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Abstract. The software Normaliz implements algorithms for rational
cones and affine monoids. In this note we present recent developments.
They include the support for (unbounded) polyhedra and semi-open
cones. Furthermore, we report on improved algorithms and paralleliza-
tion, which allow us to compute significantly larger examples.
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1 Introduction

Normaliz [2] is a software for computations with rational cones and affine mon-
oids. It pursues two main computational goals: finding the Hilbert basis, a min-
imal generating system of the monoid of lattice points of a cone; and counting
elements degree-wise in a generating function, the Hilbert series. For the math-
ematical background we refer the reader to [1].

Normaliz (present public version 2.11) is written in C++ (using Boost and
GMP/MPIR), parallelized with OpenMP, and runs under Linux, MacOs and
MS Windows. It bases on its C++ library libnormaliz which offers the full func-
tionality of Normaliz. There are file based interfaces for Singular, Macaulay 2
and Sage, and C++ level interfaces for CoCoA, polymake, Regina and GAP (in
progress). There is also the GUI interface jNormaliz.

Normaliz has found applications in commutative algebra, toric geometry, com-
binatorics, integer programming, invariant theory, elimination theory, mathe-
matical logic, algebraic topology and even theoretical physics.

2 Hilbert Bases and Hilbert Series

We will first describe the main functionality of Normaliz. The basic objects that
constitute the input of Normaliz are a finitely generated rational cone C in R

d

together with a sublattice L of Zd.

Definition 1. A (rational) polyhedron P is the intersection of finitely many
(rational) halfspaces. If it is bounded, then it is called a polytope. If all the
halfspaces are linear, then P is a cone.
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The dimension of P is the dimension of the smallest affine subspace aff(P )
containing P .

An affine monoid is a finitely generated submonoid of Zd for some d.

By the theorem of Minkowski-Weyl, C ⊂ R
d is a (rational) cone if and only if

there exist finitely many (rational) vectors x1, . . . , xn such that

C = {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R+}.
For Normaliz, cones C and lattices L can either be specified by generators
x1, . . . , xn ∈ Z

d or by constraints, i.e., homogeneous systems of diophantine
linear inequalities, equations and congruences. Normaliz also offers to define an
affine monoid as the quotient of Zn

+ modulo the intersection with a sublattice of
Z
n. From version 2.11 on, Normaliz can handle rational polyhedra. This recent

extension is described in Section 3.
In the following we will assume that C is pointed, i.e. x,−x ∈ C ⇒ x = 0. By

Gordan’s lemma the monoid M = C∩L is finitely generated. This affine monoid
has a (unique) minimal generating system called the Hilbert basis Hilb(M), see
Figure 1 for an example. The computation of the Hilbert basis is the first main
tasks of Normaliz.

One application is the computation of the normalization of an affine monoid
N ; this explains the name Normaliz. The normalization is the intersection of the
cone generated by M with the sublattice gp(M) generated by M . One calls M
normal, if it coincides with its normalization.

0
x1

x2

0

Fig. 1. A cone with the Hilbert basis (circled points) and grading

The second main task is to compute the Hilbert (or Ehrhart) series of a graded
monoid. A grading of a monoid M is simply a homomorphism deg : M → Z

g

where Z
g contains the degrees. The Hilbert series of M with respect to the

grading is the formal Laurent series

H(t) =
∑

u∈Zg

#{x ∈ M : deg x = u}tu1
1 · · · tug

g =
∑

x∈M

tdegx,

provided all sets {x ∈ M : deg x = u} are finite. At the moment, Normaliz
can only handle the case g = 1, and therefore we restrict ourselves to this case.
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We assume in the following that deg x > 0 for all nonzero x ∈ M and that there
exists an x ∈ gp(M) such that deg x = 1. (Normaliz always rescales the grading
accordingly.)

The basic fact about H(t) in the Z-graded case is that it is the Laurent
expansion of a rational function at the origin:

Theorem 1 (Hilbert, Serre; Ehrhart). Suppose that M is a normal affine
monoid. Then

H(t) =
R(t)

(1− te)r
, R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of
the extreme integral generators of cone(M). As a rational function, H(t) has
negative degree.

Usually one can find denominators for H(t) of much lower degree than that in
the theorem, and Normaliz tries to give a more economical presentation of H(t)
as a quotient of two polynomials. One should note that it is not clear what the
most natural presentation of H(t) is in general (when e > 1).

A rational cone C and a grading together define the rational polytope Q =
C ∩ A1 where A1 = {x : deg x = 1}. In this sense the Hilbert series is nothing
but the Ehrhart series of Q.

Note that the coefficients of the Hilbert series are computed by a quasi-
polynomial. Its leading coefficient is the suitably normed volume of Q.

3 Polyhedra and Inhomogeneous Systems

A main addition to the functionality of Normaliz is the direct support for (un-
bounded) polyhedra. For computations it is useful to homogenize coordinates by
embedding R

d as a hyperplane in R
d+1, namely via

κ : Rd → R
d+1, κ(x) = (x, 1).

If P is a (rational) polyhedron, then the closure of the union of the rays from
0 through the points of κ(P ) is a (rational) cone C(P ), called the cone over P .
The intersection C(P )∩ (Rd ×{0}) can be identified with the recession (or tail)
cone

rec(P ) = {x ∈ R
d : y + x ∈ P for all y ∈ P}.

It is the cone of unbounded directions in P . The recession cone is pointed if and
only if P has a vertex. The theorem of Minkowski-Weyl can then be generalized
as follows:

Theorem 2 (Motzkin). The following are equivalent for P ⊂ R
d, P �= ∅:

1. P is a (rational) polyhedron;
2. P = Q+ C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices,
and C = rec(P ) is uniquely determined.
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Clearly, P is a polytope if and only if rec(P ) = {0}. Normaliz computes the
recession cone and the polytope Q if P is defined by constraints. Conversely it
finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system

Ax ≥ b, A ∈ R
m×d, b ∈ R

m,

of linear inequalities (equations are replaced by two inequalities). Then C(P ) is
defined by the homogenized system

Ax− xd+1b ≥ 0,

whereas the rec(P ) is given by the associated homogeneous system Ax ≥ 0. The
solution set of the associated homogeneous system is always called the recession
cone of the system, even if P is empty.

Via the concept of dehomogenization, Normaliz allows for a more general
approach. The dehomogenization is a linear form δ on R

d+1. For a cone C̃ in
R

d+1 and a dehomogenization δ, Normaliz computes the polyhedron P = {x ∈
C̃ : δ(x) = 1} and the recession cone C = {x ∈ C̃ : δ(x) = 0}. In particular, this
allows other choices of the homogenizing coordinate.

Let P ⊂ R
d be a rational polyhedron and L ⊂ Z

d be an affine sublattice,
i.e., a subset w + L0 where w ∈ Z

d and L0 ⊂ Z
d is a sublattice. In order to

investigate (and compute) P ∩ L one again uses homogenization: P is extended
to C(P ) and L is extended to L = L0 + Z(w, 1). Then one computes C(P ) ∩ L.
Via this “bridge” one obtains the following inhomogeneous version of Gordan’s
lemma:

Theorem 3. Let P be a rational polyhedron with vertices and L = w + L0 an
affine lattice as above. Set recL(P ) = rec(P )∩L0. Then there exist x1, . . . , xm ∈
P ∩ L such that

P ∩ L = {(x1 + recL(P )) ∩ · · · ∩ (xm + recL(P ))}.
If the union is irredundant, then x1, . . . , xm are uniquely determined.

The Hilbert basis of recL(P ) is given by {x : (x, 0) ∈ Hilb(C(P )∩L)} and the
minimal system of generators can also be read off the Hilbert basis of C(P )∩L:
it is given by those x for which (x, 1) belongs to Hilb(C(P ) ∩ L). Normaliz
computes the Hilbert basis of C(P ) ∩ L only at “levels” 0 and 1.

We call M = recL(P ) the recession monoid of P with respect to L (or L0). It
is justified to say that P ∩L a module over recL(P ). In the light of the theorem,
it is a finitely generated module with a unique minimal system of generators.

After the introduction of coefficients from a field K, recL(P ) is turned into an
affine monoid algebra, andN = P∩L into a finitely generated torsionfree module
over it. As such it has a well-defined module rank mrank(N), which is computed
by Normaliz via the following combinatorial description: Let x1, . . . , xm be a
system of generators of N as above; then mrank(N) is the cardinality of the set
of residue classes of x1, . . . , xm modulo recL(P ).
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Clearly, to model P ∩ L we need linear diophantine systems of inequalities,
equations and congruences which now will be inhomogeneous in general. Con-
versely, the set of solutions of such a system is of type P ∩ L.

If Zd is endowed with a grading whose restriction toM satisfies our conditions,
then the Hilbert series

HN (t) =
∑

x∈N

tdeg x

is well-defined, and the qualitative statement above about rationality remains
valid. However, the degree may now be ≥ 0. Again, one has an associated
quasipolynomial with constant leading coefficient given by

qr−1 = mrank(N)
vol(Q)

(r − 1)!
, Q = rec(P ) ∩ A1.

The multiplicity of N is mrank(N) vol(Q).

4 Further Extensions

Normaliz now can compute the Hilbert function of a semiopen cone. Such a
semiopen cone is given by C′ = C \ F , where C is a cone and F is a union of
faces (not necessarily facets) of C. Typical applications come from mixed systems
of homogeneous inequalities and strict inequalities. This situation could also be
modeled by inhomogeneous constraints, but if only few faces are excluded it is
beneficial to compute in the original cone and just exclude F .

Additionally, we implemented two new methods of computing the lattice
points of a rational polytope. One is a specialization of the so-called dual mode
Hilbert basis computation to this case. The other one approximates the rational
polytope by a lattice polytope.

The extension NmzIntegrate (introduced in 2.9) counts lattice points with a
polynomial weight to compute the generalized Ehrhart series, see [4].

5 Algorithmic Improvements

Most of the algorithms in Normaliz base on a triangulation of the cone, i.e.
a subdivision into simplicial cones. Simplicial cones are generated by linearly
independent vectors and therefore they are much easier to handle than general
cones. The improvements focus on handling large triangulations.

A triangulation is a non-disjoint decomposition of the cone, the simplicial
cones intersect in lower dimensional cones. Especially for Hilbert series compu-
tations an exact (disjoint) decomposition is needed. Since version 2.7 a principle
described by Köppe and Verdoolaege in [5] is used to gain it from the triangula-
tion Γ . It allows the independent handling of the simplicial cones in Γ and thus
is superior over the old method, where the simplicial cones had to be compared
with each other. This exact decomposition of the cone is then used to obtain a
disjoint decomposition of the monoid M = C ∩ L of the form
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M =
⋃

σ∈Γ

⋃

y

(y +Mσ),

where y runs over a special finite subset of σ ∩ L and the Mσ are free monoids.
Such a disjoint union is called Stanley decomposition, named after R. Stanley
who proved its existence in 1982.

The pyramid decomposition is a newly developed method to compute huge
triangulations. It splits the cone in smaller pieces, the pyramids, and handles
them completely independent of each other. The result is an algorithm following
the “divide-and-conquerer” principle. It gives formidable improvements for larger
examples, both in computation time and memory usage, and enables Normaliz to
handle triangulations with more than 1011 simplicial cones. We refer the reader
to [3] for an exact description.

For Hilbert basis computations of combinatorial examples we had introduced
a partial triangulation in version 2.5. It has now been tuned to check the nor-
mality of even larger monoids. For example, the exact decomposition is used to
avoid duplicate points in the intersections of the simplicial cones. It reduces com-
putation time and memory requirements, together with intermediate reductions;
see [7] for more details.

Together with the parallelization of the algorithms, these improvements enable
us to compute significantly larger examples. One interesting class are the cut
monoids of graphs for which Sturmfels and Sullivant conjecture normality if the
graph is free of K5-minors (K5 is the complete graph on 5 vertices). With the
partial triangulation implementation of Normaliz 2.5 we were able to validate
the conjecture for all graphs up to 8 vertices. The recent version could verify the
conjecture for all graphs up to 10 vertices (see [7]), using a result of Ohsugi [6].
The biggest of these examples produced a partial triangulation with more than
15 ·109 simplicial cones, almost 7 ·108 candidates for the Hilbert basis, and took
30 hours with 20 threads on our compute server.
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