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ABSTRACT. Let (R, m) be a Noetherian local ring containing a field. The
syzygy theorem of Evans and Griffith (see The syzygy problem, Ann. of Math.
(2) 114 (1981), 323-353) says that a nonfree mth syzygy module M over R
which has finite projective dimension must have rank > m . This theorem is an
assertion about the ranks of the homomorphisms in certain acyclic complexes.
It is the aim of this paper to demonstrate that the condition of acyclicity can
be relaxed in a natural way. We shall use the generalization thus obtained to
show that the Bass numbers of a module satisfy restrictions analogous to those
which the syzygy theorem imposes on Betti numbers.

The acyclicity criterion of Buchsbaum and Eisenbud [3] is an essential tool
in what follows. Theorem 1 below is the general version given by Northcott
[14] which uses the polynomial or true grade of a module M with respect to
an ideal I (see [14]); it is denoted by Grade(/, M). It is unnecessary for
our considerations to know the exact definition of Grade(/, M). We will only
need the inequality Grade(I, M) > grade(I/ , M) where grade(/, M) denotes
the “classical” grade of an ideal I with respect to a module Af; furthermore
one should note that Grade(I, M) = grade(I, M) if M is a finite (i.e., finitely
generated) module over a Noetherian ring R [14]. Other notation to be ex-
plained: if ¢: F — G is a homomorphism of finite free R-modules, then
I,(p) denotes the ideal generated by the u-minors of (a matrix) of ¢ . Fur-
thermore, rank(¢, M) is the largest integer v for which I,(¢)M # 0. Several
times we shall use that for a prime ideal p one has I,(¢) ¢ p if and only if
Im(p ® R,) contains a free direct R,-summand of rank u of G, ; this is an
easy consequence of Nakayama’s lemma.

Theorem 1. Let R be an arbitrary commutative ring,
F.ZO**E;-& s_1—>~-~—>F1 ﬂFO

a complex of finite free R-modules, and M # 0 an R-module. For i=1, ...,s
weset r; =3 ;_/(—1)/"'rank F; .

(a) If F.® M is acyclic, then (i) rank(p;, M)=1r; fori=1,...,s, and
(i) Grade(I,(pi), M)>1i for i=1,...,5s.

(b) Conversely, if condition (a)(ii) is satisfied, then F. ® M is acyclic.

Received by the editors November 1, 1990 and, in revised form, January 28, 1991.
1980 Mathematics Subject Classification (1985 Revision). Primary 13C05, 13D25.

© 1992 American Mathematical Society
0002-9939/92 $1.00 + $.25 per page

939



940 WINFRIED BRUNS

Part (a) is [14, Theorem 14, p. 193] in a slightly different formulation. Part
(b) is [14, Theorem 2, p. 248], except that we have omitted condition (a)(i)
from its hypothesis; it is not difficult to derive from [14, Theorem 2, p. 101]
that (a)(ii) implies (a)(i).

Our rings R are always Noetherian and local, but the module M appear-
ing in the acyclicity criterion may be a balanced big Cohen-Macaulay mod-
ule, i.e., an R-module M such that every system of parameters of R is an
M-sequence. That such modules exist for local rings containing a field has
been shown by Hochster [10]; see also Griffith [8] or Bartijn and Strooker [1].
The name “balanced” has been introduced by Sharp [17]; Sharp proves that
the set of associated prime ideals of M/(ay, ..., a,) is finite if ay, ..., a,
is an M-sequence. It is an easy exercise to verify that this property implies
grade(!/, M) = Grade(I, M) for all ideals I of R.

Let (R, m, k) be a local ring. It is not a severe restriction to assume that a
complex

F:0-FE5F - -FR%F
of finite free R-modules satisfies the conditions (i) F; # 0 and (ii) ¢;(F;) C
mF;_y for i=1,...,s. This is obvious for (i), and for (ii) one observes that
@i can be decomposed as ¢;®id: F/ &G — F/_, & G with finite free F/, F/_|,
and G # 0 if ¢;(F;) ¢ mF;_;. Note that a minimal free resolution of a finite
module over a Noetherian local ring satisfies these conditions automatically.

Our first result is that the ranks 7; in the acyclicity criterion must be positive
for the complexes just considered.

Proposition 1. Let (R, m, k) be a local ring, and
F:0-F5F > >FR%F

a complex of finite free R-modules with F; # 0 and ¢,(F;) C mF;_, for i =
l,...,s. Suppose there exists an R-module M such that M # mM and
F.® M is acyclic. As before, set r; = 3;_ (—1)/~'rank F;. Then r; > 1 for
i=1,...,s.
Proof. One has r; = rank F; > 1 by hypothesis, and it follows from Theorem
1 that r; = rank(p,;, M) > 0 for all i. Arguing inductively, we have only to
show: r; =0 implies r, =0.

If ry = rank(¢,, M) = 0, then obviously ¢; ® M = 0. Therefore we have

an exact sequence
F2®M¢2—§>MF1 QM — 0.

Consequently F, @ M ® k - F; ® M ® k — 0 is also exact. By hypothesis
M # mM , equivalently, M ®k is a nonzero k-vector space. Thus the sequence
Fz®k¢3§kF1®k—>0

of finite-dimensional k-vector spaces must be exact. On the other hand, ¢, ®
k =0 since ¢,(F,) C mF;. Henceweget F, =0,and r, =rank F,—r; =0. O

All the proofs of the syzygy theorem of Evans and Griffith use the notion of
order ideal in an essential way. Let M be a module over a commutative ring
R,and x € M. Then

O(x) = {a(x) : « € Homg(M , R)}
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is called the order ideal of x. Suppose that F is a free module with basis
e, ...,e,. For x € F with representation x = a,e; +---+aye, one obviously
has @(x) = (a1, ..., ay).

The following theorem and its proof are direct generalizations of Evans-
Griffith [6, Theorem 3.14 and its proof].

Theorem 2. Let (R, m) be a local ring containing a field. Let
F:0-F%F - ... -F4F
be a complex of finite free R-modules such that
dimR/I, (¢;)) <dimR -t -1, i=1,...,s,

where r; = 3i_;(—1)""/rank F; and t > 0. Then, for j=1,...,s and every
ec F; with e ¢ mF; +Imgj,; one has dimR/&(pj(e)) <dimR—¢t—j.
Proof. Adjusting ¢ and the indices, one may assume that j = 1. Let J =
@(¢1(e)). There is nothing to prove if J = R. So assume that J C m.

Weput R =R/J and F = F.QR . From the description of J above one gets
@,(@) = 0. In order to derive a contradiction, we assume dim R/J > dim R—¢.
Note that I, (9;) = (I,,(¢:) + J)/J . Hence

dimR/I, (p,) < dimR/I,(p;) < dimR —i—t < dimR —i.

Therefore I,,(p;) contains a sequence X, ..., Xx; which is part of a system
of parameters for R. It follows that grade(I,,(@;), M) > i for a balanced big
Cohen-Macaulay module M of R. By the acyclicity criterion F.QM is acyclic.
Because of 9,(e) =0 we have (9, @ M)(e®@ M) =0. Let C = Cokerg,, and
n: Fi — C be the natural epimorphism. Since F.® M is acyclic, 9, ® M
induces an isomorphism C® M — Im(g, ® M). So w(e)®@ M =0.

On the other hand, the hypothesis ¢ ¢ mF; + Im ¢, implies that 7w(e) ¢
mC . Thus the image of 7(¢) ® M under the natural epimorphism C ® M —
(C/mC) ® (M/mM) is isomorphic with M/mM # 0, a contradiction. O

In view of the methods of Bruns [2] it is only a technical exercise now to ob-
tain the following generalization of the syzygy theorem. For ¢ = 0 the condition
on the complex F. is related to the notion of phantom acyclicity introduced by
Hochster and Huneke (see [11, Theorem 9.8]), and their methods easily yield
an analogous result.

Theorem 3. Let (R, m, k) be a Noetherian local ring containing a field. Con-
sider a complex
F:0-F%F_—-...-F%F

of finite free R-modules with F; # 0 and ¢;(F;) C mF,_y for i =1,...,s.
Suppose that

dimR/I, (¢p;) <dimR—-t—1i, i=1,...,s,
where r; = Ej.:i(—l)"—franij and t>0. Then r; > t+i fori=1,...,s—1.

Proof. In order to show that r; > ¢ + i we can truncate the complex at F;_;,
adjust the indices, and replace ¢ by ¢+ i — 1. Therefore it is enough to show
that r; >t + 1. Note that there is nothing to prove if s =1.
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Let M be a balanced big Cohen-Macaulay module for R. As in the proof
of the previous theorem it follows that F. ® M is acyclic. From Proposition 1
one gets that r; > 1 for i =1, ..., s. This inequality covers the case t =0.

Let t > 1. Since rank(¢;, M) =ry > 1, we have rankF; > r; > 1. As
¢2(F,) C mF, there exists e € F; with e ¢ mF; +Img,. Put F{ = Fj/Re,
and choose ¢} as the induced map F, — F/. Let p be a prime ideal with
dimR/p > dimR —¢. Then I, (¢) ¢ p and I, (¢1) ¢ p. Since r +r, =
rank F, , one sees easily that the sequence

0—-Im(p2®Ry) = F,®R, —» Im(p; ®R;) — 0

is split exact. By Theorem 2 we know that @(¢,(e)) ¢ p; therefore ¢;(e)
generates a free direct summand of Im(¢; ® R,). Hence Im(p); ® R,) is a
free direct summand of rank r, of F/. This implies I,(¢5) ¢ p, whence
dimR/I;;(¢;) <dimR—1-1.

Set C = Coker ¢, and choose an epimorphism n: G — C*; as usual C* =
Hompg(C, R). Composing n* with the natural homomorphism C — C** one
gets a map yw: C — G*, and it is easily seen that for every prime ideal p
and every free direct summand N of C, one has that (v ® R,)(N) is a free
direct Ry-summand of G* ® R,. So we take Fj = G* and choose ¢} as the
homomorphism F| — Fj induced by y . If, as above, dimR/p > dimR — ¢,
then Im¢] ® R, contains a free direct Ry,-summand of (Fj), of rankr; =
ri—1. So we get dimR/I1(¢]) < dimR -t —1, too. Furthermore, as s >
1, F; has not been touched. Finally, one obviously has ¢)(F,) C mF/. If
¢ (F1) ¢ mFj, then one can decompose ¢ in the form ¢} ®id as discussed
above Proposition 1; replacing ¢] by ¢| does not change the situation in an
essential way. Therefore an inductive argument applies to the complex

F!:0—- F, - F,_, ﬁ---—»FzﬁF{ﬁFé. O
It seems that all the proofs of the syzygy theorem given by Evans and Griffith
[4-6] require a weak condition on the underlying ring. Theorem 3 contains the
syzygy theorem as stated at the beginning; in this generality it has also been
proved by Ogoma [15].

Corollary 1. Let R be a Noetherian local ring containing a field, and M an mth
syzygy module of finite projective dimension. If M is not free, then rank M > m .

Proof. There is an exact sequence F.: 0 — F; &5 F,_; — --- — F; &% F, such
that M =Im¢,,, and furthermore F; # 0 and ¢,(F;) C mF;_; : simply splice
an exact sequence in which M appears as an m th syzygy, with a minimal
free resolution of M . The acyclicity criterion yields that gradel, (¢;) >i. A
fortiori one has dim R/I, (¢;) < dimR—i. Since M is not free, it follows that
m<s. So rank M = r,, > m results directly from the theorem. O

In view of Proposition 1 one may ask whether the condition on dim R/I, (¢;)
in Theorem 3, for the case in which ¢ = 0, can be replaced by the requirement
that there exists an R-module M with M # mM for which F. ® M is acyclic.
The following corollary shows that this is possible if M is finite. Another
suitable condition is that the homology of F. has codimension > s:

Corollary 2. Let R be a Noetherian local ring containing a field, and
F.:O—»FS?—S)F;_I — = F ﬂF()
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a complex of finite free R-modules with F; # 0 and ¢;(F;) C mF;_y for i =
1,...,s. Suppose that one of the following conditions is satisfied.

(a) there exists a finite R-module M # 0 for which F. ® M is acyclic;

(b) dimH;(F.) <dimR-s for i=1,...,s.
Then r;>i for i=1,...,5s—1.
Proof. (a) We may first replace R and F. by R/AnnM and F. ® R/Ann M
respectively, and thus assume Supp M = Spec R. The acyclicity criterion yields
grade(I;,(¢:), M)
> | for all ;. Since M is finite and Supp M = SpecR, it is easily seen
that dimR/I, (¢;) < dim R — i. Therefore the hypotheses of the theorem are
satisfied with ¢t =0.

(b) Assume that dimR/I,(p;) > dimR — i for some i, and let p be a
prime ideal containing I, (¢;) such that dim R/p = dim R/I, (¢;). By hypoth-
esis the complex F. ® R, is acyclic. Therefore the acyclicity criterion implies
grade(/,,(¢i))y > i. A fortiori one has height I,,(¢;) > i. This inequality con-
tradicts the assumption that dimR/I, (¢;) >dimR—i. O

We cannot present a counterexample to this corollary for nonfinite M . One
should note, however, that the inequality used in its proof, namely, grade(/, M)
< dimR - dim R/I if SuppM = SpecR, does not hold in general, not even
for a balanced big Cohen-Macaulay module A/ . One of Nagata’s famous coun-
terexamples is a three-dimensional noncatenary local domain R containing a
field [13]. Thus R has a balanced big Cohen-Macaulay module A . Sharp
observed in [17] that Supp M = Spec R and that the so-called little support
suppM of M (denoted supersupp M in [17]) is a proper subset of SpecR.
Then Theorem 3.6 of Zarzuela [18] implies that there exists a system of pa-
rameters x;, x», x3 for M which is not a system of parameters for R, hence
dim R/(x;1, x2, x3) > 0. On the other hand, x;, x;, x3 is an M-sequence by
[18, Theorem 3.3].

Let R be a Noetherian ring and M a finite R-module. The Bass numbers

pi(p, M) = dimy ) Exty (k(p), My),  p € SpecR,
determine the minimal injective resolution
I''0— E°M)—E'\(M)— - = EM)— -

of M ; it is well known that E‘(M) = @,cspec g E(R/p)*®>* forall i > 0.
Here E(R/p) denotes the injective hull of R/p and k(p) is the field R,/pR, .
(Matsumura [12] contains all the results about injective modules needed be-
low.) In the following we want to derive inequalities satisfied by the numbers
ui(m, M) when (R,m, k) is a local ring; since the Bass numbers are local
data by definition, such inequalities can be translated into assertions about the
ui(p, M) in general. It is easily seen that the Bass numbers u;(m, M) are in-
variant under completion. Therefore we may assume that R is complete; then
End(E(k)) = R, a crucial fact in what follows. For simplicity of notation we
set u; = pi(m, M).

The best inequalities so far have been given by Foxby [7]. As Foxby did,
we use the idea of Peskine-Szpiro [16] which is to construct a complex of finite
free R-modules whose ranks are the Bass numbers u;. Let I',(—) denote the
functor which assigns every module its submodule of elements annihilated by
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a power of m. Since every element in E(R/p) is annihilated by a power of p,
an application of I',(~) to I" yields the subcomplex

J 0 EMkMS ... S E(km & ...

The cohomology module H!(J") is the ith local cohomology H: (M) of M;
see Grothendieck [9]. Since End(E(k)) = R, Homg(E(k), J*) is a complex

G" = Homg(E(k), J'): 0 —» R0 8 Ri —, .. . V5t i Yy .

of finite free R-modules; furthermore the maps o; can be considered matrices
over R, and y; is given by the same matrix as o;. Since I° is a minimal
injective resolution, the entries of these matrices are in m.

Applying Homg (-, E(k)) to J° one obtains another complex of finite free
R-modules:

I. =Homg(J', E(k)):--- % Ru 5" ... 5 g 28 Rio _, 0
the matrix representing y; is obviously the transpose of o;. Let * denote the
functor Homg(—, R). As just seen,
(GY*=L. and (L)*=G".
The advantage of L. over G’ is that we know its homology. By the exactness
of Homg(—, E(k)) one has
H;(L.) = Homg(H'(J"), E(k)) = Homg(H: (M), E(k)).

Now it follows readily from a well-known vanishing theorem of local cohomol-
ogy that dim H;(L.) < i; see [7, Remark (2.7)] for the details.

In order to adapt the present notation to those of Theorem 3 we set d =
dimR, v;=puy4_;, 9;i = wy_;, and define the complex F. by

F.:0— R Rva-1 ... . R & R®,
We want to show that F. satisfies the condition dim R/, (¢;) < d—i where r; =

Zf=l(—1)"‘fuj. Because of the duality between F. and L. one has I,,(9;) =
Is,_,(xa—i) with s, = 37_o(=1)/ ;. Consider the truncation

(L.|d — i+ 1): Rba-m1 *45" Ria— — ..., R X Rio _, 0,
Since dim H,(L.) < v, the complex (L.|d —i+ 1) ® R, is exact for prime
ideals p such that dimR/p > d —i+ 1. Then (L.|d —i+ 1) ® R, must
even be split exact. This property carries over to (L.|d —i+ 1) ® R,/pR, , and
elementary linear algebra shows that I, (xs—;) ¢ p. Altogether one concludes
that dimR/I;, ,(x4-i;) < d — i as desired.

Let ¢ = depth M . Since ¢ = min{i : Exty(k, M) # 0} = min{i : y; # 0},
one has R¥-w+i = (0 for j > 1 and RY-: # 0. Moreover, as noticed above,
@i(RY) C mR¥-1. Omitting the zero terms at the left-hand side of F. yields
the complex

0 — RYa-1 725" Rva-i-1 — ... , R11 %% R® ,
which satisfies the hypotheses of Theorem 3. Thus
1, i=d-t,
Hi—i =Vi=Tix1 + 1 2 { d-t, i=d-t-1,
2041, i=0,...,d—-t-2.
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We state this result formally as a part (a) of the following theorem; part (b) is
due to Foxby [7] and has been included for completeness.

Theorem 4. Let R be a Noetherian local ring containing a field, dimR = d,
and M a finite R-module of depth t.

(a) Then one has
1, i=t,
wim, M)y>< d—t, i=t+1,
2d-i)+1, i=t+2,...,d.

(b) If t<dimM =d, then ug(m, M)>2.

Remarks. (a) If R is a Cohen-Macaulay local ring (possibly of mixed character-
istic), then dim R/I,, (¢;) < dimR — i implies that gradel, (¢;) > i. Therefore
the complex F. defined above Theorem 4 is acyclic, and Proposition 1 already
yields ,
1, i=depthM andi=dimR,
(M >
HM, m) 2 { 2, depthM <i<dimR.

This inequality has been obtained by Foxby [7] for Cohen-Macaulay local rings
and local rings containing a field.

(b) Theorem 3 and its consequences admit conclusions for Noetherian local
rings (R, m) which do not contain a field. Let p = char R/m and set R =
R/(p). If F. is a complex satisfying the hypotheses of Theorem 3, then F.® R
again satisfies them after one has replaced ¢ by ¢ — 1. Since R contains a
field, one obtains the inequalities r; > ¢t+i—1. Consequently these inequalities
with ¢ =0 hold in Corollary 2, too, and in Corollary 1 one must replace m by
m — 1. The modification of Theorem 4(a) is left to the reader.
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