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Polytope volume in Noramliz

In version 3.9.0 (July 2021) Normaliz has three main algorithms for
polytope volumes (years: implementation in Normaliz),

1 lex (placing) triangulation (2001), substantially improved (2012),

2 descent in the face lattice (2018), based on an implicit revlex
(pulling) triangulation,

3 Lawrence’s algorithm using a signed decomposition into
simplices (2021).

Variants:

1 (1) and (3) can be combined with symmetrization (Schürmann):
converts volume into an integral over a projection,

2 (2) can exploit isomorphism classes of faces.

Basic fact: simplex volume can be computed as a determinant.

Voume = lattice (normalized) volume
Euclidean volumes derived from lattice volume.

Winfried Bruns Polytope volumes in high dimension



What algorithm should I use?

Each of the algorithms has its strength. Rules of thumb:

1 polytope has few vertices, but many facets: lex triangulation,

2 number of vertices ≈ number of facets: descent,

3 if there are very few facets: signed decomposition.

For algebraic, nonrational polytopes (in Normaliz since 2018) only
lex triangulation is available, but Lawrence could be implemented
for them.

Normaliz tries to be smart and follows these rules if the user does
not specify an algorithm.

Remark. For Ehrhart series Normaliz has only lex triangulation in
combination with symmetrization.

Winfried Bruns Polytope volumes in high dimension



A challenge: social choice

Social choice = election of a leader (chairperson, mayor, president)
from n candidates. Basic assumption: each voter has a preference
ranking of these candidates. For n candidates there are N = n!
such rankings, say R1, . . . ,RN .

The outcome of an election is the N-tuple (x1, . . . , xN) where
xi = #number of voters with ranking Ri . =⇒ the voting
outcomes correspond to the lattice points in RN

+.

The impartial anonymous culture (IAC) assumes that for a fixed
number of voters all outcomes have the same probability.

Certain paradoxa and types of election results can be described by
homogeneous linear inequalities for the outcomes. At this point
Ehrhart theory enters the scenery: Ehrhart series count outcomes
that satisfy the inequalities, and polytope volumes represent
probabilities for these outcomes.
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An evolution

For n candidates in an election, the polytopes of social choice have
dimension N − 1, N = n!.

Before Normaliz, n = 4 was difficult. With lex triangulation,
symmetrization and, later on, descent, it became easy.

An example: n = 4, Condorcet efficiency of plurality voting

lex tri 41 h
symm with lex tri 6:28 m

symm with signed dec 31.3 s
descent 0.9 s

descent with iso 2.5 s
signed dec 0.3 s

Our goal: n = 5, N = 120.

Winfried Bruns Polytope volumes in high dimension



Duality and signed decomposition I

Let the polytope P be given as P = C ∩ H with a pointed cone
C ⊂ Rd , dimC = d , and a hyperplane H = {x : γ(x) = 1} where
γ ∈ (Rd)∗ is a “grading”.

Consider the dual cone

C ∗ = {λ ∈ (Rd)∗ : λ(x) ≥ 0 for x ∈ C}.

Then γ ∈ relint(C ∗). LetΓ be a “generic” triangulation of C ∗:
γ /∈ G where G is any hyperplane intersecting any simplicial cone
δ ∈ Γ in a hyperplane.

P
γ

cross-section of dual cone
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Duality and signed decomposition II

For fixed δ ∈ Γ the hyperplanes G as above decompose (Rd)∗ into
2d “orthants” and γ lies in the interior of exactly one, say Dδ.
=⇒ D∗

δ ⊂ (Rd)∗∗ = Rd intersects H in a bounded polytope Qδ.

Theorem (Lawrence)

volP =
∑
δ

(−1)eδ volQδ

where eδ counts the number of hyperplanes G through facets of δ
with γ ∈ G−, δ ⊂ G+.

P
+

−

−
+ Qγ

+

+−

−
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Is there a catch?

In applications, like our loved social choice computations, the
polytopes are defined by very few inequalities (relative to their
dimensions), and triangulations are not so difficult to compute, not
even in dimension 120. However, there is a catch, hidden in the
innocent property “generic”.

There seems to be no better method than the following. We take
an arbitrary, say lex, triangulation ∆0 of C ∗. It induces a “hollow ”
triangulation Γ0 on the boundary of C ∗. Then we search a
“generic” vector g ∈ C ∗ and take the “star triangulation” Γ by
simplicial pyramids with apex g and bases in the hollow
triangulation.

Inevitable: g has large coordinates =⇒ the Qδ have terrible
rational coordinates =⇒ volumes are horrible rational numbers.
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Adding rational numbers and fixed precision

Normaliz uses a cascade type of summation that is rather good for
only moderately complicated dases – one can spend 99% of the
computation time on this addition if one does it the naive way.

But for really large computations, the fractions can take gigabytes,
and addition becomes impossible. For these cases there is a fixed
precision mode, in which volQδ is computed precisely, but then
rounded to, say, 100 decimal digits: error ≤ #Γ ∗ 10−100.

Remark. We learnt the existence of the Lawrence algorithm from a
paper about vinci (Büeler and Enge,
https://www.math.u-bordeaux.fr/~aenge/). vinci uses only
floating point arithmetic, and cannot cope with the numerical
instability of the algorithm in the range where we want to apply it.
The fractions in the alternating sum can easily reach an absolute
value of 10100 and the sum is perhaps only 10−5.

Winfried Bruns Polytope volumes in high dimension

https://www.math.u-bordeaux.fr/~aenge/


Overview of the algorithm

The algorithm proceeds in 4 steps:

1 Find a triangulation ∆0 of C ∗.

2 Find the hollow triangulation Γ0 induced by ∆0.

3 Find a generic point g .

4 Compute the volume.

Each step needs a sophisticated implementation to reach the order
of magnitude presented by the Condorcet efficiency of plurality
voting of 5 candidates:

dimC = 120,

128 inequalities,

#∆0 ≈ 2.4 ∗ 109,

#Γ ≈ 39 ∗ 109,

|entries of g | ≈ 1010.

Only doable in reasonable
time since step (4) can be
distributed to the nodes in
a high performance cluster.
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Computation time and memory usage

We compare 3 computations for elections with 5 candidates:

CP: probability of Condorcet paradox,

CW2nd: probability of Condorcet winner and second,

CEP: Condorcet efficiency of plurality voting.

dimC = 120, 32 parallel threads, fixed precision only for CEP.

CP CW2nd CEP
#ineq 124 126 128
#∆0 137,105 16 ∗ 106 2.4 ∗ 109

#Γ0 6.7 ∗ 106 609 ∗ 106 39.4 ∗ 109

time ∆0 0.5 s 834 s 6 h
time Γ 6.8 s 1633 s 105 h
time g 10.7 s 1277 s 35 h

time vol 52.5 S 37,296 s < 12 h HPC
RAM in GB 1.7 57 640
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