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Additions to the Theory of Algebras
with Straightening Law

WINFRIED BRUNS

In this article we want to supplement the theory of algebras with straight-
ening law, ASLs for short, by two additions. The first addition concerns the
arithmetical rank of ideals generated by an ideal of the poset underlying
the ASL. (The arithmetical rank is the least number of elements generating
an ideal up to radical.) It turns out that there is a general upper bound
only depending on the combinatorial data of the poset. In particular we
discuss ideals generated by monomials and show that the ideas leading to
the general bound can be used to derive sharper results in this special case.
On the other hand there exists a class of ASLs, called symmetric, in which
the general bound is always precise. This class includes the homogeneous
coordinate rings of Grassmannians, and perhaps the most prominent re-
sult in this context is the determination of the least number of equations
defining a Schubert subvariety of a Grassmannian.

As a second addition we introduce the notion of a module M with
straightening law over an ASL A. Such a module has a partially ordered
set of generators, a basis of standard elements each of which is a prod-
uct of a standard monomial and a generator, and finally the multiplication
A x M — M satisfies a straightening law similar to the straightening law
in A. We discuss some examples, among them the powers of certain ideals
generated by poset ideals and the generic modules. Remarkable facts: (i)
the first syzygy of a module with straightening law has itself a straightening
law, and (ii) the existence of natural filtrations which, for example, lead to
a lower bound on the depth of a module with straightening law. In the
last part we introduce a natural strengthening of the axioms which under
special conditions leads to a straightening law on the symmetric algebra
of the module. The most interesting examples to which we will apply this
result are the generic modules.

The theory of ASLs has been developed in [Ei] and [DEP.2]; the treat-
ment in [BV.1] also satisfies our needs. For the readers convenience we
have collected the definition, results relevant for us, and some significant
examples in the first section. Matsumura’s book [Ma] may serve as a source

for the commutative ring theory needed in this article.
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1. Algebras with Straightening Laws.

An algebra with straightening law is defined over a ring B of coeflicients.
In order to avoid problems of secondary importance in the following sections

we will assume throughout that B is a noetherian ring.

DEFINITION. Let A be a B-algebra and II C A a finite subset with partial
order <. A is an algebra with straightening law on II (over B) if the
following conditions are satisfled:

(ASL-0) A = 60,5, Ai is a graded B-algebra such that Ayg = B, II consists
of homogeneous elements of positive degree and generates A as a B-algebra.
(ASL-1) The products &; -+ - €, m 2> 0, & < -+ - <&, are a free basis of A
as a B-module. They are called standard monomials.

(ASL-2) (Straightening law) For all incomparable {,v € II the product £v

has a representation
fv = Z pfly a, € B,a, #0, p standard monomial,

satisfying the following condition: every pu contains a factor ¢ € II such
that ¢ < ¢, ¢ < wv. (It is of course allowed that £v = 0, the sum ) a,p

being empty.)
In [Ei] and [BV.1] B-algebras satisfying the axioms above are called
graded ASLs, whereas in [DEP.2] they figure as graded ordinal Hodge

algebras.
In terms of generators and relations an ASL is defined by its poset and

the straightening law:

(1.1) ProprosITION. Let A be an ASL on II. Then the kernel of the natural

epimorphism
B[T,: 7w elIl] — A, Tw — m,

is generated by the relations required in (ASL-2), i.e. the elements
LT, - Y 0T Tu=Te - Top if p=6 bn

See [DEP.2], 1.1 or [BV.1], (4.2).

(1.2) PROPOSITION. Let A be an ASL on II, and ¥ C II an ideal, i.ec.
Y €V, ¢ < o implies ¢ € U. Then the ideal AV is generated as a B-

module by all the standard monomials containing a factor v € ¥, and
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AJAVU is an ASL on I\ ¥ (II\ ¥ being embedded into A/A¥ in a natural
way. )

This is obvious, but nevertheless extremely important. First several
proofs by induction on |II], say, can be based on (1.2), secondly the ASL
structure of many important examples is established this way.

For an element ¢ € II we define its rank by

tké =k < there is a chain & = & > £p—1 > -+ > &1, & € 11,

and no such chain of greater length exists.

For a subset £ C II let
rk Q = max{rk¢é: € € Q}.

The preceding definition differs from the one in [Ei] and [DEP.2] which
gives a result smaller by 1. In order to reconcile the two definitions the

reader should imagine an element —oco added to II, vaguely representing

0c A
(1.3) PROPOSITION. Let A be an ASL on IL. Then

dimA =dimB +rkIl and htAIl = kIl

Here of course dim A denotes the Krull dimension of A and ht AIl the
height of the ideal ATl. A quick proof of (1.3) may be found in [BV.1],
(5.10). '

In the context of ASLs A we denote the length of a maximal M -sequence

in AIl, M a finitely generated A-module, by depth M.
We list three important examples of ASLs to which we will pay special

attention in the following sections.

(1.4) EXAMPLES. (a) In order to study ideals generated by square-free
monomials in the indeterminates of the polynomial ring B[Xy, ..., X, ] one

chooses II as the set of all square-free monomials ordered by:
E<w = v divides €.

(ASL-0) is satisfied for trivial reasons, and (ASL-1) holds since the standard
monomials correspond bijectively to the ordinary monomialsin Xy, ..., X;.

The straightening law is given by

fv=({MNv)({Uv)
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where ¢ Mwv is the greatest common divisor and £ U v the least common
multiple of £ and v. If @ C II is an arbitrary subset, then ) and the
smallest ideal ¥ D Q, ¥ = {¢: ) < w for some w € 2}, generate the same
ideal in B[Xy,...,X,], so the ideals generated by square-free monomials
belong to the class covered by (1.2).

For a given poset % the discrete ASL on ¥ is constructed as follows:
One makes the polynomial ring B[T,: ¢ € ¥] an ASL as just described
and passes to the residue class modulo the ideal generated by all products
T,T,, o,7 incomparable. Thus one obtains an ASL on ¥ in which the
straightening law takes the special form o7 = 0 for all incomparable o, 7 €
¥

(b) Let X be an m x n matrix of indeterminates over B, and I,(X)
denote the ideal generated by the ¢-minors (i.e. the determinants of the
t x t submatrices) of X. For the investigation of the ideals I;,(X) and the
residue class rings Ry(X) = B[X]/I;(X) one makes B[X] an ASL on the
set A(X) of all minors of X. Denote by [ai,...,a]b1,...,b] the minor

with row indices ay, ..., a; and column indices by, ..., b;. The partial order

on A(X) is given by

[a1, ... aulbi, ., 0u) <lety. ooy euldi,y ...y dy) =
u>v and a; <¢, b;<d;, e =1,...,0.

Then B[X] is an ASL on A(X); cf. [BV.1], Section 4 for a complete proof.
Obviously I,(X) is generated by an ideal in the poset A(X), so Ry(X) is
an ASL on the poset A;_1(X) consisting of all the ¢-minors, ¢+ <¢ — 1.

(¢) In the situation of (b) assume that m < n. Then the B-subalgebra
G(X) generated by the m-minors of X is a sub-ASL in a natural way, its
poset being given by the set I'(X') of m-minors. This result is essentially
due to Hodge. Again we refer to [BV.1], Section 4 for a proof. In denoting
an m-minor we omit the row indices.

If B = K is a fleld, then G(X) is the homogeneous coordinate ring of
the Grassmannian G,,(K™) of m-dimensional subspaces of the vector space

K™, The '(special) Schubert subvariety (ay,...,an) of the Grassmannian

is defined by the ideal generated by
{6eT(X): 6 n+1—am,....,n+1—a]},

an ideal in I'(X).
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(d) Another example needed below is given by “pfaffian” rings. Let Xj,
1 <1 < j < n, be afamily of indeterminates over B, X;; = —X;;, X;; = 0.
The pfaffian of the alternating matrix (X;,;,: 1 < u, v < t), t even, is
denoted by [i1,...,7;]. The polynomial ring B[X] is an ASL on the set
®(X) of the pfaffians [t1,...,1¢], 11 < -+ < iy, t < n. The pfaffians are
partially ordered in the same way as the minors in (b). The residue class
ring P,4o(X) = B[X]/ Pf,12(X), Pf,12(X) being generated by the (r+2)-
pfafians, inherits its ASL structure from B[X] according to (1.2). The
poset underlying P,42(X) is denoted ®,.(X). Note that the rings P.12(X)
are Gorenstein rings over a Gorenstein B—in fact factorial over a factorial

B, ¢f. [Av.1], [KL]. —

2. The Arithmetical Rank of a Poset Ideal.

Let V be an affine or projective algebraic variety, and W a closed subva-
riety of V. In general it is difficult to determine the smallest number w of

hypersurfaces H; in the ambient affine or projective space such that
W=VNnH N---NH,.

In more general and algebraic terms the problem above amounts to the
determination of the arithmetical rank ara I of an ideal I in a commutative
(noetherian) ring R, the arithmetical rank being defined to be the smallest

number t for which there are elements z1,...,z; € R such that

t
Radl = RadZR:vi.

=1
(In the projective situation one of course requires the z; to be homoge-

neous.) In this section we obtain an upper bound for the arithmetical rank

of an ideal I generated by an ideal {2 of the poset II underlying an ASL:
(2.1) PrROPOSITION. Let A be an ASL on Il over B, ) C II an ideal, and

I = AQ). Then there are homogeneous elements z1,...,z, € I, r = rk{Q,
such that Radl = Rad ) |_, Az;. In particular aral <rkQ.

PRrROOF: Let m be the least common multiple of the degrees of the elements

£ €, and e(é) = m/deg. We put

xT; = Z{e(f)’ r=1,...,m.

£eq
rk €=z
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Let v be a minimal element of Q (and, hence, of IT). Then v( = 0 for every

different minimal element ¢ € €, and one concludes

vry = vt ¢ Radz Az;.

1=1

Now an induction argument finishes the proof: Let Q be the set of minimal
elements of Q, 2= Q\Q, 4 =A/AQ, IT =1\ . The data A1, §) satisfy

the hypotheses of the proposition, and it follows that

Rad A§) C Rad(AQ + Z Az;) = Rad Z Az, —
1==1

1==2

In the next section we shall see that the bound of (2.1) is sharp under

special circumstances. A first specialization:
(2.2) COROLLARY. Let X be an m x n matrix of indeterminates over B.

Then
aral(X) < mn — 24 1.
Obviously [m —t +1,...,,m/n —t+1,...,,n] is the only maximal ele-
ment of the poset ideal generating I,(X), and one easily computes its rank.

Cf. (1.4),(b) for the ASL structure on B[X].

(2.3) REMARKS. (a) In general the bound given by (2.1) is not sharp:
Consider the ideal generated by X1, say, under the hypotheses of (1.4),(a),
or the ideal generated by [1]1], [2]1], and [12|12] under the hypotheses of
(2.2), m = n = 2. Admittedly, none of these counterexamples is completely
convincing: If one first takes the ideals in their “patural” rings B[X] and
B[X11,X21] resp. and then extends the ideal to B[X1,. .., X»] or B[X], the
precise bounds are obtained. It is quite clear that ara I in general cannot be
determined from the combinatorial data given by II and Q. In (2.5) below
we will note an improvement of (2.1) for a specific ASL which depends on
the form of the straightening relations.

(b) In [Ne], p. 180, Example (i),(a) Newstead showed that the bound in
(2.2) is precise for t = 2, B a field of characteristic 0. As Cowsik told us,
Newstead’s argument goes through for every t and can be transferred to
characteristic p > 0 via the use of étale cohomology. There is of course no

restriction in assuming that B is a field; otherwise one factors by a maximal

ideal first.
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For the case ¢ = min(m, n) Hochster has given an invariant-theoretic ar-
gument which shows that aral(X) = mn — t2 +1 in characteristic 0. Sup-
pose m < n. Then (in all characteristics) G(X) is the ring of invariants of
the SL(m, B)-action induced by the substitutions X — T'X, T' € SL(m, B),
on B[X]. In characteristic 0 the group SL(m, B) is linearly reductive. This
implies that G(X) is a direct G(X )-summand of B[X], B[X] = G(X) & C.
Let I =I,,(X) C B[X], and J = ING(X). Then I = JB[X], and

H{(B[X]) = HY(BIX]) = H)(G(X)) @ Hj(C);

here H; denotes cohomology with support in I, cf. [Ha]. Taking d =
nm — m? + 1, one concludes HY(B[X]) # 0 since d = dim G(X). By [Ha],
p. 414, Example 2, aral > d.

The preceding argument breaks down in positive characteristic since
HY(B[X]) = 0 then, provided n > m: HY(B[X]) = 0 for all i > ht] =
n —m —+ 1 according to [PS], p. 110, Proposition (4.1). It likewise fails for
t < min(m,n) since the subalgebra of B[X] generated by the ¢-minors has
the same dimension as B[X], ¢f. [CN] or [BV.1], Section 10. —

Specializing (2.1) to the example (1.4),(a) we obtain the following result

of Grabe ([Gr], Theorem 1):

(2.4) COROLLARY. Let Xy,..., X, be indeterminates over B, and I an
- ideal generated by square-free monomials fi,..., fm. Let p be the smallest

number of factors occuring among the f;. Then
aral <n-—p-+ 1.

The ASL A considered in the preceding corollary has a very special prop-
erty: If Q is an ideal in its underlying poset, then the maximal elements of
Q generate AQ. This allows a slight improvement of (2.1) which we only
give under the hypotheses of (2.4), a result almost obtained by Grébe ([Gr],

Theorem 2). The straightening relations in (2.4) are the equations

v =({Uv)(E M),

cf. (1.4),(a), and (6 Uv) < & v. Therefore it is enough to consider the
smallest subset of £ which contains the generators of I and is closed un-

der taking least common multiples, i.e. the subset ) formed by the least

common multiples of the subsets of {f1,..., fm}.
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(2.5) COROLLARY. Under the hypotheses of (2.4) one has

~

aral <tk {2

(where of course rk Q) is measured by chains in ﬁ) In particular, if ¢ is the

smallest number of factors occuring in any of the least common multiples

of two of the elements f1,..., fm, then

aral <n—q+2.

PROOF: One takes

T; = Z e, z':l,...,rkSNl,

£eQ
rk €=1

and argues as in the proof of (2.1). The second part follows since the
submaximal elements of  are given as £ Uwv, &,v € {fi,...,fm}, and
tkgéUv <thkglUv<n—q¢+1 —

Let n = 5, fi = XoXy, fo = X1 XXy, 3 = X1 X5 X5, fu = Xn X3 Xs.
Then (2.4) gives the trivial bound aral < 4 whereas (2.5) yields aral < 3,
and aral = 3, as shown in [Gr], 5., Beispiel 4. An example for which
(2.5) fails to give the precise value: Take n =5, fi = XpXy, fo = Xo X,
fs = X1X4, fa = X1 X3 X5 (|[Gr], 5., Beispiel 2). It is easily seen that x; =
XoXuXs, 20 = X1 X3 X5 + X1 X0 Xy, g = Xu Xy + X0 X5 + X Xy generate

the ideal up to radical. The algorithm by which Gréabe finds z;, 2y, 23 can

be described in the following way: One chooses subsets ¥q,..., ¥, C Q2
such that
(1) ¥, consists of incomparable elements of 2,7 =1,...,r,

(ii) the least common multiple of every pair 1,2 € Uy, 11 5 92, is in the
ideal generated by ¥y U ---UW,_q,

(iii) ¥y U---U ¥, contains the maximal elements of 2.

Then it follows that the elements z; = ) oy, w, i =1,...,r generate I up
to radical. (2.4) and (2.5) reflect two special choices of ¥y,..., ¥, which

work for all Q.
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3. Symmetric ASLs.

In this section we introduce a special class of ASLs which, though cer-

tainly very small, contains some important examples.

DEFINITION. Let A be an ASL on II over B. A is called symmetric'if it is

also a graded ASL with respect to the reverse order on II.

Note that this is only a condition concerning (ASL-2): the standard

monomials in the reverse order are the same as those with respect to the

given one.

(3.1) ExampLes. (a) If A is a symmetric ASL and © C II an ideal or a
coideal (i.e. the complement of an ideal), then A/AQ is a symmetric ASL.

(b) The discrete ASLs are symmetric.

(¢) G(X), the homogeneous coordinate ring of a Grassmann varicty, is a
symmetric ASL. This is stated in [Ho], Lemma 2.1 and [BV.1], (4.6), and
can in fact be seen very easily: The automorphism of B[X] which reverses
the order of the columns of X, induces an automorphism of G(X) which
(up to sign) permutes the maximal minors of X' and reverses the order of
I(X). It follows from (a) that the homogeneous coordinate rings of the
Schubert subvarieties are symmetric ASLs, too.

(d) More generally than (c), the multihomogeneous coordinate ring of a
flag variety is a symmetric ASL, cf. [Ei], Example (5). It can be described
in the following way. Let X be an n x n matrix of indeterminates over B,

and ny > ny > --- > n; a sequence of integers, ny < n, ng = 1. Then
one considers the B-subalgebra generated by the n;-minors of the first n;
rows of X, 7 =1,...,k. It is a sub-ASL of B[X] in a natural way since in

a standard representation
[1,...,1at,. .. ail[l, ., 7be, . by = Zaﬂy

every standard monomial 4 is of the form [1,...,7]...][1,...,j|...]: first it
has at most two factors, and secondly every row index appears in p with the
same multiplicity as on the left side, cf. [DEP.1], Theorem 2.1 or [BV.1],
(11.3). Now one can again apply the automorphism argument from (c). In
this case the automorphism does not completely reverse the order on the
poset; nevertheless the argument goes through as the reader may check.
(e) Let (L,M,U) be a finite lattice, I{ a field, and A the residue class ring
of the polynomial ring K[X,: a € L] modulo the ideal generated by all the
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polynomials
XoXpg — XangXaugs a, 3 incomparable.

In [Hi], Theorem, Hibi has shown that the following conditions are equiv-
alent: (i) A is a graded ASL on L (relative to the embedding L — A4,
a — X4), (ii) 4 is an integral domain, (ii1) L is distributive. Of course A
is a symmetric ASL if L is distributive.

Moreover Hibi shows on p. 103 of [Hi] that a lattice L must be distribu-
tive if there is a symmetric ASL on L which is a domain and in which

the standard monomials in the straightening relations all have exactly two

factors. —

In symmetric ASLs the arithmetical rank on an ideal A is always given

by the rank of , and sometimes this holds under more general circum-

stances:

(3.2) PrOPOSITION. Let A be an ASL on Il over B, §) C Il an ideal, and
I = AQ. Let C(2) denote the B-submodule generated by all the standard
monomials which have a factor in I\ Q. Suppose that one of the following
hypotheses is satisfied:

(i) B[Q] N C(2) = 0 and C(Q) is a B[Q]-submodule of A,
(ii) C(Q?) is an ideal in A.
Then ara I = rk Q.

(3.3) COROLLARY. Let A be a symmetric ASL on II over B, Q C II an
ideal, and I = AS). Then aral =1k (2.

The corollary follows immediately from the proposition since C(£2) is the
ideal generated by II \ Q if 4 is symmetric. By the way, one easily finds
examples which demonstrate that none of the hypotheses (i) or (i) in (3.2)

implies the other one.

PROOF OF (3.2): In view of (2.1) we may first factor out a maximal ideal
of B and assume that B is a field.

If hypothesis (i) is satisfied, B[] is the B-module generated by all the
standard monomials consisting entirely of factors from . Therefore B[S)]
is an ASL in a natural way, and dim B[] = rtk Q (cf. (1.3)). Furthermore
B[] is a direct B[{]-summand, and now one applies the cohomological

argument detailed in (2.3),(b).
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If hypothesis (ii) is satisfied, one passes to A = 4/C() which is an ASL
on ) in a natural way. Let I = AQ. Then

aral >aral >htI=rkQ. —

(3.4) COROLLARY. Let K be an algebraically closed field. The minimal
number of equations defining the Schubert variety §)(aq,...,am) as a sub-

variety of G, (V), dimV = n, is given by

max m(n—m)—(m—Fk+1)(ar—k)+ 1.

ap—k<n—m

Proor: Using the information presented in (1.4),(c) we let b; = n —
iy + 1,4 =1,...,m, and v = [by,...,bn]. The maximal elements

of Q={6 € I'(X): 6 # v} are given by
=[b;—1,...,0; —1,n—(m—14i)+1,...,n], b; > 1.
An easy computation yields
tkr; =m(n—m)+1—i(n—m-—>0; +1+1).

Replacing ¢ by m — k + 1 and b; by n — ay + 1, one obtains the desired

result. —

(3.5) REMARK. Let B be an integral domain, A = B[X], I = I;(X) as in
(2.2). The “symbolic graded ring”

A= @[(l’)/[(iH)
=0 -

is a graded ASL over B on the poset A* given by the leading forms of the
minors of X. The ideal Q* C A* consisting of the leading forms of the
ideal @ C A generating [ satisfies both of the hypotheses (i) and (ii) of
(3.2) though A is not a symmetric ASL, cf. [BV.1], Section 10. It follows
that ara AQ* = mn — 2 + 1, a result we cannot prove by ASL methods for

I =AQ. —
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4. Straightening Laws on Modules.

It occurs frequently that a module M over an ASL A has a structure
closely related to that of A: the generators of M are partially ordered, a
distinguished set of “standard elements” forms a B-basis of M, and the mul-
tiplication A x M — A satisfles a straightening law similar to the straight-
ening law in A itself. In this section we introduce the notion of a module
with straightening law whereas the next section contains a strengthening
of this notion.

DEFINITION. Let A be an ASL over B on II. An A-module M is called
a module with straightening law (MSL) on the finite poset X C M if the

following conditions are satisfied:
(MSL-1) For every z € X there exists an ideal Z(z) C II such that the

elements
él"'gnxa :EEX) €1¢I($)7 51_<_"'S€na nZO,

constitute a B-basis of M. These elements are called standard elements.
(MSL-2) For every z € X and £ € Z(z) one has

£z € ZAy.

y<z

It follows immediately by induction on the rank of z that the element £z

as in (MSL-2) has a standard representation

fr = Z(Z bezuy )Y bezpy € B, bezpy # 0,

y<z
in which each uy is a standard element.

~ (4.1) REMARKS. (a) Suppose M is an MSL, and 7 C & an ideal. Then
the submodule of M generated by 7 is an MSL, too. This fact allows one
to prove theorems on MSLs by noetherian induction on the set of ideals of
X.

(b) It would have been enough to require that the standard elements
are linearly independent. If just (MSL-2) is satisfied then the induction
principle in (a) proves that M is generated as a B-module by the standard

elements. —

(4.2) EXAMPLES. (a) A itself is an MSL if one takes X = {1}, Z(1) = {.
Another choice is ¥ = MU {1}, Z(§) ={rell:n 2 £}, Z(1) =11 >«
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for each 7 € II. The relations necessary for (MSL-2) are then given by the

identities 71 = m, the straightening relations
v = Z butt, £,v incomparable,
and the Koszul relations
fv = Ve, £ <.

By (4.1),(a) for every poset ideal ¥ C II the ideal AV is an MSL, too.

(b) Suppose that ¥ as in (a) additionally satisfies the following condition:
Whenever ¢,1 € ¥ are incomparable, then every standard monomial p in
the standard representation ¢ = 3 a,u, a, # 0, contains at least two
factors from ¥. This condition appears in [Hu], [EH], [BST], and in
[BV.1], Section 9 where the ideal I = AV is called straightening-closed.
As a consequence of (d) below the powers I"™ of I = A¥ are MSLs. Observe
in particular that the condition above is satisfied if every p a priori contains
at most two factors and U consists of the elements in II of highest degree.

(¢) In order to prove and to generalize the statements in (b) let us consider
an MSL M on & and an ideal ¥ C II such that I = AV is straightening-
closed and the following condition holds:

() The standard monomials in the standard representation of a product

Yz, € ¥, z € X, all contain a factor from W.
Then it is easy to see that IM is again an MSL on the set {¢pz: 2 € X, ¢ €
U\ Z(z)} partially ordered by

Yz < gy = z<y or z=vy, P <o,

if one takes
I(pz)={mrell: m £ ¢}.
Furthermore (*) holds again. Thus I™M is an MSL for all n > 1, and in

particular one obtains (b) from the special case M = A.
The residue class module M/IM also carries the structure of an MSL on

the set X of residues of X if we let

Combining the previous arguments we get that ™M /I™"1 M is an MSL for
all n > 0.
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In the situation just considered the associated graded ring Gry A4 is an
ASL on the set II* of leading forms (ordered in the same way as II),
cf. [BST] or [BV.1], (9.8), and obviously Gry M is an MSL on X'*.

(d) Let A = B[X]/L,41(X) as in (1.4), (b), 0 < r < min(m,n) (so
A = B[X] is included). The matrix X over A whose entries are the residue
classes of the indeterminates defines a map A™ — A", also denoted by
X. The modules Im X and Coker X have been investigated in [Br.1]. A
simplified treatment has been given in [BV.1], Section 13, from where we
draw some of the arguments below. Let dy,...,d, and ey,...,e, denote

the canonical bases of A™ and A™. Then we order the system €y,...,€, of

generators of Coker X linearly by
T > >

Furthermore we put

() {{5€AT(X):62[1,...,7"[1,...,/2'\,...,r—{—1]} for i < r,
€;) =
) else,

if » < n, and in the case in which r =n
I(@)={6 €A (X): 6 #[1,...,r —11,...,%,...,7] }.

(where 7 denotes that 7 is to be omitted). We claim: Coker X is an MSL

with respect to these data.
Suppose that ¢ € Z(€;). Then

§=lar,...,as]l, ... 0, bip1,. .., bs], s <.

The element

S (=1 ar, G asll = 1 b, 0] X (dy)

j=1

of Im X is a suitable relation for (MSL-2):

(1) §ei= Y Far,...,adl,. i =1k b, bR
k=1+1
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Rearranging the column indices 1,...,i—1,k,bit1,...,bs In ascending order
one makes (1) the standard representation of ¢¢;, and observes the following

fact recorded for later purpose:

(2) & ¢ Z(er) for all k > 1+ 1 such that
[al,...,asll,...,z’—— 1,k,bz‘+],...,b3] 75()

In order to prove the linear independence of the standard elements one may

assume that r < n since [,,(X) annihilates M. Let

M= Az, U={8cA(X):62[L...,r[L,...,r =17 +1]}
1=r+1
and [ = AW.

We claim:
(i) M is a free A-module.
(ii) M/M is (over A/I) isomorphic to the ideal generated by the minors
[1,...,r|1,...,?,...,r—#l], 1<:<r,in A/IL.
In fact, the minors just specified form a linearly ordered ideal in the poset
An(X)\ ¥ underlying the ASL A/I, and the linear independence of the
standard elements follows immediately from (i) and (ii).

Statement (i) simply holds since rank X = r, and the r X r-minor in
the left upper corner of X, being the minimal element of A,(X), is not a
zero-divisor in A. For (ii) one applies (4.5) below to show that M/]T/f and

the ideal in (ii) have the same representation given by the matrix

D CT . G

X1 oo Xpr
the entries taken in A/I: The assignment &; — (—1)""'[1,...,r|1,... .
r + 1] induces the isomorphism. The computations needed for the applica-
tion of (4.5) are covered by (1).

By similar arguments one can show that Im X is also an MSL, see [BV.1],
proof of (13.6) where a filtration argument is given which shows the linear
independence of the standard elements. Such a filtration argument could
also have been applied to prove (MSL-1) for M.

(e) Another example is furnished by the modules defined by generic alter-
nating maps. Recalling the notations of (1.4), (d) welet A = B[X]/ Pf,12(X)

and M be the cokernel of the linear map

X: F— F*, F=A"
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In complete analogy with the preceding example M is an MSL on {€1,...,&,},
the canonical basis of F'*, € > - > €y, if one puts

T(z. ___{{’H'E(I’T(X):’/Tz[1,...,’;,‘...,7‘—{*1]} for 1 <r,
(€)= 0 -~ else,

if » < n, and in the case in which r =n

. {WE‘P(X):WZ[1,...,/2'\,...,7'——1]} for 1<n-—1,
I(ez)_ﬂ{{[l,...,n]} for < =n.

The straightening law (1) is replaced by the equation

n

(1) 7e = Y H[l,... i1k b, b5,
k=i+1

obtained from Laplace type expansion of pfaffians as (1) has been derived
from Laplace expansion of minors. Observe that the analogue (2') of (2)

is satisfied. The linear independence of the standard elements is proved in

entire analogy with (d).
A notable special case is n odd, r = n—1. In this case Coker X = Pf, (X))

is an ideal of projective dimension 2 [BE] and generated by a linearly

ordered poset ideal in ®(X). —
The following proposition helps to detect further MSLs:
(4.3) PROPOSITION. Let M, My, M, be modules over an ASL A, connected

by an exact sequence

0 — M, y M — M, 0.

Let M, and M, be MSLs on X; and X,, and choose a splitting f of the
epimorphism M — My over B. Then M is an MSL on X = X; U f(&>)
ordered by ) < f(a3) for all z; € Xy, z9 € Xy, and the given partial orders
on X; and the copy f(Xy) of Xy. Moreover one chooses I(x), x € Xy, as in

My and Z(f(z)) = I(z) for all z € X}.
The proof is straightforward and can be left to the reader.

(4.4) EXAMPLE. The preceding proposition helps to supplement (4.2),(c).
Under the hypotheses there one has that M/I™"M is an MSL for all n > 1.
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It has been stated in (4.2),(c) that all the quotients I™ AL /™1 M are MSLs,

and therefore we may argue inductively by the exact sequence
0 — I"M/IT" "M — M/T"H'M — M/I"M — 0.

In particular one has that A/I™ is an MSL over A (though it is not an ASL
for n > 2). —

In terms of generators and relations an ASL is defined by its generating
poset and its straightening relations, ef. (1.1). This holds similarly for
MSLs:

(4.5) PROPOSITION. Let A be an ASL on Il over B, and M an MSL on

X over A. Let e,, x € X, denote the elements of the canonical basis of the

free module AY. Then the kernel Ky of the natural epimorphism

v

AY — M, e, — T,

is generated by the relations required for (MSL-2):

pfﬁzé.el‘_zaf:cyey7 -’I;EKY, 561(3])
y<z

PROOF: We use the induction principle indicated in (4.1), (a). Let & € X
be a maximal element. Then 7 = A"\ {Z} is an ideal. By induction AT is
defined by the relations pg,, z € 7, £ € I(x). Furthermore (MSL-1) and

(MSL-2) imply
(3) MJAT = AJAT(3)
If az2 — 3, crayy = 0, one has az € AZ(z) and subtracting a linear

combination of the elements pg; from aze; — ZyE’T aye, one obtains a

relation of the elements y € 7 as desired. —
The kernel of the epimorphism A% — M is again an MSL:

(4.6) PrOPOSITION. With the notations and hypotheses of (4.5) the kernel
Ky of the epimorphism A% — M is an MSL if we let

Lpez) ={m e 1l: m 2 &}

and
Pez < Puy = z<y or z=vy, (<.
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PROOF: Choose Z and 7 as in the proof of (4.5). By virtue of (4.5) the
projection AY — Aez with kernel A7 induces an exact sequence

0 — Ky — Ky — AZ(z) — 0.

Now (4.3) and induction finish the argument. —

If a module M is given in terms of generators and relations, it is in general
more difficult to establish (MSL-1) than (MSL-2). For (MSL-2) one “only”
has to show that elements pg, as in the proof of (4.5) can be obtained as
linear combinations of the given relations. In this connection the following

proposition may be useful: it is enough that the module generated by the

per satisfies (MSL-2) again.

(4.7) PROPOSITION. Let the data M,X,I(z),z € X, be given as in the
definition, and suppose that (MSL-2) is satisfied. Suppose that the kernel
K+ of the natural epimorphism AY — M is generated by the elements
per € AV representing the relations in (MSL-2). Order the pe, and choose
T(pex) as in (4.6). If Ky satisfies (MSL-2) again, M is an MSL.

PROOF: Let # € X be a maximal element, 7 = X'\ {z}. We consider the

induced epimorphism

AT 5 AT

with kernel K7. One has K7 = Ky N A7, Since the pe, satisfy (MSL-2),
every element in Ky can be written as a B-linear combination of standard
elements, and only the pgz have a nonzero coefficient with respect to ez.
The projection onto the component Aez with kernel AT shows that K7

is generated by the pez, 2 € 7. Now one can argue inductively, and the

split-exact sequence
0 — AT — M — MJAT 2 AJAZ(Z) — 0

of B-modules finishes the proof. —

Modules with a straightening law have a distinguished filtration with

cyclic quotients; by the usual induction this follows immediately from the

isomorphism (3) above:

(4.8) PROPOSITION. Let M be an MSL on X over A. Then M has a
filtration 0 = My C M; C -+ C M, = M such that each quotient My /M;
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is isomorphic with one of the residue class rings A/AZ(z), = € &, and
conversely each such residue class ring appears as a quotient in the filtration.
As a consequence one can bound the depth of an MSL (cf. Section 1 for
the definition of depth in this context).
(4.9) COROLLARY. Let M be an MSL on X over A. Then
depth M > min{depth A/AZ(z): z € X}.
We specialize to ASLs over wonderful posets (cf. [Ei], [DEP.2], or [BV.1]
for this notion and the properties of ASLs over wonderful posets).
(4.10) COROLLARY. Let A be an ASL on the wonderful poset 11.
(a) If M is an MSL on X over A, then
depth M > min{rk I — tk Z(z): 2 € X'}
(b) Let W C II be an ideal. Then
depth A/AV > rkII —rk W,
(¢) Suppose furthermore that I = AW is straightening-closed. Then
depth A/I"™ > rkII —rk ¥ for all n > 1.
Proor: In (b) and (c¢) AP and I™ resp. are MSLs on a certain poset &',
cf. (4.2),(b) and (c) above. In both cases one has
I(z)={rell:mZ 9} for some € ¥
for all z € X. II\ Z(z) is wonderful again (cf. [DEP.2], 8.2 or [BV.1],
(5.13)) and therefore
depth A/AZ(z) > rkIl —rke +1 > kIl —rk ¥ + 1

by virtue of [DEP.2], 8.1. Now one applies (4.9) and switches from AV
and I™ to the residue class rings. Part (a) finally follows from (4.9) and

(b). —

Of course the inequalities (4.9) and (4.10) can be improved in many cases.
For example, A/A¥ may be a Cohen-Macaulay ring. On the other hand
there is a class of ideals I such that one has equality in (4.10),(¢) for n > 0,
of. [BV.1], (9.22). The depth of the generic modules (4.2),(d) and (e) has
been determined in [BV.1], Section 13 and [BV.2] resp. using the fact
that, with the notations of (4.2),(d), the depth of .M/M can be computed
exactly.

Further consequences concern the annihilator, the localizations with re-

spect to prime ideals P € Ass A, and the rank of an MSL.
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(4.11) ProrOSITION. Let M be an MSL on X over A, and
J=A([) Z(2))-
ZCE/Y
Then
JDOAnnM D J", n =rkX.
PRrROOF: Note that A((Z(z)) = [)AZ(z) (as a consequence of (1.2)). Since
Ann M annihilates every subquotient of M, the inclusion Ann M C J fol-
lows from (4.8). Furthermore (MSL-2) implies inductively that
JMc ) Az
rkz<rkII—:
for all 7, in particular J"M = 0. —
(4.12) PROPOSITION. Let M be an MSL on X over A, and P € Ass A.
(a) Then {w € Il : # ¢ P} has a single minimal element o, and o is also a

minimal element of II.

(b) Let Y = {x € X : 0 ¢ I(z)}. Then Y is a basis of the free Ap-module
Mp. Furthermore (K y)p Is generated by the elements 9., z ¢ Y.

PRrROOF: (a) If my,me, my # mg, are minimal elements of {r € Il : = ¢ P},
then, by (ASL-2), my,m € P. So there is a single minimal element o. It has
to be a single minimal element of I, too, since otherwise P would contain
all the minimal elements of II whose sum, however, is not zero-divisor in A

([BV.1], (5.11)).

(b) Consider the exact sequence

0 — AT — M — A/AT(Z) — 0
introduced in the proof of (4.5). If T ¢ Y, then ¥ € Ap7 by the relation

0,3, and we are through by induction. If € Y, then ¢ and all the elements
of Z(Z) are incomparable, so they are annihilated by o (because of (ASL-
2)). Consequently (A/AZ(Z))p & Ap, T generates a free summand of Mp,
and induction finishes the argument again. —

We say that a module M over A has rank r if M ® L is free of rank r as
an L-module, L denoting the total ring of fractions of 4. Cf. [BV.1], 16.A
for the properties of this notion.

(4.13) COROLLARY. Let M be an MSL on X over the ASL A on II. Sup-
pose that I has a single minimal element 7, a condition satisfied if A is a

domain. Then

rank M = [{z € X: Z(z) = 0}].
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5. Modules with a Strict Straightening Law.

Some MSLs satisfy further natural axioms which strengthen (MSL-1) and
(MSL-2). Let M be an MSL on X over A. The first additional axiom:

(MSL-3) For all z,y e X :  z <y = I(z) C I(y).

The property (MSL-3) implies that II U A’ is a partially ordered set if we
order its subsets II and A" as given and all other relations are given by

z < = £ ¢ I(z).

(MSL-3) simply guarantees transitivity. If it is satisfied, one can consider

the following strengthening of (MSL-2):
(MSL-4) {z = Zy<x’5 aegyy forallz e X, € € I(z).

DEFINITION. We say that M has a strict straightening law if it is an MSL
satisfying (MSL-3) and (MSL-4).

An ideal I C A generated by an ideal ¥ C II is a trivial example of a
module with a strict straightening law, and the generic modules (4.2),(d)
and (e) may be considered significant examples. On the other hand not
every MSL has a strict straightening law. The following proposition which
strengthens (4.11) excludes all the modules M/I"M, n > 2, as in (4.4),
in particular the residue class rings A/I"A, n > 2, I = AWV straightening-

closed.

(5.1) PROPOSITION. Let M be a module with a strict straightening law
on X over A. Then
Ann M = A( ﬂ I(z)).
zeX
PROOF: In fact, if € € ((Z(z), then £z = 0 for all z € &, since there is no
element y € X,y < €. —

Suppose that X is linearly ordered. Then the straightening laws (MSL-
4) and (ASL-2) constitute a set of straightening relations on II U X', and
the following question suggests itself: Is the symmetric algebra S(A) an
ASL over B? In general the answer is “no”, as the following example
demonstrates: A = B[Xy, X2, X3], X7 < X < X3,

M = A3/(A(X1a070) + A(X27O)O) + A(07X1>X3))7
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the residue classes of the canonical basis ordered by €; > €2 > €3. On the
other hand S(I) is an ASL if I is generated by a linearly ordered poset
ideal, cf. [BV.1], (9.13) or [BST]; one uses that the Rees algebra R(I)
of A with respect to I is an ASL, and concludes easily that the natural
epimorphism S(I) — R(I) is an isomorphism. We will give a new proof of
this fact below.

The following proposition may not be considered ultima ratio, but it

covers the case just discussed and also the generic modules.

(5.2) PROPOSITION. Let M be a graded module with strict straightening
law on the linearly ordered set X = {zy1,...,2n}, ©1 < -+ < z,. Put
X = {xq,..., 25}, My = AX;, M4y = M/M;, i =0,...,n. Suppose that
for all j > 7 and all prime ideals P € Ass(A/AZ(z;)) the localization (M) p
is a free (A/AT(x;))p-module, i =1,...,n.

(a) Then S(M) is an ASL on ITU X.

(b) If I(zy) = 0, then S(M) is a torsionfree A-module.

Proo¥: Since I[IUX generates S(M) as a B-algebra (and S(M) is a graded
B-algebra in a natural way) and (ASL-2) is obviously satisfied, it remains to
show that the standard monomials containing %k factors from X are linearly
independent for all k& > 0. Since S°(M) = A this is obviously true for
k = 0, and it remains true if Ann M = AZ(z,) is factored out; since this
does not affect the symmetric powers Sk(]\/[), k > 0, we may assume that
AnnM = 0. If n = 1, then M is now a free A-module and the contention

holds for trivial reasons.

The hypotheses indicate that an inductive argument is in order. In- -

dependent of the special assumptions on M; and Z(z;) there is an exact

sequence
(5) Sk(M) L5 sFP () L SMY (M Azy) — 0

in which f is the natural epimorphism and ¢ is the multiplication by z;.
Let P € AssA. By (4.12) z; generates a free direct summand of Mp.
Therefore (5) splits over Ap, and g ® Ap is injective. It is now enough to
show that S¥(M) is torsionfree; then ¢ is injective itself and (5) splits as a
sequence of B-modules as desired: By induction the standard elements in
S*(M) as well as in S¥T1(M/Az,) are linearly independent.

The linear independence of the standard elements in S*(M) implies that
S*(M) is an MSL over A on the set of monomials of length & in X with
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respect to a suitable partial order and the choice
T(xy - wiy) = I(z4q,), iy < e < g

Let P € Spec A, P ¢ AssA. Then P ¢ Ass(A/AZ(x1)), since Z(z1) = 0
by assumption. If P ¢ Ass(A/AZ(z;)) for all j = 2,...,n, then P ¢
AssS*(M) by virtue of (4.8); otherwise S*(M)p is a free Ap-module by
hypothesis. Altogether: Ass Sk(]\f) = Ass A, and Sk(]\éf) is torsionfree. —

(5.3) COROLLARY. With the notations and hypotheses of (5.2), the sym-
metric algebra S(M;) is an ASL on ITU &; for all i = 1,...,n. S(M;) is a

sub-ASL of S(M) in a natural way.

PRrOOF: There is a natural homomorphism S(M;) — S(M) induced by
the inclusion M; — M. Since S(M;) satisfies (ASL-2), it is generated as
a B-module by the standard monomials in II U X;. Since these standard
monomials are linearly independent in S(M ), they are linearly independent

in S(M;), too, and S(MM;) is a subalgebra of S(M). —
The following corolhry has already been mentioned:

(5.4) COROLLARY. Let A be an ASL on II, and ¥ C II a linearly ordered
ideal. Then S(AW) is an ASL on the disjoint union of Il and W.

Proo¥r: For each 1 € ¥ the poset IT\ Z(¢) has 1 as its single minimal el-
ement. Let ¥ = {4y, ..., ¢n}, 1 < -+ < pp. If P € Ass(A/AZ(4);)), then
; ¢ P since % is not a zero-divisor of the ASL A/AZ(3;). Consequently
(A\I//(Zizl Avy))p 1s isomorphic to (A/Z(;))p for all o < 3. —

We want to apply (5.2) to the generic modules discussed in (4.2), (d),
and recall the notations introduced there: A = B[X]/I,41(X) is an ASL
on A.(X), the set of all i-minors, ¢ < r, of X. M is the cokernel of the

map A™ — A" defined by the matrix X, €j,...,&, are the residue classes
of the canonical basis ey, ..., e, of A™. (Thus M} is the submodule of M
generated by €p—k41,.--,En-)

(5.5) COROLLARY. (a) With the notations just recalled, the symmetric
algebra of a generic module M is an ASL. If r +1 < n, S(M) is torsionsfree

over A.

(b) Let B be a Cohen-Macaulay ring. S(M) is Cohen-Macaulay if and only
fr+l<norr=m=n.

PROOF: (a) Factoring out the ideal generated by ZI(€,) we may suppose
that »r < n. Note that with the notations introduced in (4.2),(d) one has
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€, < +-+ < €. Because of statement (ii) in (4.2),(d) the validity of the
hypothesis of (5.2) for 1 > n — r + 1 follows from the proof of (5.4).

Leti: <n-—r,j >4, k=n—J+1,6=[1,...,7]1,...,r]for k >r+1
and 6 = [1,...,7‘]1,...,%,...,7‘ + 1] for ¥ < r. Then § is the minimal
element of the poset underlying A/Z(T;) = A/Z(€k), thus not contained in

an associated prime ideal of the latter. On the other hand (Mi)p is free

for every prime P not containing 6.

(b) in order to form the poset II U {€1,...,€,} one attaches {€1,...,&n}
to II as indicated by the following diagrams for the cases 7 +1 < n and
r =m = n resp. In the first case we let §; = [1,...,r|1,...,?,...,r+ 1], in

the second &§; = [1,...,r = 1]1,...,4,...,7].

61 5
& §2
& AU
E;\/\[l,...,nll, , 1]
€ri2
z, b
It is an easy exercise to show that IIU{ey,...,€,} and TU{€p—f+1,...,€n}

are wonderful, implying the Cohen-Macaulay property for ASL’s defined on

the poset ([BV.1], Section 5 or [DEP.2]).
In the case in which m > n = r, the ideal I,(X)S(}M) annihilates

D;s S(M), and dimS(M)/I,(X) < dimS(M) by (1.3), excluding the
Cohen-Macaulay property. —

Admittedly the preceding corollary is not a new result. In fact, let ¥ be

an n X 1 matrix of new indeterminates. Then
S(M) = BIX, ¥]/(I41(X) + L,(XY))

can be regarded as the coordinate ring of a variety of complexes, which has
been shown to be a Hodge algebra in [DS]. The results of [DS] include
part (b) of (5.5) as well as the fact that S(M) is a (normal) domain if
r+1 < n and B is a (normal) domain. The divisor classgroup of S(M) in
case r+1 < b, B normal, has been computed in [Br.2]: CI(S(M)) = CI(B) if
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m =71 <n—1, Cl(S(M)) = CI(B)®Z else. The algebras S(M ), in particular
for the cases r+1 > min(m,n), i.e. 4 = B[X], and r+1 = min(m, n), have
received much attention in the literature, cf. [Av.2], [BE], [BKM], and
the references given there. Note that (5.5) also applies to the subalgebras
S(My). In the case A = B[X], m < n, these rings have been analyzed in
[BS].

The analogue (5.6) of (5.5) seems to be new however. We recall the
notations of (4.2), (¢): X is an alternating n x n-matrix of indeterminates,
A = B[X]/Pfra(X), F = A", X: F — F* given by the residue class of
X, and M = Coker X.

(5.6) COROLLARY. (a) With the notations just recalled, the symmetric
algebra of an “alternating” generic module M is an ASL. If r < n, S(M) is

a torsionfree A-module.

(b) Let B be a Cohen-Macaulay ring. Then S(M) is Cohen-Macaulay if

and only if r < n.
(¢) Let B be a (normal) domain. Then S(M) is a (normal) domain if and

only if r < n.
(d) Let B be normal and r < n. Then CI(S(M)) = C(B)®Zifr =n-1,
and CI(S(M)) = CIB) if r < n— 1. In particular S(M) is factorial if

r <n—1 and B 1is factorial.

PRrOOF: (a) and (b) are proved in the same way as (5.5).

Standard arguments involving flatness reduce (c) to the case in which
B is a field (cf. [BV.1], Section 3 for example). Thus we may certainly
suppose that B is a normal domain.

In the case in which r = n — 1 the module M is just I = Pf,_1(X)
as remarked above, an ideal generated by a linearly ordered poset ideal.
Then (i) Gry A is an ASL, in particular reduced, and (ii) S(M) is the Rees
algebra of A with respect to I (cf. [BST] for example). Thus we can apply
the main result of [HV] to conclude (¢) and (d).

Let » < n — 2 now. In the spirit of this paper a “linear” argument seems
to be most appropriate: By [Fo], Theorem 10.11 and [Av.1] it is sufficient
that all the symmetric powers of M are reflexive. Since Mp, hence Sk(]\lp)
is free for prime ideals P % Pf.(X) it is enough to show that Pf.(X)
contains an Sk(]\l)—sequence of length 2 for every k. Each Sk(]\l) is an
MSL whose data Z(...) coincide with those of M itself. Therefore (4.8)

~ can be applied and we can replace the Sk(.M) by the residue class rings

AlL, I = A{r € &p(z): 7 2 [1,...,/2'\,...,r+1}}, i =1,...,7. One has
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PI.(X) D L.
The poset II underlying A/I; is wonderful (cf. [DEP.2], Lemma 8.2 or
[BV.1], (5.13)). Therefore the elements

[1,...,/2'\,...,7’%—1}: Zﬂ’ and Zﬂ’

rell n €Il
rknr=1 rkr=2

form an A/I;-sequence by [DEP.2|, Theorem 8.1. Both these elements are
contained in Pf,.(X).
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