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Our goals today

Explain the notion of fusion ring,

give an overview of fusion ring properties that are crucial for
their computation,

describe the approach of Normaliz to the computation.

Some of the computations have been the hardest mastered
challenges for Normaliz so far.
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Fusion data and fusion rings

Definition

A fusion datum is a finite set {1, 2, ..., r} with an involution
i → i∗, and nonnegative integers Nk

i ,j such that for all i , j , k , t:

(Ass)
∑

s N
s
i ,jN

t
s,k =

∑
s N

s
j ,kN

t
i ,s ,

(Unit) N j
1,i = N j

i ,1 = δi ,j ,

(Auto) Nk∗
ij = Nk

j∗i∗ ,

(Dual) N1
i∗,j = N1

ji∗ = δi ,j .

The fusion datum can be denoted as (Nk
i ,j) (

∗ unique by (Dual)).

A fusion ring R is a free Z-module with a basis {b1, . . . , br} whose
multiplication table is given by a fusion datum:

bibj =
∑
s

Ns
ijbs .
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Elementary properties of fusion rings

Proposition

Let R be a fusion ring.

R is an associative Z-algebra of rank r .

b1 is its unit element.
∗ extends linearly to an antiautomorphism of R.

This follows immediately from the definition of fusion datum.

Proposition (Frobenius reciprocity)

For all i , j , k one has

Nk
i ,j = N j

i∗,k = N i∗
j ,k∗ = Nk∗

j∗,i∗ = N j∗

k∗,i = N i
k,j∗ .

Important for computations: together with the unit axiom this
reduces the number of variables Nk

ij to ∼ (r − 1)3/6.
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Examples of fusion rings: representation theory

We consider a finite group G and C-representations. Then there
exist finitely many irreducible representations V1, . . . ,Vr where we
choose V1 as the trivial representation on C and ∗ is defined by
Vi∗

∼= V ∗
i . The tensor product of Vi and Vj decomposes:

Vi ⊗ Vj =
⊕
s

(Vs)
⊕Ns

i,j .

Then (Ns
ij) is a fusion datum, and the corresponding fusion ring is

the Grothendieck ring of the category Rep(G ) of finite-dimensional
C-representations of a finite group G .

The symmetric group S3 has 3 irreducible representations, namely
the trivial representation C, the sign representation χ on C, and a
2−dimensional representation V defined by the decomposition
C3 ∼= C⊕ V (all self-dual). Then

χ⊗ χ = C, χ⊗ V = V ⊗ χ = V , V ⊗ V = C⊕ χ⊕ V .
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The Frobenius–Perron theorem

The multiplication table (Nk
ij ) of a fusion ring R has nonnegative

entries. This has a crucial consequence.

Theorem (Frobenius–Perron)

Let M be a square matrix with nonnegative entries.

Then M has a nonnegative real eigenvalue.

Let λ be the maximal real nonnegative eigenvalue. Then
|µ| ≤ λ for all eigenvaules µ of M.

Definition

For a base element bi we let FPdim(bi ) be the maximal real
eigenvalue of the matrix of left multiplication by bi on R. The
Frobenius–Perron dimension FPdim : R → C is defined by Z-linear
extension.

Thus FPdim(x) is an algebraic integer for all x ∈ R. Moreover
FPdim(bi ) = FPdim(bi∗) ≥ 1 for all i .
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FPdim is a ring homomorphism

Theorem

FPdim : R → C is the unique ring homomorphism that takes
nonnegative values on the bi .

Let di = FPdim(bi ) for i = 1, . . . , r . (d1, . . . , dr ) is the type of R.

On the one hand FPdim(bibj) = didj . On the other hand:

FPdim(bibj) = FPdim(
∑

k
Nk
ij bk) =

∑
k
dkN

k
ij .

Corollary

Let (d1, . . . , dr ) be the type of R. Then

didj =
∑
k

dkN
k
ij i , j = 1, . . . , r .

In particular, there exist only finitely many fusion rings of a
given type.
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Integral and more special type

A fusion ring R is integral if (d1, . . . , dr ) is an integral vector. For
a given rank r there exist infinitely many integral fusion rings.

Set FPdim(R) =
∑

i di
2. One calls R 1/2-Frobenius if

FPdim(R)/d2
i is an algebraic integer for all i .

In the integral case: R is 1/2-Frobenius ⇐⇒ FPdim(R)/d2
i ∈ Z

for all i . =⇒ There exist only finitely many 1/2-Frobenius
integral fusion rings of given rank (non-trivial). In principle they
can all be computed, and we have succeeded in rank ≤ 12.

Without 1/2-Frobenius one can of course bound FPdim(R) and
then compute all fusion rings within the bound (in progress for a
subclass).

Roughly speaking, the integral modular data belong to a subclass
of the 1/2-Frobenius integral fusion data that we cannot define
here (the modular group SL(2,Z) plays a role). They are important
in another source of fusion rings, conformal field theory (Verlinde 1988).
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Categorification

Fusion rings are the combinatorial skeletons of certain tensor
categories, distinguished by the existence of a bifunctor called
tensor product. Simplest example: the category of vector spaces.

A fusion ring is categorifiable if it is the Grothendieck ring of a
fusion category, in the same manner as we have seen it for the
Grothendieck ring of the fusion category Rep(G ) of the
finite-dimensional C-representations of a finite group G .

In the opposite direction one must replace the coefficients Nk
ij by

vector spaces of dimension Nk
ij and find fixed isomorphisms

(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ) that satisfy the so-called pentagon
condition. It amounts to a huge degree 3 system of polynomial
equations in the F-symbols. Hard to decide solvability.

In the paper we were lucky: all modular fusion data of rank ≤ 12
can be cateogorified by well-known tensor categories.

Winfried Bruns Fusion rings from lattice points



The constraints of fusion data

The goal is to compute all fusion rings of given type (d1, . . . , dr )
and duality (1*,. . . ,r*). As seen, the following constraints are
necessary and sufficient for a fusion datum of this type and duality:

(NonNeg) Nk
ij is an integer ≥ 0 for all i , j , k .

(Unit) N j
1,i = N j

i ,1 = δi ,j for all i , j ,

(Frob) Nk
i ,j = N j

i∗,k = N i∗
j ,k∗ = Nk∗

j∗,i∗ = N j∗

k∗,i = N i
k,j∗

for all i , j , k

(FPdim)
∑

k dkN
k
ij = didj for all i , j ,

(Ass)
∑

s N
s
i ,jN

t
s,k =

∑
s N

s
j ,kN

t
i ,s for all i , j , k .

(Unit) and (Fob) are used to reduce the number of variables. We
must then find the lattice points in the polytope defined by
(NonNeg) and (FPdim) that satisfy the quadratic equations (Ass).
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Basic technique: project-and-lift

We want to compute the lattice points in a polytope P given by
linear inequalities. We proceed as follows:

Project P onto a coordinate hyperplane.

By recursion we know the lattice points in he projection P ′.

Compute the lattice points in the fibers of the projection over
the lattice points x ′ in P ′

The last step is easy: the fiber is a line segment cut out by the
inequalities from the total fiber of the projection over x ′.

Potentially dangerous: precise computation of P ′. But we can
relax: it is enough to have a polytope P ′′ ⊃ P ′.
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Coarse projection and patching

Coarse projection.In the computation of fusion data there is an
obvious relaxation: each equation a1x1 + · · ·+ anxn = b in
(FPdim) has ai ≥ 0 and b ≥ 0. Since the xi are nonnegative by
(NonNeg), at least the implied inequality a1x1 + · · ·+ anxn ≤ b
can be restricted to any subset of the variables. xi .

Patching. Each equation in (FPdim) involves only a small subset of
the variables. Therefore we can first compute its lattice solutions
restricted to the variables with a nonzero coefficient by coarse
projection, and then “patch” the solutions along overlapping
coordinates.

Danger: potentially enormous number of solutions of the patches.
Better: insert patches successively into the algorithm, compute
only extensions of the overlaps of the new patch with the union of
the preceding ones and store the extensions.
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Damping the combinaorial explosion

Impossible approach: compute the lattice points in the polytope
and sieve them by the quadratic equations.

Instead we must stop a chain of extensions as soon as one of the
very selective quadratic equations can be applied (because the
coordinates in its support have been covered) and is not satisfied.

Look ahead techniques:

Apply truncations of linear and quadratic equations to
inequalities as soon as possible. Helpful effect.

Derive congruences from the linear equations modulo their
coefficients in all possible ways. This gives constraints in fewer
variables. Apply them as soon as possible. Has often a
significant effect.

Minimization: discard quadratic equations as soon as it is clear
that they have no effect. (The system is heavily redundant.)
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Automorphisms

An automorphism of fusion rings is a ring homomorphism that
permutes the basis b1, . . . , br . Equivalently we can start from a
permutation π of {1, . . . , r} such that

π(1) = 1, di = dπ(i), π(i∗) = π(i)∗ for all i .

=⇒ Nk
ij = N

π(k)
π(i)π(j). The normal form of a solution (Nk

ij ) is the
lexicographically largest in its orbit w.r.t. automorphisms. The
normal forms represent the isomorphism classes of fusion rings.

The hardest computations are those with many repetitions in the
sequence di and trivial duality. This weakens the look-head
congruences and creates a large automorphism group.

Now Normaliz can exploit the action of the automorphism groups
already in the patching process:

Discard vectors that cannot extend to a normal form.

Often this has an overwhelming effect.
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Further aspects

It is important to find a good insertion order for the patches
defined by the linear equations (FPdim). The balance between
two principles can be controlled by options:

cover enough coordinates as quickly as possible to allow the
evaluation of quadratic equations,
avoid inserting “bad” patches too early.

In principle, project-and-lift is a tree search. Normaliz uses a
mixture of “depth first” and “breadth first” strategies.

One can ask Normaliz to compute only simple fusion rings
(not containing a proper nontrivial fusion ring).

For the monsters among the fusion data we have used the
high performance cluster at Osnabrück (50 nodes, 128 threads
and 1 TB each) with a static splitting strategy that allows
successive refinement.
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Some computations

rank #var #lin #sol
FPdim #aut #qud #iso time hardware

[1,5,5,5,6,7,7] 7 56 36 6
210 12 240 2 0.3 s laptop

[1,3,3,4,5,5,5,5,5,10,10] 11 210 100 25
10∗ = 11 335 240 2250 2 333 s laptop

[1,1,2,3,3,6,6,8,8,8,12,12] 12 286 121 1669 108 s
576 48 3080 199 69 s laptop

M12 [1,112,162,45,54,553, 15 546 196 72 24 h
66,99,120,144,176], 4∗ = 5 95040 24 8736 24 3.5 h server
PSL(2, 17) 11 220 100 10442 n.m.

[1,92, 164, 17,183] 2448 288 2070 135 46 h HPC
[1,1885,5005,6699,47502, 13

87087,200970,373230, > 6∗ 364 144 0
8708702,13063053] 1012 n.u. 4422 0 290 s server

exponents: repetitions

# lin, # qud: numbers of linear and quadratic equations. n.m.: not measured

# iso: number of isomorphism classes, # sol solutions. n.u.: not used

M12, PSL(2, 17): the types in the input files are defined by the Grothendieck

rings of Rep(G) for these classical groups G .
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