1-vectors representing
the triangles of the minimal triangulation of the real pabjee plane. The polytope has
dimension 5.

Very ample non-normal polytopes can easily be foundghignking One starts from
a normal polytopd>, chooses a vertex and checks whether the polytoQespanned by
(PNZY)\ {v} is very ample. If soP is replaced byQ. If not, we test another vertex of
P. If no vertex of P can be removed without violating very ampleness@rne stops
at P. The very ample polytopes encountered in the process ackethdor normality,
and surprisingly often non-normal very ample polytopes pppand even smooth ones
do. (This technique was originally applied to find normalypopes without unimodular
cover; see [5].)

By shrinking we found the following polytopd® c R2 is the convex hull of

((0,0) X |1) U ((0, 1) X |2) U ((1, l) X |3) U ((1,0) X |4).

with 11 ={0,1}, I, ={2,3}, I3 = {1,2}, l1 = {3,4} (see [6, Exerc. 2.24]). This polytope
has 4 unimodular corner cones and 4 non-simple ones. Onehesmk by hand that at
each vertex the vectorsw — v, w a neighbor ofv, form Hilb(M(P)y). This example
has recently been generalized by Ogata [23] in several wagrs, ampleness for these
polytopes can be proved by applying the following criterioeach of the non-unimodular
corner cones:

Proposition 8.1. Let C be a rational cone of dimension d generated by Hvectors
wi,...,Wqs1. For each facet F of C suppose that theanF together with one of the (at
most two) remaining ones gener&té. Then w, ..., wq.1 are the Hilbert basis of C.

Proof. The hypothesis guarantees that ..., wy1 generateZd. Moreover, the monoid
Cnz4 is integral over the monoill generated by they;. Therefore it is enough to show
thatM is normal. The hypothesis on the generatioZ®by thew; € F andoneadditional
vector implies that the monoid algebfaM| satisfies Serre’s conditigfir;) (compare [6,
Exerc. 4.16]). Serre’s conditioft,) is satisfied since an affine domain of dimension
d generated byl + 1 elements is Cohen-Macaulay. Normality is equivalentRg) and

(S2). O

8.B. The search for very ample simple polytopesFinding random simple polytopes
has turned out as difficult as finding random smooth polytofesstructing such poly-
topes from simplicial fans follows the algorithm outlined $ection 3, except that one
does not refine a simplicial cone to a unimodular one. Howelerproperty (LP) now
comes into play, and the “right hand sidebthat yield lattice polytopes (and not just ra-
tional ones) form a proper sublattizeof 7. It is not hard to describ& by congruences
that its members must satisfy. However, often the Hilbesidbeomputation is arithmeti-
cally much more complicated than for unimodular fans, arelwlay out described in
Remark 3.2 does not work well.
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Despite of the fact that simple lattice polytopes are uguadt normal, those that we
have obtained from fans have all been normal. This fact istha most problematic as-
pect of our search: creating polytopes from random simgdlan even smooth fans seems
to produce only harmless examples since one cannot readothglication, arithmeti-
cally or combinatorially, that4"(P) needs forP to be non-normal. It should be much
more promising to define polytopes in terms of their vertices

Simplices are the only class of simple polytopes that caitydaes produced by choos-
ing vertices at random. In dimension3 they are usually non-normal, but we have not yet
been able to find a very ample such simplex. The only resulvkrio us that indicates
that simplices are special in regard to very ampleness is@em of Ogata [20]: iPis a
very ample simplex of dimensiah then the multiplesP are normal forc > n/2—1. In
particular, very ample 3-simplices are normal.
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