
Sagbi combinatorics of maximal minors
and a Sagbi algorithm

Winfried Bruns

FB Mathematik/Informatik
Universität Osnabrück

wbruns@uos.de

Konstanz, May 2023

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Report on a joint project with

Aldo Conca

Sagbi combinatorics of maximal minors and a Sagbi algorithm

arXiv:2302.14345

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

arXiv:2302.14345

Commercial

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Normaliz 3.10.0

So far Normaliz could only compute invariants of normal monomial
algebras A: the set of exponent vectors of the monomials in A is
the intersection of a cone and a lattice. This allows algorithms
based on triangulations and Stanley decompositions.

Version 3.7.10 has added functions for arbitrary monomial algebras
(corresponding to arbitrary monoids of exponent vectors):

Hilbert basis (minimal generating subset of the given
generators)

check for normality

Markov basis (set of generators) and Gröbner basis for the
defining binomial ideal

Hilbert series

singular locus

automorphism groups

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Sagbi bases

More fashionable name: Khovanskii bases

Let R = K [X1, . . . ,Xu] be a polynomial ring over the field K ,
endowed with some monomial (or term) order <. Let A ⊂ R be a
K -subalgebra. The initial algebra is the vector space

in(A) = in<(A) =
∑
f ∈A

K in<(f).

It is automatically a subalgebra. Introduced by Robbiano–Sweedler
and Kapur–Madlener ∼ 1989. Sagbi = Subalgebra analog of
Gröbner bases for ideals.

General problem: in(A) ned not be finitely generated, even if A is.
General advantage: in(A) is generated by monomials.

B ⊂ A is a Sagbi basis if the monomials in(f), f ∈ B, generate in(A).

If in(A) is finitely generated, then it is a toric deformation of A.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

The Grassmannian

Let K be a field, X = (Xij) be an m × n, m ≤ n, matrix of
indeterminates and R = K [X] = K [Xij : i = 1, . . . ,m, j = 1, . . . n].
Set

M = Mm×n{δ : δ is an m-minor of X}

The homogeneous coordinate ring of the Grassmannian G (m, n) is
the subalgebra

K [M] = K [Mmxn] ⊂ R.

The best monomial orders on R for the exploration of K [M] are the
diagonal ones: in(δ) is product of the diagonal elements of δ.

Hodge’s standard bitableaux theory =⇒ the maximal minors form
a Sagbi basis w.r.t. a diagonal order.

For a diagonal order, in(A) has all good properties that one can
reasonably want: normal, Cohen-Macaulay, Gorenstein, Koszul,
rational singularities, . . . =⇒ the same for K [M].

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Univeersality ?

By a theorem of Bernstein–Sturmfels–Zelevinsky M is a universal
Gröbner basis of the ideal Im(X) ⊂ R generated by M. (Now a
simple proof by Conca, De Negri and Gorla.) Universal means: for
every monomial order on R.

Question: is M a universal Sagbi basis of K [M]?
In other words, K [in(M)] = in(K [M]) ? for all monomial orders?
(Note: always K [in(M)] ⊂ in(K [M]).

True for m = 2. The answer “no” for m = 3 was given by
Speyer–Sturmfels (2004): already for 3× 6 there exist lexicographic
orders for which the m-minors are not a Sagbi basis.

Our starting question: are the m-minors a universally revlex Sagbi
basis? What can we say about K [in(M)] and in(K [M])?

Experimental approach via CoCoA, Singular and Normaliz.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Findings so far

Test for K [in(M)] = in(K [M]): equality of Hilbert series
(necessary: equality of multiplicities, faster to test)

true, false

Universally revlex Sagbi basis: 3× 6, 3× 7, 3× 8.

K [in(M)] normal
revlex: 3× 6, 3× 7, 3× 8, 3× 9
lex: 3× 6, 3× 7, 3× 8, 3× 9, 3× 10.

K [in(M)] = in(K [M]) and not normal: revlex 3× 9

Main question: in(K [M]) finitely generated ???

Refined question: compare R(in(M)) and in(R(M)).

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Experimental approaches

Two experimental approaches: fix format, choose lex or revlex and

1 run a C++ program that creates all candidates and checks
them through libnormaliz,

2 create many random orders of the variables and run Singular
with the help of Normaliz through normaliz.lib.

To check whether in(K [M]) = K [in(M)] or in(K [M]) = K [E] for
a set E ⊃ in(M) we compare Hilbert series:

in(K [M]) has the same Hilbert series as the Grassmannian
and can easily be computed by Normaliz since in(K [M]) is a
normal monoid algebra for a diagonal order.

as long as K [in(M)] or K [E] is normal, its Hilbert series can
also be computed quickly. In the nonnormal case a Gröbner
basis of a binomial ideal is needed.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Creating all candidates

It is impossible to run through all monomial orders, lex or revlex:
for a 3× 6 matrix we have 18! orders of each kind, and even if one
takes symmetries into account, there remain too many.

Instead we reverse the process: we select a matching field, i.e. a
choice of one monomial in each of the minors, and check them for
compatibility with lex, revlex or weight orders.

Helpful fact, proved by Sturmfels and Zelevinsky: if the matching
field comes from a monomial order, then each row has m − 1
entries that do not appear in any initial monomial.

Monomials in the matching field are chosen by tree search: after
the choice of n monomials check whether it is lex/revlex
compatible. If not go one step back, and pick the next monomial
for palce n. If yes, choose the (n + 1)st monomial.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Tête-a- tête and subduction

For the computation of Sagbi bases one has an algorithm (which
need not stop) similar to the Buchberger algorithm for Gröbner
bases. Let F = {F1, . . . ,Fn} be a set of monic polynomials in the
polynomial ring R with a monomial order.
Two operations are needed (terminology of Robbiano–Sweedler):

(S-polynomial equivalent): find monomials M1,M2 in n new
variables such that in(M1(F1, ...,Fn)) = in(M2(F1, ...,Fn)):
the “virtual initial monomial” of M1(F)−M2(F) cancels.
((M1,M2) or M1 −M2 is a tête-a- tête)

(reduction equivalent): for a monic polynomial G ∈ R find a
monomial M in n variables such that in(G) = in(M(F)) and
pass to G −M(F) (M(F) subduces G).

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Sagbi criteria

Theorem

F ⊂ A is a Sagbi basis of A if every tête-a-tête of F can be lifted
to a polynomial relation of F .

Potential application: replace the computation of a defining ideal
of A via Gröbner methods by Sagbi and bookkeeping.

Theorem

Let A be the subalgebra generated by homogeneous F and
A′ = K [in(F)]. Then

in(A) = A′ ⇐⇒ HA(t) = HA′(t)

where H...(t) is the Hilbert series.

=⇒ HA(t) can control the Sagbi computation.

Application: compute A′ = in(A) and then the Hilbert series of A
as the Hilbert series of the monomial algebra A′.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Three variants of the Sagbi algorithm

We have implemented three variants in a Singular library, and
Singular falls back on Normaliz for the combinatorial
computations.

(Gen) Starting from a system of generators of a subalgebra A ⊂ R,
a suitable iteration of tête-a-tête and subduction computes a finite
Sagbi basis, provided such exists. It stops if saturation is reached
or a preset number of rounds has been completed.

(Deg) It requires a grading, and then proceeds degree by degree.
Stops if saturation is reached or a preset degree bound.

(Hilb) It requires the Hiolbert series of A. Details below.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

A Hilbert series controlled Sagbi algorithm

Basic assumption: A is a graded subalgebra of a polynomial ring R
over a field K , generated by a set G of monic homogeneous
polynomials. G is completely subduced, and the Hilbert function
HF(A, k), k ∈ N, has been computed.

1 Let B = K [in(G)] and Compute HF(B,).

2 If HF(B, k) = HF(A, k) for all k , stop and output G .

3 Otherwise find the smallest degree c for which
HF(B, c) ̸= HF(A, c) and the defect d = HF(A, c)− HF(B, c).

4 Find the the degree c tête-a-têtes of G and evaluate them on
G to obtain a system T of polynomials. Augment G by T .

5 Check whether in(G) has d new monomials. If so, go to (1).

6 Otherwise apply subduction to G , augment it and go to (5).

Note: The subduction loop (5)–(6) must stop after finitely many
iterations with d new initial monomials.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Discussion

The implementation makes sure that at each step (1) we have a
system of generators G of A that is completely subduced: the initial
monomials are a minimal system of generators of B = K [in(G)].
Most critical steps:

The Gröbner basis computation of the binomial defining ideal
of K [B], needed always for tête-a-tête and Hilbert function in
the nonnormal case.
We use a reimplemantation of the project-and-lift algorithm of
Hemmecke and Malkin (4ti2).

Evaluation of monomials M on the system G . For example:
degree 11 monomial evaluated on the 84 maxinal minors of a
3× 9 matrix. (A degree bound must be set.)

At present we use “broad” evaluation of tête-a-têtes and
subduction. Better than go polynomial by polynomial.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Sagbi packages in standard distributions

1 The computations with CoCoA 5 use a variation of the script
developed by Anna Bigatti. It realizes (Deg). Will be part of
the standard distribution of CoCoA from version 5.4.2 on.

2 The Macaulay2 distribution contains the package
SubalgebraBases.m2 by Burr and Duff, version 1.1. It realizes
the variant (Deg) and allows a degree bound.

3 The Singular distribution contains the library sagbi.lib by
Hackfeld, Pfister and Levandovskyy, version 4.1.1.0. It offers
only the variant (Gen) with an optional bound on the number
of rounds.

There is now a new M2 package by Burr, Clarke, Duff, Leaman,
Nichols and Walker arXiv:2302.12473. It appeared after our
paper had been submitted.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

arXiv:2302.12473

Test suite

(HK0) the subalgebra of K [X ,Y ,Z] generated by X 6, X 5Y , Y 5Z , XZ 5,
Y 6 + Y 3Z 3. Han and Kwak found it as a simple counterexample to the
Eisenbud–Goto conjecture. charK = 0. Monomial order is degrevlex.

(HK2) The same, but over a field of characteristic 2.

(Powl) The subalgebra of K [X ,Y ,Z] generated by the polynomials
X 6 + Y 6 + Z 6, X 7 + Y 7 + Z 7, X 8 + Y 8 + Z 8. charK = 0, order lex.

(Powr) The same as (Powl), but order degrevlex.

(2x20) The subalgebra of K [Xij : i , j = 1, . . . , 4] generated by the 2-minors. The
monomial order is diagonal. charK = 0.

(2x22) The same, but over a field of characteristic 2.

(3x6) coordinate ring of Grassmannian G(3, 6), nondiagonal lex order.
charK = 0.

(3x7) G(3, 7), nondiagonal lex order.

(3x8) G(3, 8), nondiagonal lex order.

(3x9l) G(3, 9), nondiagonal lex order.

(3x9r) G(3, 9), nondiagonal degrevlex order.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Computation times I

normalized degree times in minutes

ecample bound Sagbi (Deg) #Sagbi (Deg) (Hilb) CoCoA5 M2

(HK0) 16 — — 80 1:13.68 1:18.77 3:29.00 357:10.3

(HK2) 16 — — 16 0:00.85 0:00.86 0:00.54 0:04.84

(Powl) 200 — — 28 5:57.17 1:14.51 21:27.51 —

(Powr) 200 — — 46 5:31.09 3:26.11 78:58.44 E

(2x20) 10 3 7 89 0:39.27 0:11.61 56:17.28 —

(2x22) 15 6 13 130 5:15.64 O 931:31.00 —

(3x6) 10 2 4 21 0:00.41 0:00.38 0:0 .40 0:01.46

(3x7) 10 2 4 37 0:01.37 0:00.76 0:08.95 2:44.32

(3x8) 10 3 6 67 0:08.20 0:03.21 0:44.84 H

(3x9l) 10 3 6 101 0:48.26 0:26.20 14:36.46 —

(3x9r) 10 7 8 90 M 0:54.52 — —

M memory overflow, O int overflow, H heap overflow, E M2 error code

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

Computation times II

rounds times in min

example bound Sagbi #Sagbi (Gen) sagbi.lib

(2x20) 10 3 89 1:18.89 T

(3x6) 10 2 21 0:00.53 0:00.22

(3x7) 10 2 37 0:01.75 F

(3x8) 10 3 65 0:16.31 —

(3x9l) 10 3 101 1:56.62 —

(3x9d) 10 1 84 0:12.20 T

T time > 1 hour, F segmentation fault in Singular

Hardware: Dell xps17 with an Intel i7-11800H at 2.3 GHz, 32 GB.
For CoCoA5 MacBook Pro with an Intel Quad-Core i7 at 2.3 GHz.
xps 17 = 0.73 Macbook.

Winfried Bruns Sagbi combinatorics of maximal minors and a Sagbi algorithm

