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THE EISENBUD-EVANS
GENERALIZED PRINCIPAL IDEAL THEOREM
AND DETERMINANTAL IDEALS

WINFRIED BRUNS

ABSTRACT. In [2] Eisenbud and Evans gave an important generalization of Krull’s
Principal Ideal Theorem. However, their proof, using maximal Cohen-Macaulay
modules, may have limited the validity of their theorem to a proper subclass of all
local rings. (Hochster proved the existence of maximal Cohen-Macaulay modules
for local rings which contain a field, cf. [4]). In the first section we present a proof
which is simpler and guarantees the Generalized Principal Ideal Theorem for all
local rings. The main result of the second section was conjectured in [2]. Under a
hypothesis typically being satisfied for the most important fitting invariant of a
module, it improves the Eagon-Northcott bound [1] on the height of a determinan-
tal ideal considerably. Finally we will discuss the implications of a recent theorem
of Faltings [3] on determinantal ideals.

1. The Generalized Principal Ideal Theorem. We recall some notations from [2].
Let R be a commutative noetherian ring, and M a finitely generated R-module.
The order ideal M*(x) of an element x € M is given by

M*(x) = {f(x): f € M*},

where M* denotes the dual Homg(M, R) of M. Since M is finitely presented, the
formation of M*(x) commutes with flat ring extensions, in particular with localiza-
tions, completions, and the adjunction of indeterminates. The rank of M is the
maximum of dimg s,z M,/bM,, b ranging over the minimal primes of R. For all
unexplained notations and terminology we refer the reader to [7].

Theorem 1 below extends Theorem 1.1 of [2] to all (local) rings R. It was named
“Generalized Principal Ideal Theorem” because one recovers Krull’s Principal
Ideal Theorem for elements x,, . . . , x,, € R from it by specializing M to R™ and x
to (xp, - - « » X,,) € R™. (Theorem 1 was called the “Eisenbud-Evans Principal Ideal
Conjecture” in [5].)

THEOREM 1. Let R be a noetherian ring, M a finitely generated R-module, and
x € M. If there is a prime ideal p of R with x € pM,, then

ht M*(x) < rank M.

PrOOF. It is enough to prove ht M}(x) < rank M, for a prime ideal g of R (with
X € qR,): By the way rank M was defined, it cannot increase under localization,
and ht M*(x) < ht M¥(x) simply because (M*(x)), = M3(x).

Received by the editors July 23, 1980 and, in revised form, November 6, 1980.

1980 Mathematics Subject Classification. Primary 13C05.
© 1981 American Mathematical Society
0002-9939/81/0000-0404/$02.50

19



20 WINFRIED BRUNS

Let us first assume that there is a prime ideal g of R such that M is a free
R,-module and x € qM,. Then ht M3(x) < rank M, by Krull’s Principal Ideal
Theorem since My is generated by rank M, elements.

In the general case we may assume that R is local with maximal ideal p. We may
even suppose that R is a complete local ring, height and rank being stable under
completion. Finally we can factor out a minimal prime ideal g of R for which
ht M*(x) = ht(M*(x) + q)/q, cf. [2]. So we only need to prove the theorem for
universally catenarian local domains.

There are elements e;,...,e, € M such that x = a,e;, + - - - +a,e, Wwith
a; € . Let S denote the localization of R[T}, . . ., T,,] with respect to the maximal
ideal generated by p and the indeterminates T, . . ., T,,. The ideal

r=S@a+T)+---+S(a,+T,)
is a prime ideal of § with r 1 R = {0}. Thus
(M ® S)l‘ = M(()) ® St‘

is a free S,-module (M, denotes the localization of M with respect to the
zero-ideal of R). The element

y = (al + Tl)el +---+ (am + Tm)em

is contained in (M ® §). By what has been shown above, ht(M ® S)*(y) <
rank M ® S = rank M.

S is a catenarian ring. Consequently, there is a prime ideal q of S containing
(M ® S)*(y)aswellas T}, ..., T, such that ht g < rank M + m. Then q must
also contain a minimal prime ideal § of (M ® S)*(x) = M*(x)S. All minimal
prime ideals of M*(x)S are extended from prime ideals of R. Therefore

aca"‘ST]C"'C&+ST1+”’+STM

is a strictly ascending chain of prime ideals, whence
ht M*(x) = ht M*(x)S < ht § < rank M.

The depth (or grade) of an ideal a with respect to an (arbitrary) R-module N, i.e.,
the length of a maximal N-sequence contained in a, is bounded above by ht a.
Therefore Theorem 1 implies the corresponding inequality for depth. Being im-
mediate consequences of Theorem 2.1 of [2], Corollaries 1.2 and 1.3 of [2] become
valid for all local rings.

2. Determinantal ideals. As above, let R be a commutative noetherian ring. The
ideal generated by the determinants of the ¢ X ¢ submatrices of an m X n matrix ¢
over R is denoted by I,(¢) (with the usual conventions, I,(¢) = R for t < 0 and
I(¢) = O for ¢ > min(m, n)). We define the kth fitting invariant F (M) of a finitely
generated R-module M [6] to be the ideal I, _,(¢) where ¢ represents a homomor-
phism R™ — R" such that M = Coker ¢. The fitting invariants determine the level
sets of the (locally constant) function assigning to each prime ideal p the minimal
number of generators of the R,-module M,: p O F,(M) whenever M, cannot be
spanned by fewer than k + 1 elements.
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Let us say that M has f-rank r if M, is a free R,-module of constant rank r for
all associated primes p of R. The f-rank of M is denoted by frk M. (This is the
definition of rank proposed in [8].) In general, not every module has an f-rank.
However, when R is an integral domain or M has a finite free resolution, then
frk M is defined, and, in the latter case, given by the Euler characteristic of a finite
free resolution. The reader will check that frk M = r if and only if F, (M) contains
a nonzero divisor and F,_,;(M) = 0. Furthermore, in case frk M = r, a localization
M, is a free R -module if and only if p 7 F,(M). This property renders F (M) the
most important of all fitting invariants and explains a great deal of our interest in a
bound on ht I,(¢) under the condition I, ,(p) = 0.

The classical bound on the height of determinantal ideals was given by Eagon
and Northcott in [1, Theorem 3]:

htI(¢) < EN(m,n, ) :=(m—t+1)(n—t+1)

for t = 1, ..., min(m, n), regardless of any hypothesis on ¢ (except, of course,
I,(p) # R). The “generic” case, in which ¢ is a matrix of indeterminates over the
integers, demonstrates that the Eagon-Northcott bound is optimal in general. One
then has ht I(p) = EN(m, n, ) and, hence, ht I(¢)/L,, () =m + n — 2t + 1.
The last equation presumably led Eisenbud and Evans to conjecture the following
theorem [2, Conjecture 2.6]:

THEOREM 2. Let R be a commutative noetherian ring, and @ an m X n matrix over
R.If1(¢) #Rand1,, (¢) =0, then

htl(¢p) <m+n—2t+1

PrOOF. We use induction on ¢, and may restrict ourselves to complete local
integral domains R and ideals I,(p) primary to the maximal ideal m of R. Let

X1 e X1n
w =
Xm1 Xmn

If there is an x;; & m, then one reduces the assertion to the case 7 — 1 by applying
elementary row and column operations to ¢. So we may assume that all x;; € m,
and, by induction on n, that there is a prime ideal p # m containing I,(¢"), where

X oeee Xip—
.-
¢ = .

Xt e e Xl

We claim ht I,(¢’) < n — t. Consider ¢ as a map R™ — R" and, correspondingly,
¢’ asamap R™ — R"™'. Let M == Coker ¢ and M’ := Coker ¢’. M’ is isomorphic
to M/Ré, e,, ..., e, denoting the elements of the canonical basis of R". Since
L(p) ¢ », M, needs exactly n — ¢ generators. So does M, because 1(¢") C b.
Necessarily e, € pM,, and ht M*(¢,) <rank M = n — ¢ by Theorem 1. Regarding
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the determinantal relations of the columns of ¢ as elements of R" which vanish on
Im ¢ (the submodule of R” generated by the rows of ¢) we conclude I,(¢") C
M*(e,» and obtain the claim.

In complete local domains the equation ht a + dim R/a = dim R holds for all
ideals a. Consequently Theorem 2 is settled once we have shown that dim R /I (¢)
=htl(¢)/I(@)<m—1t+1

LEMMA. Let R be a local ring, and @ an m X n matrix over R, whose last column
consists of elements in the maximal ideal m of R. Let ¢’ be the matrix formed by the
first n — 1 columns of @. If 1(¢") = O, then

htl(p) <m—1t+ 1.

The lemma just extends Theorem 2.1 of [2] to all local rings. The following hint
will enable the reader to prove it. Consider the transpose of ¢ and adjoin a column
to it:

Xy ce b 0

¢ =
Xipe1  c+e Xpyy O
X1n . X -1

Now ¢ and ¢ are related in the same way as ¢ and ¢’ in the proof of Theorem 2,
and e,,, = x,,6, + - - - +x,,¢, € mM, the notations corresponding to those
above.

COROLLARY 1. Let R be as in Theorem 2, ¢ an m X n matrix over R, and ¢ a
u X v submatrix of ¢ such that all coefficients of ¢ outside { generate a proper ideal
of R. If 1,(p) # R, then

ht L(¢) /1. +(¢) < EN(m, n, t) — EN(u, v, t + k)
forallk =0,...,min(u, v) —t + 1.

PRrROOF. After the by now usual reduction to the case of a complete local domain,
one applies Theorem 2 inductively to obtain the assertion in the case ¢ = . Then
one uses the lemma to complete the proof by induction on (m + n) — (4 + v).

Corollary 1, essentially predicted in [2], generalizes the Eagon-Northcott bound,
to which it specializes for ¢ = v, ¢t + k = min(m, n) + 1. It does not say (in
general): ht I(p) > EN(m, n, ¢) implies ht I, ,(¢) > EN(u, v, t + k). The corre-
sponding statement for dim R — dim R/I,(p) and dim R — dim R/I,, ,(y), how-
ever, is always true (cf. [2, proof of Corollary 2.4]). Again the reader should observe
that the inequalities for height imply the corresponding inequalities for depth.

We now return to the interpretation of determinantal ideals as fitting invariants.
For a closed subset 4 of Spec R we put

codim 4 := min{ht p: p € 4}.
For every finitely generated R-module M
Nf M := {p € Spec R: M,, is not a free R,-module}
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is a closed subset of Spec R and consists of the prime ideals p O F,(M) in case
frk M = r, as was noted above.

COROLLARY 2. Let R be as in Theorem 2, and M a finitely generated R-module
with an f-rank. Let N be a second syzygy of M. If M is not free, then

codim Nf M < frk M + frk N + 1.
Proor. Consider an exact sequence
0>No>R"S R" 5 M50

and put ¢ :=n — frk M. Then I(¢) #R, I,, () =0, frk N=m — ¢, and the
conclusion follows from Theorem 2.

It would be extremely interesting to construct modules over regular local rings
for which the bound in Corollary 2 is attained. It easy to write down examples with
rank N = 0 (equivalently, proj dim M = 1), and rather nontrivial ones with rank N
= 1 can be found in [9), but we know of no such modules with rank M > 1 and
rank N > 1.

In our last corollary u(N) shall denote the minimal number of generators of an
R-module N.

COROLLARY 3. Let R be as in Theorem 2, M a torsion-free R-module with an
f-rank. Then

codim Nf M < p(M) + p(M*) — 2(frkk M) + 1.

PROOF. Let m := p(M), n .= p(M?*), and choose generators x,,..., x,, of M
and f, ..., f, of M* Let ¢ be the m X n matrix (f(x;)). Then Imp = M/ U,
where U is the kernel of the natural homomorphism M — M**. Since M has an
f-rank, U is a torsion module and thus U = 0. It is easy to check that Nf M =
Nf Coker ¢, frk Coker ¢ = p(M*) — frk M, and frk ker ¢ = (M) — frk M. Now
the conclusion follows at once from Corollary 2.

Theorem 3, which is a consequence of a theorem of Faltings [3], gives a better
bound on ht I,(¢), provided R is regular and ¢ is small compared to m or n.

THEOREM 3. Let R be a regular local ring, and @ an m X n matrix over R. If
Il("’) #* R and I’+|((p) = 0, then

ht I,(¢p) < max(n,m — ¢t + 1).

PrROOF. Localizing with respect to a minimal prime ideal of I,(p), we may
suppose I,(¢) primary to the maximal ideal of R. Regard ¢ as a map of R™ — R”,
and put M = Coker ¢. If dim R > n, then by Satz 1 of [3], n — ¢ among the
residues €, . . ., &, of the canonical basis of R", say, &, . . ., €,, generate a free
direct summand of rank n — ¢ in every localization M, b nonmaximal. Therefore
M' = M/Re,,, + - - +Re, has finite length. Now M’ is isomorphic to
Coker ¢, ¢’ consisting of the first ¢ columns of ¢. I,(¢’) is again primary to the
maximal ideal of R, hence dim R < m — t + 1 by Theorem 2 (for the classical case
of maximal minors).
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Faltings gives his theorem in a more general setting. For complete local domains
the inequality of Theorem 3 becomes

htI,(¢) < max(m + embdim R — dim R,n — ¢ + 1),

embdim R denoting the embedding dimension of R, i.e., the minimal number of
generators of the maximal ideal of R. For the most general case cf. [3].

REFERENCES

1. J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with
them, Proc. Roy. Soc. London Ser. A 269 (1962), 188—204.

2. D. Eisenbud and E. G. Evans, Jr., A generalized principal ideal theorem, Nagoya Math. J. 62 (1976),
41-53.

3. G. Faltings, Ein Kriterium fur vollstandige Durchschnitte, Invent. Math. 62 (1981), 383—402.

4. M. Hochster, Deep local rings, preprint, Aarhus, 1973.

5. , Principal ideal theorems, Ring Theory (Waterloo, 1978), Lecture Notes in Math vol. 734,
Springer-Verlag, Berlin and New York, 1979.

6. 1. Kaplansky, Commutative rings, rev. ed., The University of Chicago Press, Chicago and London,
1974.

7. H. Matsumura, Commutative algebra, Benjamin, New York, 1970.

8. G. Scheja and U. Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren,
Math. Ann. 197 (1972), 137-170.

9. U. Vetter, Zu einem Satz von G. Trautmann uber den Rang gewisser koharenter analytischer Moduin,
Arch. Math. (Basel) 24 (1973), 158-161.

FACHBEREICH NATURWISSENSCHAFTEN / MATHEMATIK, UNIVERSITAT OSNABRUCK, ABTEILUNG VECHTA,
VECHTA, FEDERAL REPUBLIC OF GERMANY



