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THE CANONICAI MODULE OF A DETERMINANTAL RING

WINFRIED BRUNS

Let R be a commutative noetherian ring. We call an R-module
M a canonical module of R if for each prime ideal p of R the local-
ization M is a canonical module of Rp in the sense of [5]. A

determinantal ring is a residue class ring of a polynomial ring

B[X .: 1<i<u, 1<j<v] with respect to the ideal I (X..) gener-
13 r+1 13

ated by the determinants of the (r+1,r+1)-submatrices of the (u,v)-
matrix (Xij) whose entries are the algebraically independent elements
Xij over the commutative noetherian ring B.

Determinantal rings play an important role in various geometric
and algebraic contexts. They can be considered well-understood
since Hochster and Eagon proved their perfection (relative to the
polynomial ring B[Xij]) in the remarkable article [7] which further-
more contains many useful results on the ideal theory of determinant-
al rings. We became interested in the canonical modules of deter-
minantal rings when their computation appeared as a rather natural
step in our investigation of generic maps of a given rank and the
modules associated to these maps [2]. The generic maps of rank r
are the maps qb:Su > Sv, where S = Z[Xij]/1r+1(xij) and ¢ is repre-
sented by the matrix (xij) of the residue classes of the indeter-
minates Xij' It turned out that (in the non-degenerate case where
r>1) Coker ¢ is perfect if and only if u=zv. This asymmetry in
the behaviour of Coker ¢ is caused by the structure of the canonical
module of S which represents the asymmetry of the format of a non-
square matrix in a ring-theoretic way.

THEOREM. et B be a normal Gorenstein domain, and u,v,r
integers such that 1<r<v<su. Let Xij' 1<i<u, 1<j<v, be
algebraically independent elements over B, and R the residue class

ring B[Xijj/lr+1(xij). Let further E_denote the ideal gene?gfgd by
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sequence
+
0> xp™ 5 ¥ Ext;(T,p(n)) > 0.
.+.
The ideal xp(n) is divisorial, cl(xp(n)) = cl(p(n m) n oa,

+ - .
xp(n) contains gg(n), and p(n m)/xp(n) is isomorphic to a (divisorial)
. . (n+m) . e
ideal of T. Then necessarily xp(n) = p na. Finally it is

easy to check that conditions (c) and (d) guarantee that
(n+m)

oM 2y = ((atp) /a)

.0

Determinantal rings R are normal as soon as B is normal [7].
Their divisor class group Cl(R) was computed in [1]: Cl(R) =
Cl(B) & 2£. The second component is generated by the class of the

prime ideal p of the r-minors of the first r rows of (xij) and by

-cl{(p) = cl(g), where g is the corresponding ideal for the columns.

If B is a factorial dbmain, in particular if B = Z or B is a field,
the natural map C1l(R) - Cl(Rm), m generated by the elements Xij' is
an isomorphism. We are mai;iy interested in these cases, and there-

fore we allow ourselves to speak of the canonical module wR

PROPOSITION 1. Let B be a normal Gorenstein domain. Suppose
that uzv. Then wy = E(u—v).

Proof. We first reduce to the case when r = 1 by a standard
localization argument. Let P = B[Xij]. Over P[X}l] we can trans-

form the matrix (Xij) by elementary row and column operations into

X @] . . .0
11
O Y e .
22 Y2v
O Y A ¢
L u2 uv |

-
i " %1% 5%r

independent over B, and the elements X

where Y‘j = X The elements Yij are algebraically
i

X X are

roe ey X rFe=-1
11 v f21 Ry
algebraically independent over C: = B[Yij]. Now R[XTTJ can be con-

sidered as a flat overring of C/Ir(Y,j):
i
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the r-minors of the first r rows of the matrix (xij) of the residue
classes % of Xij' Then EP_V 15 a canontical module of R.

We recently learnt from [8; p.500] that our theorem was also
noted by Hochster (unpublished). As an easy corollary one obtains
the following theorem of Svanes [9; Theorem (5.5.6) 1.

COROLLARY. R 78 a Gorenstein ring 1f and only 1f u = v.

In the corollary one can allow B to be an arbitrary Gorenstein
ring.

The proof of the theorem consists of two steps. As a first
step we compute the divisor class of the canonical module of R, that

(u-v)

is, show that it is isomorphic to p , whereas we establish in the

second step the equality of the ordinary and symbolic powers of p.

R is a normal dom ical module of R is

in case r a canon

I

(isomorphic to) a divisorial ideal of R. If the natural homomor-
phism from the divisor class group of R into the direct product of
the divisor class groups of the localizations of R is injective, then
M is uniquely determined (up to isomorphism).

An important tool in the computation of the canonical modules
of determinantal rings is the following lemma.

LEMMA. Let T be a normal Cohen—Macaulay domain and a a prime
ideal of height 1 in T, such that T/a ts also normal.  Suppose that
the following conditions are satisfied:

(a) for a prime “deal E}of'h@ight 1, Ef#ff the symbolic

power E}n) 18 a canonical module of T;

(b) cl(a) = -m-cl(p) with m20;

(c) Ann(p(n+m)/géfm) ¢ §‘+Pi and

(a) (Efgyyé_is a prime ide;i of height 1 in T/a.

Then ((E%E)/E)(n+m) is a canonical module of T/a.

Proof. Consider the exact sequence

0~ HomT(T,B(n)) % HomT<3,g(“)> > Ext;(T,E(n)) > 0.

We may identify HomT(T,EKn)) with E&n)’ HomT(i]EKn)) with
E‘n):ﬁf and 1 with the natural embedding. Exté(T,Exn)) is a canon-
ical module of T/a. For a suitable element x in the quotient field

+
of T we have X_(E}n):é) = E(n m) by condition (b) and thus an exact
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-1
11
The extension of the ideal E of C/Ir(Yij) generated by the (r-1)-

-1
Rlx ] = (C/Ir(Yij)>[x11,...,x1v,x21,...,xu1][x11].

minors of (y..: 2<i<r, 2<j<v) to R[x_1] is just prRlx__]J.
ij 11 = 11

Suppose that r > 1. By [7; Theorem 1], the element X1 is a

prime element in R.  Therefore the natural map Cl(R) - Cl(R[X;JJ)

is an isomorphism as is the natural map CL(C/I (Y,.))»CL(R[xz1]).
r-1 17 11

Now it suffices to establish the proposition for C/Ir~1(Yij)' thereby

reducing its proof to the case when r =1.

Let r=1 now and v=2. In case u=2, R is clearly a
Gorenstein ring and wR =R = p(o). In case u>2 let
R : =B[x, .: 1<i<u-1, 1<3<2]/1_(X,.)
o ij 2 i3
: = X
and R, RO[Xu1 u2] Then
u-1
= ’ = , - . X .
R=Ri/aya= [ Ryl X, - %X
i=1 v
By induction on u, and since R, is a polynomial extension of
R , the canonical module of R, is (U"B), = R X + R .
o 177 By 1 By T R T Ry
Multiplication by (X11Xu2 - X12Xu1)x11 maps
u=1
: = R
9 LR
i=1
onto a, whence cl(a) = cl(q1)::—cl(p1). The ideal (a+gq>/a is a
prime ideal of height 1, and the extension of p, in (R,) is
=1 1 3f£1
principal. Therefore condition (c) of the lemma is satisfied. An
application of the lemma completes the proof for v =2.
-1 -1
Let v > 2 . B R =BIX, . yeees X R ee. X X 7,
et v now ecause [x11] [ 11 v Xo u1][ 11]

the divisor class of wR is a multiple of the divisor class of p.

Dropping the hypothesis that u=v momentarily and transposing (X, .)

1]
if necessary we may assume that cl(wR) = t-cl(p) with t=0 and
W = (t). All the conditions of the lemma are satisfied for
- u
a=4g = Z Rx, .
- = . i1
i=1

By induction on u+v the divisor class of the canonical module

of R/q is (u-v+1)cl((p+q)/q), and comparing this with the result of
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the lemma we conclude that u-v=t20 as desired. (Observe that
cl(p+q)/p) is not a torsion element in Cl(R/g}.) 0

Observe that the corollary of the theorem follows already from
Proposition 1. The proof of the theorem itself is complete once we
have shown that the ordinary and the symbolic powers of E_coincide.
This is stated in [8; Theorem 3.4] (for a field B). For an appli-
cation in [2] we need a more general result, which could possibly be
proved with the methods of [8]. Proposition 2 and the proof we
present were found independently.

As above g denotes the prime ideal generated by the r-minors

of the first r columns of (xij). For a sequence of integers

H= (1 ,...,1i i , J{(H) denotes the ideal of R
o r-1 -1

which is generated by the (J+1)-minors of the first iﬁ rows of

(%, .
ij
[4; Corollary 3] if B is normal.

), 0<i <...<
O

Yr 3 = 0,0..,r=-1. Note that R/J(H) is a normal domain by

PROPOSITION 2. Let B be a normal domain and

Ho:={(i ,... y: O0<i <...< i <u}l.
o o

'ir—1 r-1

Then, for all Hcl, we have the following:

(a) J(H) + q 728 a prime ideal in R;

(b) for all s =1 the ideal J(H) + gé 18 primary.

An application of Proposition 2 to the transpose of (Xij) for
H= (0,1,...,r~-1) completes the proof of the theorem. 0

Proof of Proposition 2. The ideal in B[Xij] which defines

R/ (J(H)+q) as a factor ring of B[Xij] is generated by the (j+7)-minors

1]
entire matrix (Xij)' and, finally, the r-minors of the first r

of the first ij rows of (X,.,), J = 0,...,r-1, the (r+1)-minors of the

columns of (Xij). Therefdre part (a) is a special case of Propos-
ition 3, (b) or (c), below.

In order to specify a minor of the matrix (Xij) we introduce
the following notation:

Jaee-d
Ai1 ir
1" Tx
is the minor associated with the row indices i1,...,i and the column
r
indices j_,...,]

1 r’
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Part (a) is the case in which s =1 of the proof of part (b) by
induction on s. Assume that s > 1. We need a total order on the

set of r-tuples of integers (i1,...,ir) such that O:Si1 <...< ir:
(i1,...,ir) < (j1,...,j )
if and only if (i1""'ir) = (j1""'jr) or there is a ke {1,...,r}

. . . < 4
such that lk < jk and lk+1 <

: 1...
To simplify the notation let A, o= r‘
J’I“'Jr Ty

-

For He A let R* be the residue class ring R/J(H) and r : =qgR*.

Since T (x,.) = 0, the r-th exterior power of (x,.) has rank 1,
r+1 7173 1]

and hence

A . A

Joe-ed koo, k k..
1 r r 1

(minors taken from (xij)). If Aj j is not zero modulo J(H) then
1° " " r

Too.r=1 r+1 T...x=-1T r+1
K .

r.J1-.. Jr

co.x=1 T+l ‘ .
A1 r-1 F 1 is not zero modulo J(H) + g. Thus every minor A,

31"' jr - ]1-..]:[_

which is not zero modulo J(H) generates the extension of r in R*r: r

is a prime of height 1 in R*, and every non-zero minor A. . 1is
31...]r
2)

not contained in E‘ . If for an element b ¢ R* the product

bA | . 1s contained in E}S>, we can conclude that bezE<s"1),

-

Iy

since R* 1s a discrete valuation domain.
r

Assume that

b = Z b . 3 A, € r
Jgtrt Ay Jget s

and let (k1,. .,kr) denote the maximal r-tuple relative to < such

that b A z 0. We show that b egf by induction on

...k ...k
k1 r k1 r

(k_,e..,k ).
1 r
If there is only one non-zero term in the representation of b,
we have b € r(S_1) by the argument just given, and b
k. ...k - kK, ...k
1 r 1 r
€ £§“1 by induction on s. Suppose that there are at least two non-

zero terms in the representation of b and let



Hi=(k,~1,...,k_~1).
( 1 1, . )
Then J(H) ¢ J(H) and A, . € J(MR for all (G,....3) <
31...jr
(k1,...,kr). This implies that
~ (s)
J(H)R* + .
Pk Bk g €TEIRTHIX
1 r 1 r
Let § ==R/J(§) and ; = E As above the extension of E_in
E; is principal, whence
AnnR*EKS)E/Eé ¢ r + J(ﬁ)R*.
Consequently Tr(bk K )W(Ak K ) is an element of E‘S), where
17" " x 1" "r
m: R* E denotes the natural epimorphism. By induction on s it
follows that W(bb * ) € ;(5_1) = :§—1 and
B I~
b e VY - e+ 2
k. ...k = —
1 r
We may assume that bk K € J(E)R*. The inclusion
SRR
T (H) A c y A . R*
k -k . . i -]
< . 14
1 r (],], rjr) (k,lr kr) 1 r
finally enables us to replace bk K Ak K by a linear combin-
17" 17 x
ation of the minors A, . with (3.,-..,3 ) <(k,,...,k ), and to
IPERE 1 r 1 r
1 r
complete the proof by induction on (k1,...,kr).

The proof of the crucial inclusion is an exercise in expansion

V, eV

of determinants. Let Au,l uw e J(H). One expands the (r+1)-min-
PR
V,I...thw...tr
or A = 0 with respect to the columns v_,...,v , the
u,...u k ...k 1 \
1 w oW r
minor A with respect to the rows k_ ,...,k , and combines
k1...kr 1 w-1

the two equations obtained. []

In order to prove part (a) of Proposition 2 we introduce a
larger class of ideals in B[Xij]. Throughout the rest of the art-
icle we denote the matrix (Xij) simply by X. Let H = (uo,...,ur)
be a sequence of strictly increasing integers with O:Suo and u_=u.

115
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Further, let p and t be integers such that 0<t - 1<p. We consider
the ideals
I(H,X) + I (XIp)
where T(H,X) is the ideal generated by the (j+1)-minors of the first
uj rows of X, 3=0,...,r, and It(le) is the ideal generated by the
t-minors of the matrix X|p consisting of the first p columns of X.
PROPOSITION 3. (a) I(H,X) + It(X]p) is a (strongly generically)

perfect ideal of grade

uv - r{u+v) +

(t~2)2(t—1) N (r—t+2p)2(r~t+1) N Z

(b) If B is an integral domain, then I(H,X) + It(X]p) 78 a
prime tdeal .

(¢) If B s a normal “integral domain, then

BLX]/(I(H,X) + I_(X|p))

t
18 a normal integral domain.

Proof. In [4] a partial order on the set M of minors of
(X,.) is defined by
1]
T,e00] t ...t
A_1 ik < AS1 Sl
Tk 177 %1
if and if k2 i, <€s_,...,i <s , 3. St ,...,3 <t . Th
if and only 1 1 an :L1 1 'lk K 31 1 Ijk = Kk (The
lower indices denote the rows, and the upper indices denote the col-
umns, from which the minor is taken; we require that i1""’ik etc.
are given in increasing order.) One easily sees that
I(H,X) + It(XIp) is generated by a poset ideal J in M. Therefore

BLX]/(T(H,X) + It(X!p)) itself is an algebra with straightening law

on the poset P: =M\J [4; Corollary 3.5(3)]; in particular,it is a

free B-module. The minor
u +1 ... u_ +1
A © r=1
1T ... =1 r+1
is the single minimal element of P. Therefore P is wonderful in the

sense of [4].
It is not hard to check that one (and, by [4; Lemma 4.31,

every) maximal chain in P consists of

r-1
4 =y (ury) (t—2)2(t~1) ) (r—t+2p)2(r—t+1) SV -




elements. Furthermore

R :=B[x]/(I(H,X) + It(xlpn

117

is a Cohen-Macaulay ring, once B is Cohen-Macaulay [4;Corollary 4.2].

The theory of generic perfection [3,6] shows that it suffices
to prove part (a) in the case where B = Z or B is a field. Let P

and p denote the prime ideal generated by the elements Xij in B[X]

and its image in R respectively. By [4;Theorem 4.1 and Proposition

3.7]) a maximal Rp—sequence in pRp consists of exactly d elements.,

R 1s a Cohen-Macaulay ring. Therefore I:=1I(H,X) + It(le) is a
perfect ideal and we obtain

grade I = grade IP = u.v - depth Rp = u.v -~ d.

(b) As noted above, R is a free B-module. Therefore we may
invert B\{0} and assume that B is a field. Now (b) is a special
case of (c¢).

(c) We prove the assertion by induction on u+v, starting with

the trivial case in which u=v=0. Without restriction we may ass-
ume that uo = 0. Let a denote the ideal generated by the elements
X.., 1<i<u_, 1<j<v,
ij 1
in R. The preimage of a in B[X] is

I (H,X) + It<le)

where

E = (u1,u1+1,max(u2,u1 +2),...,max(ur_1,u1-+r~1),u)
when u1-+r—1 <u, and

H = (u1,u1-+1,max(u2,u1 +2),...,max(ur_2,u1—+r-2),u)
when u1 +r-1=u.

By virtue of (a), I(E,X) + It(le) is a perfect ideal in BLX]
and

grade I (H,X) + It(XIp) > 2 + grade I(H,X) + It(le).

This implies that grade a=2. If depth Rq:§1 for a prime
ideal g of R, then ad¢q. Thus it remains for us to prove that the
rings

R[x_11, 1<i<u

. <9< , t il
i5- 1 1<9<v, x,lj not nilpotent,
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are normal.

Suppose first that j <p. We again use the localization argu-
ment introduced in the proof of Proposition 1. We may assume that
i=1. Elementary row and column operations over B[X][X}}] transform

the matrix X into

—

(6] - . .
X11 0
© Y22 T Y2v
O Y .
L u2 Yqu
Let Y be the (u-1,v-1)-matrix (Yi+1,j+1)' Then
-1. ~ ar o=
R = (BLY I Y)Y A+T - e.a s X ’ PR
[X11J (BLY1/ (T (H,Y) t_1(Y|P 1)))[X11, 2y X21 ,Xu1J[X11]
with
H = (u1~1,u2—1,...,ur—1).
The ring B[Y]/(I(E,Y) + It~1(YIp~1)) is a normal domain by the
induction hypothesis.
Suppose now that p < 3j. We may assume that j=v. Over
B[X][X%l] the matrix X can be transformed into
D S ¢ ]
11 1v-1 %1y
Yoq - - - Yy, 40
W = :
Y e e
| ul Yuv—1 © B

Clearly I(H,X) + It(xlp) = I(H,W) + I (W|p) over B[X][X;l

c ]. Let
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Again
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-
Y21 . e . Y2V~1
Z = )
Y 4
ul uv-1
X v . o X
LM Tv-1 |
Then, over B[X][X_1],
Tv
I(H,X) + I (Xlp) = I(H,W) + I (Wlp) = I(H,2) + I _(Zlp)
H = (u1—1,u2—1,...,ur—1,u), and
ROXC ) = (B(z1/(T(H,2) + T z2Ip)Nlx, ,....x J[x. 1.
(] t v uv [(AY
the induction hypothesis applies. []
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