
Journal of Symbolic Computation 68 (2015) 75–86
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

The computation of generalized Ehrhart series in 

Normaliz

Winfried Bruns, Christof Söger

Universität Osnabrück, FB Mathematik/Informatik, 49069 Osnabrück, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2013
Accepted 29 March 2014
Available online 19 September 2014

MSC:
52B20
13F20
14M25
91B12

Keywords:
Rational polytope
Integral
Generalized Ehrhart series

We describe an algorithm for the computation of generalized (or 
weighted) Ehrhart series based on Stanley decompositions as im-
plemented in the offspring NmzIntegrate of Normaliz. The algorith-
mic approach includes elementary proofs of the basic results. We 
illustrate the computations by examples from combinatorial voting 
theory.

© 2014 Elsevier Ltd. All rights reserved.

Let M ⊂ Zn be an affine monoid endowed with a positive Z-grading deg. Then the Ehrhart or 
Hilbert series is the generating function

E M(t) =
∑
x∈M

tdeg x =
∞∑

k=0

#{x ∈ M: deg x = k}tk,

and E(M, k) = #{x ∈ M: deg x = k} is the Ehrhart or Hilbert function of M (see Bruns and Gubeladze, 
2009 for terminology and basic theory). It is a classical theorem that E M(t) is the power series expan-
sion of a rational function of negative degree at t0 = 0 and that E(M, k) is given by a quasipolynomial 
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of degree rank M − 1 with constant leading coefficient equal to the (suitably normed) volume of the 
rational polytope

P = cone(M) ∩ A1

where cone(M) ⊂ Rn is the cone generated by M and A1 is the hyperplane of degree 1 points. See 
Beck and Robins (2007) for a gentle introduction to the fascinating area of Ehrhart series. In the 
following we assume that

M = cone(M) ∩ L

for a sublattice L of Zn . Then E(M, k) counts the L-points in the multiple kP , and is therefore the 
Ehrhart function of P (with respect to L).

Monoids of the type just introduced are important for applications, and in some of them, like 
those discussed in Section 3, one is naturally led to consider generalized (or weighted) Ehrhart series

E M, f (t) =
∑
x∈M

f (x)tdeg x

where f is a polynomial in n indeterminates. It is well-known that also the generalized Ehrhart series 
is the power series expansion of a rational function; see Baldoni et al. (2011; 2012).

In applications that involve strict linear inequalities M is to be replaced by M ′ = M ∩(cone(M) \F )

where F is a union of faces (not necessarily facets) of cone(M). Our approach covers this “semi-open” 
situation as well.

In 2012 we have implemented an offspring of Normaliz (Bruns et al., no date) called NmzIntegrate1

that computes generalized Ehrhart series. The input polynomials of NmzIntegrate must have rational 
coefficients, and we assume that f is of this type although it is mathematically irrelevant. This note 
describes the computation of generalized Ehrhart series based on Stanley decompositions (Stanley, 
1982). Apart from taking the existence of Stanley decompositions as granted, we give complete and 
very elementary proofs of the basic facts. They follow exactly the implementation in NmzIntegrate 
(or vice versa). The semi-open case mentioned above has already been implemented in the current 
development versions of Normaliz and NmzIntegrate. It will be contained in the next public version.

The generalized Ehrhart function is given by a quasipolynomial q(k) of degree ≤ deg f +rank M −1, 
and the coefficient of kdeg f +rank M−1 in q(k) can easily be described as the integral of the highest 
homogeneous component of f over the polytope P . Therefore we have also included (and imple-
mented) an approach to the computation of integrals of polynomials over rational polytopes in the 
spirit of the Ehrhart series computation. See Baldoni et al. (2012) and De Loera et al. (2013) for more 
sophisticated approaches. Our algorithm and its implementation in NmzIntegrate have been devel-
oped independently from LattE integrale (DeLoera et al., no date). It is a consequent extension of the 
Normaliz algorithm for the computation of ordinary Ehrhart series.

1. The computation of generalized Ehrhart series

Via a Stanley decomposition and substitution the computation of generalized Ehrhart series can be 
reduced to the case in which M is a free monoid, and for free monoids one can split off the variables 
of f successively so that one ends at the classical case M = Z+ . We take the opposite direction, 
starting from Z+ .

1.1. The monoid Z+

Let M = Z+ . By linearity it is enough to consider the polynomials f (k) = km , k ∈ Z+ , for which the 
generalized Ehrhart series is given by

1 NmzIntegrate version 1.2 is available as part of the Normaliz 2.11 distribution.
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∞∑
k=0

kmtum, u = deg 1,

and if necessary we can assume u = 1, substituting t �→ tu in the final result.
The rising factorials

(k + 1)m = (k + 1) · · · (k + m)

form a Z-basis of the polynomial ring Z[k]. Therefore we can write

km =
m∑

j=0

sm, j(k + 1) j (1.1)

and use that

∞∑
k=0

(k + 1)rtk = dr

dtr

∞∑
j=r

(
t j) = dr

dtr

∞∑
j=0

(
t j) = dr

dtr

(
1

1 − t

)
= r!

(1 − t)r+1
. (1.2)

Eqs. (1.1) and (1.2) solve our problem for M = Z+ and f (k) = km:

∞∑
k=0

kmtk = Am,u(t)

(1 − tu)m+1
, Am,u(t) ∈ Z[t]. (1.3)

It is enough to compute Am,1(t) because Am,u(t) = Am,1(tu). One should note that Am,u is a polyno-
mial of degree m. Therefore the rational function in (1.3) has negative degree.

Since the coefficient sm,m of (k + 1)m in the representation of km is evidently equal to 1, we have

∞∑
k=0

kmtum = m!
(1 − t)m+1

+ terms of smaller pole order at t = 1. (1.4)

Remark 1. The coefficients sm, j in (1.1) and the coefficients of the polynomials Am,1 are well-known 
combinatorial numbers.

(a) sm, j = (−1)m− j S(m + 1, j + 1) where S(p, q) is the Stirling number of the second kind that 
counts the number of partitions of a p-set into q blocks. This follows immediately from the classical 
identity km+1 = ∑m+1

j=1 (−1)m+1− j S(m + 1, j)(k) j (for example, see Stanley, 1986, 4.3, c).

(b) For m = 0 we have A0,1 = 1 and Am,1 = ∑m
j=1 A(m, j)t j for m > 0 where A(m, j) is the Eulerian 

number (Stanley, 1986, 4.3, d).

1.2. The monoid Zd+

Next we consider M = Zd+ . The crucial observation is that the problem is multiplicative for 
products of polynomials in disjoint variables. Suppose that f (x) = g(y)h(z), y = (x1, . . . , xr), z =
(xr+1, . . . , xd). Then

E M, f (t) =
∑

x∈Zd+

f (x)tdeg x =
( ∑

y∈Zr+

g(y)tdeg y
)( ∑

z∈Zd−r+

h(z)tdeg z
)

(1.5)

by multiplication of power series.
In order to exploit (1.5) we split the last variable off,

f (x) =
∑

f i(x1, . . . , xd−1)xi
d,
i
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and obtain

E M, f (t) =
∑

i

(( ∑
x′∈Zd−1+

f i
(
x′)tdeg x′

)( ∞∑
k=0

kitui

))

=
∑

i

(
Ai,u(t)

(1 − tu)i+1

∑
x′∈Zd−1+

f i
(
x′)tdeg x′

)
(1.6)

with u = deg ed .
Applying this formula inductively allows us to eliminate all variables xi and to end with the desired 

representation of E
Z

d+, f (t).

Generalizing (1.4), let us consider the case in which f is a monomial, f (x1, . . . , xd) = xm1
1 · · · xmd

d , 
and Zd+ is endowed with its standard degree, deg(x) = x1 + · · · + xd . Then Eqs. (1.5) and (1.4) imply 
that

E M, f (t) = m1! · · ·md!
(1 − t)m1+···+md+d

+ terms of smaller pole order at t = 1. (1.7)

1.3. Using the Stanley decomposition

We now turn to general M ⊂ Zn . Normaliz computes a triangulation Σ of C = cone(M) into full 
dimensional simplicial subcones σ . Moreover, it computes a disjoint decomposition

cone(M) =
⋃
σ∈Σ

σ \ Sσ (1.8)

where Sσ is a union of facets of σ . The existence of such a decomposition is a nontrivial fact. Clas-
sically it is derived from the Brugesser–Mani theorem on the existence of line shellings (see Stanley, 
1982). Instead of a line shelling, Normaliz (now) uses a method of Köppe and Verdoolaege that we 
describe in the following remark; also see Köppe and Verdoolaege (2008) and Bruns et al. (2014, 
Section 4). It is computationally much better than line shellings.

Remark 2. In order to compute the Stanley decomposition one starts with a vector O C in the interior 
of one of the simplicial cones in the triangulation O C that avoids all hyperplanes spanned by the 
facets of all σ ∈ Σ . In practice, one chooses O C in the interior of the first simplicial cone σ in the 
triangulation and works with an infinitesimal perturbation; see Bruns et al. (2014, Section 4). For 
σ ∈ Σ one then collects in Sσ all facets F of σ such that O C and σ lie on different sides of the 
hyperplane through F .

It is important to note the following: Sσ is never the union of all facets of σ . This could only 
happen if O C ∈ −σ . But since C is pointed we have −σ ∩ C = {0}, and O C 
= 0.

The following figure indicates the decomposition of a (cross-section of a) cone computed by the 
method just described.

+

+
−

+

+−
+ +−

+ +−

+−

+− +

+O C •
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Every simplicial subcone (of full dimension) is generated by linearly independent vectors 
v1, . . . , vd ∈ M , d = rank M . They generate a free submonoid Mσ of M . For every σ Normaliz com-
putes the set

Eσ = {
x ∈ gp(M): x = α1 v1 + · · · + αd vd, αi ∈ [0,1)

}
where gp(M) denotes the group generated by M . For x ∈ Eσ we let ε(x) be the sum of those vi for 
which (i) αi = 0 and (ii) the facet of σ opposite to vi lies in the excluded set Sσ : ε(x) 
= 0 if and only 
if x lies in the excluded set, and the translation by ε(x) moves x out off Sσ . Then it is not hard to see 
that we have a disjoint decomposition

M =
⋃
σ∈Σ

⋃
x∈Eσ

x + ε(x) + Mσ . (1.9)

It is called a Stanley decomposition since its existence is originally due to Stanley (1982).
In the following we set ̃x = x + ε(x) and

Nσ ,x = x̃ + Mσ .

Then

E M, f (t) =
∑
σ

∑
x∈Eσ

E Nσ ,x, f (t).

Set d = rank M , and for given σ consider the linear map

ασ : Zd+ → Zn, ασ (y1, . . . , yd) = y1 v1 + · · · + yd vd, (1.10)

where v1, . . . , vd is the generating set of Mσ as above. With

degσ y = degασ (y),

gσ ,x(y) = f
(
ασ (y) + x̃

)
, (1.11)

we have

E Nσ ,x, f (t) = tdeg x̃
∑

y∈Zd+

gσ ,x(y)tdegσ y . (1.12)

For a precise estimate of the degrees arising in (1.12) one should note that

deg x̃ < deg v1 + · · · + deg vd. (1.13)

Since ̃x = ξ1 v1 + · · · + ξd vd with 0 ≤ ξi ≤ 1 for i = 1, . . . , d, one must only exclude equality in (1.13). 
In fact, equality would only be possible with ξi = 1 for all i, and in its turn this would imply that Sσ

consists of all facets of σ . However, this is impossible as observed in Remark 2.
Eq. (1.12) transforms the summation over Nσ ,x into a summation over Zd+ . Then we can apply (1.6)

inductively to

Ẽσ , f (t) =
∑

x∈Eσ

E Nσ ,x, f (t). (1.14)

Finally, we sum the rational functions Ẽσ , f (t) over the triangulation Σ .

Remark 3. (a) Instead of applying (1.6) to every σ , we accumulate the polynomials gσ ,x over all σ
that induce the same degree degσ on Zd (the classes formed in this way are called denominator 
classes).
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(b) The time critical steps in the algorithm are

(1) the coordinate transformation (1.11), and
(2) the inductive application of (1.6).

In order to speed up (1), we factor the polynomial f , transform the factors separately, and multiply 
the transformed factors. If f happens to decompose into linear factors, then multiplication of linear 
polynomials becomes a time critical step. In order to speed up (2) we have introduced the denomi-
nator classes.

(c) Note that 
∑

y∈Zd+ gσ ,x(y)tdegσ y is invariant under permutations of variables yi that preserve 
the degrees degσ ei . Therefore one can go over gσ ,x monomial by monomial and reorder the ex-
ponent vectors in such a way that the exponents of variables corresponding to the same degree 
become decreasing. The reordering significantly reduces the number of monomials in the polynomials 
to which (1.6) must be applied, saves memory and also speeds up (1.6).

(d) We want to point out that (1.6) is not applied recursively. Instead the right hand side is ex-
panded after the elimination of xd , and xd−1 is then eliminated from the resulting polynomial whose 
coefficients are rational functions in t . This procedure is repeated until all xi have been eliminated.

1.4. The semi-open case

In applications like those sketched in Section 3 one is interested in counting lattice points in 
semi-open rational cones of type

C ′ = C \ F

where F is a union of faces of C . The monoid M = C ∩ L is then to be replaced by its ideal

M ′ = C ′ ∩ L.

One should note that counting lattice points in M ′ is intrinsically more difficult than counting those 
in M , even if F is a union of facets. For example, let C be the cone over the unit square, i.e.,

C = R+
{
(0,0,1), (1,0,1), (1,1,1), (0,1,1)

}
and F be the union of the faces of C through two opposite edges of the square. Then the ordinary 
Ehrhart series of M ′ is (2t2 − t3)/(1 − t)3. This excludes a Stanley decomposition of type (1.9) which 
would give a numerator polynomial with nonnegative coefficients since the coefficient of tk in the 
numerator just counts the elements x + ε(x) that have degree k. From the geometric viewpoint, the 
difficulty is demonstrated by the fact that C ′ has no decomposition of type (1.8): in at least one of 
the simplicial cones one must remove an edge without any of the two facets in which the edge is 
contained.

For this reason Normaliz and NmzIntegrate treat the semi-open case by inclusion–exclusion. This 
principle is applicable since taking Ehrhart series is additive in the sense of measure theory. But we 
do not go the most obvious way by computing the Ehrhart series for each of the involved faces and 
evaluating the sieve formula at the very end. Instead inclusion–exclusion is applied to all simplicial 
cones σ .

Let F be a face of C . By (1.9) we have

F ∩ L =
⋃
σ∈Σ

⋃
x∈Eσ

F ∩ (̃x + Mσ )

where, as above ̃x = x + ε(x). The face F is an extreme subset of C : y + z ∈ F implies y, z ∈ F for all 
y, z ∈ C . This fact makes the computation of F ∩ (̃x + Mσ ) very easy:

F ∩ (̃x + Mσ ) =
{∅ if x̃ /∈ F ,˜
x + (F ∩ Mσ ) otherwise,
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and F ∩ Mσ is simply the free submonoid of Mσ that is generated by those vi that lie in F (no-
tation as in (1.10)). This simple observation shows that the decomposition of C directly induces a 
decomposition of F into components whose ordinary Ehrhart series can easily be computed.

For generalized Ehrhart series this approach is even more advantageous: the expensive coordinate 
transformation in (1.12) needs to be done only once for ̃x since it can simply be restricted to F ∩ σ
by selecting those terms that do not contain any indeterminate representing a generator outside F .

However, one should note that the application of inclusion–exclusion to each simplicial cone usu-
ally increases the number of components that must be taken into account for the Ehrhart series of 
a face F since dim F ∩ σ < dim F in general, and the Stanley decomposition of M ∩ F is no longer 
full-dimensional.

2. The quasipolynomial, its virtual leading coefficient, and integration

2.1. The quasipolynomial

All rational functions in t that come up in (1.14) can be written over the denominator(
1 − t�

)deg f +rank M

where � is the least common multiple of the numbers deg x for the generators x of M that appear 
in the triangulation. This follows from (1.6) if one observes that 1 − tu divides 1 − t� . Moreover, all 
summands have negative degree as rational functions in t , as follows from (1.13). Therefore Stanley
(1986, 4.4.1) implies the following proposition.

Proposition 4.

E M, f (t) =
∞∑

k=0

q(k)tk

where q is a rational quasipolynomial of period π dividing � and of degree ≤ deg f + rank M − 1.

The statement about the quasipolynomial means that there exist polynomials q( j) , j = 0, . . . , π −1, 
of degree ≤ deg f + rank M − 1 such that

q(k) = q( j)(k), j ≡ k (mod π),

and

q( j)(k) = q( j)
0 + q( j)

1 k + · · · + q( j)
deg f +rank M−1kdeg f +rank M−1

with coefficients q( j)
i ∈ Q. As we will see below, it is justified to call

ed(M, f ) = deg f + rank M − 1

the expected degree of q.

2.2. The virtual leading coefficient and Lebesgue integration

Let m = deg f and write f = fm + g where fm is the degree m homogeneous component of f . Then 
deg g < m, and it follows from Proposition 4 that g does not contribute to the coefficient q( j)

ed(M, f ) . 
Moreover, this coefficient is independent of j and given by an integral, as we will see in Proposition 5
below.

For the representation as an integral we must norm the measure in such a way that it is compati-
ble with the lattice structure. We will integrate over the polytope

P = cone(M) ∩ A1, A1 = {
x ∈Rn: deg x = 1

}
.
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Let L0 = L ∩RM ∩ A0 where A0 = {x ∈Rn: deg x = 0} is the linear subspace of degree 0 elements. Then 
L0 is a (saturated) sublattice of L of rank d −1 (d = rank M), and we choose a basis u1, . . . , ud−1 of L0. 
Note that H = RM ∩ A1 has dimension d − 1 and contains a point z ∈ L since we have required that 
deg takes the value 1 on gp(M), and we can consider the basic L0-simplex δ = conv(z, z + u1, . . . , z +
ud−1) in H . Now we norm the Lebesgue measure λ on H by giving volume 1/(d − 1)! to the basic 
L0-simplex. (The measure is independent of the choice of δ since two basic L0-simplices differ by an 
affine-integral automorphism of H .) We call λ the L-Lebesgue measure on H .

The following Propositions 5, 6 and 7 are quite elementary, as their proofs will show. They may 
have appeared elsewhere, and we do not claim originality for them.

Proposition 5. For all j = 0, . . . , π − 1 one has

q( j)
ed(M, f ) =

∫
P

fm dλ. (2.1)

Proof. We may assume that f is homogeneous of degree m. Let

Lc = 1

c
L.

Then ∫
P

fm dλ = lim
c→∞

∑
x∈P∩Lc

1

cd−1
f (x)

by elementary integration theory.
Note that

f (x) = 1

cm
f (cx)

by homogeneity and that x ∈ P ∩ Lc if and only if cx ∈ L ∩ c P . Thus∫
P

fm dλ = lim
c→∞

∑
y∈c P∩L

1

cm+d−1
f (y).

On the other hand, we obtain q( j)
ed(M, f ) as the limit over the subsequence (bπ + j)b∈Z+ :

q( j)
ed(M, f ) = lim

b→∞
∑

y∈(bπ+ j)P∩L

1

(bπ + j)m+d−1
f (y)

by Proposition 4. This concludes the proof. �
In view of Proposition 5 it is justified to call qed(M, f ) = q( j)

ed(M, f ) the virtual leading coefficient, and 
the proposition justifies the term “expected degree” for deg f + rank M − 1 the. In analogy with the 
definition of multiplicity in commutative algebra (for example, see Bruns and Herzog, 1998), we call

vmult(M, f ) = ed(M, f )!qed(M, f )

the virtual multiplicity of (M, f ). It is an integer if P is a lattice polytope and fm has integral coeffi-
cients, as we will see below.
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2.3. Computing the integral

It is natural to compute the integral by summation over the triangulation: the triangulation 
of cone(M) into simplicial subcones σ induces a triangulation of the polytope P into simplices 
δ = σ ∩ P . As usual let v1, . . . , vd ∈ M be the generators of σ . Then δ is spanned by the degree 
1 vectors vi/ deg(vi), i = 1, . . . , n. Let e1, . . . , ed be the unit vectors in Rd . Then the substitution 
ei �→ vi/ deg(vi) induces a linear map Rd →RM that in its turn restricts to an affine map α from the 
standard degree 1 hyperplane in Rd spanned by e1, . . . , ed to the hyperplane H = A1 ∩ RM , and the 
image of the unit simplex � is just δ.

Proposition 6. One has∫
δ

f dλ = |detL(v1, . . . , vd)|
deg(v1) · · · deg(vd)

∫
�

( f ◦ α)dμ (2.2)

where μ is the Zd-Lebesgue measure on the hyperplane ̃H of standard degree 1 in Rd and detL(v1, . . . , vd) is 
the determinant of the coefficient matrix of v1, . . . , vd with respect to a basis of L ∩RM.

Proof. This is just the substitution rule if one observes that the absolute value of the functional 
determinant of α|H̃ is given by the factor in front of the integral. For an affine map the functional 
determinant is constant. So we can assume f = 1 and it remains to relate the volumes of δ and �. 
But � has volume 1/(d − 1)! with respect to μ and δ has volume

1

(d − 1)!
|detL(v1, . . . , vd)|

deg(v1) · · · deg(vd)

with respect to λ; see Bruns et al. (2014, Section 4). �
After the substitution it remains to evaluate the integral over �, and this can be done monomial 

by monomial:

Proposition 7.∫
�

ym1
1 · · · ymd

d dμ = m1! · · ·md!
(m1 + · · · + md + d − 1)! . (2.3)

Proof. Let g = ym1
1 · · · ymd

d and M = Z+
d . Then

E M,g(t) = m1! · · ·md!
(1 − t)(m1+···+md+d)

+ terms of smaller pole order at t = 1,

as stated in (1.7).
The quasipolynomial is a true polynomial in this case, and the (virtual) multiplicity is given by the 

value of the numerator polynomial at t = 1, namely m1! · · ·md! (for example, see Bruns and Herzog, 
1998, 4.1.9). Now Proposition 5 gives the integral. �

One can also derive the formula in Proposition 7 by iterated use of the classical Beta integral

1∫
0

ym1
1 (1 − y1)

m2 dy1 = m1!m2!
(m1 + m2 + 1)! = Γ (m1 + 1)Γ (m2 + 1)

Γ (m1 + m2 + 2)
;

see Andrews et al. (1999, Theorem 1.1.4).
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Table 1
Inequalities expressing that A beats the other 3 candidates.

λ1: 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 −1
λ2: 1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1
λ3: 1 1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1

3. Computational examples

We illustrate the use of NmzIntegrate by three related examples coming from combinatorial vot-
ing theory that are discussed in Schürmann (2013). We refer the reader to Lepelley et al. (2008), 
Schürmann (2013) or Wilson and Pritchard (2007) for a more extensive treatment.

Consider an election in which each of the k voters fixes a linear preference order of n candidates. 
In other words, voter i chooses a linear order of the candidates 1, . . . , n. Each such order represents a 
permutation of 1, . . . , n. Set N = n!. The result of the election is an N-tuple (x1, . . . , xN ) in which xp
is the number of voters that have chosen the preference order labeled p. Then x1 + · · · + xN = k, and 
(x1, . . . , xN ) can be considered as a lattice point in the positive orthant of RN+ , or, more precisely, as 
a lattice point in the simplex

U (n)

k = RN+ ∩ Ak = k
(
RN+ ∩ A1

) = kU (n)

where Ak is the hyperplane defined by x1 + · · · + xN = k, and U (n) = U (n)
1 is the unit simplex of 

dimension N − 1 naturally embedded in N-space. We assume that all lattice points in the simplex 
U (n)

k have equal probability of being the outcome of the election.
The following three problems have been considered in Schürmann (2013) for 4 candidates 

A, B, C, D:

(1) the Condorcet paradox,
(2) the Condorcet efficiency of plurality voting,
(3) plurality voting versus cutoff.

For n = 4 one has N = 24, and the dimension of the polytope U (4) is already quite large.
Let us say that candidate A beats candidate B if the number of voters that prefer candidate A

to candidate B is larger than the number of voters with the opposite preference. Candidate A is the 
Condorcet winner if A beats all other candidates. As the Marquis de Condorcet noticed, the relation 
“beats” is nontransitive for some outcomes of the election, and there may be no Condorcet winner. 
This phenomenon is called the Condorcet paradox. Problem (1) asks for its asymptotic probability as 
the number k of voters goes to ∞, or even for the precise number of election results without a 
Condorcet winner, depending on the number k of voters.

It is not hard to see that the outcomes that have A as the Condorcet winner can be described by 
three homogeneous linear inequalities λi(x) > 0 whose coefficients are given in Table 1 (relative to 
the lexicographic order of the permutations of A, B, C, D). They cut out a rational polytope from U (n) , 
and the probability of Condorcet’s paradox can be computed from the volume of the polytope. Finding 
the precise number of election results without (or with) a Condorcet winner requires the computation 
of the Ehrhart function of the semi-open polytope.

Problems (2) and (3) can be described by similar systems of linear inequalities. Since version 2.8, 
Normaliz can indeed compute the volumes and the Ehrhart series in dimension 24 that arise from 
tasks (1), (2) and (3) although the triangulations to be evaluated for (2) and (3) are formidable (see 
Table 3 or Bruns et al., 2014).

As Schürmann (2013) observed, the computations can be considerably simplified by exploiting 
the symmetries in the inequalities: some variables share the same coefficients in each inequality, for 
example the first 6 variables in Table 1. Therefore they can be replaced by their sum, and the re-
placement constitutes a projection of the original polytopes, monoids or cones onto objects of smaller 
dimension. For the Condorcet paradox the system of inequalities reduces to Table 2. However, instead 
of simply counting lattice points, one must now count them with their numbers of preimages. These 
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Table 2
Inequalities exploiting the symmetries in Table 1.

1 −1 1 1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 −1 −1 1 −1

Table 3
Computation times (real) for Ehrhart series in dimension 24.

Computation Triangulation size Real time

Condorcet paradox 1,473,107 00:00:30 h
Condorcet efficiency 347,225,775,338 218:13:55 h
Plurality vs. cutoff 257,744,341,008 175:11:26 h

Table 4
Computation times (real) for symmetrized data.

Computation Rank deg f # Triangulation / 
# Stanley dec

Normaliz time Gen. Ehrhart 
series time

Lead. coeff. time

Condorcet paradox 8 16 17 / 21 0.01 s 2.3 s 0.04 s
– semi-open 2.5 s

Condorcet efficiency 13 11 17,953 / 23,453 0.34 s 1:53 h 22 min
– semi-open 2:02 h

Plurality vs. cutoff 6 18 3 / 4 0.01 s 8.1 s 0.09 s
– semi-open 13.6 s

are given by polynomials, namely products of binomial coefficients. In our example the polynomial is

(
y1 + 5

5

)
(y2 + 1)(y3 + 1)(y4 + 1)(y5 + 1)(y6 + 1)(y7 + 1)

(
y8 + 5

5

)
where y1 = x1 + · · · + x6 etc. In other words, the Ehrhart function (or the volume) of a high dimen-
sional polytope is replaced by a generalized Ehrhart function of a polytope of much lower dimension 
(or the virtual leading coefficient of the quasipolynomial).

A priori it may not be clear that the replacement of combinatorial complexity in high dimension 
by multivariate polynomial arithmetic in low dimension pays dividends, but this is indeed the case. 
Tables 3 and 4 compare both approaches. The computations in Table 3 and the Condorcet efficiency 
in Table 4 were run on a SUN xFire 4450 with 20 parallel threads. The other computations in Table 4
were done on the same machine, but serially.

If the computations in Table 3 are restricted to volumes, they become faster by a factor of ap-
proximately 3. The times are given for the Ehrhart series of the closed polytopes. For the semi-open 
versions one must approximately add another 30%, but we hope that a refined implementation will 
reduce the extra time somewhat.

The last 3 columns of Table 4 list the times for the following computations: (i) the time Normaliz 
needs for the computation of the Stanley decomposition, (ii) the time in which NmzIntegrate 1.2 
computes the generalized Ehrhart series, and (iii) the NmzIntegrate time for the leading coefficient. 
Whether the extra computation time for the semi-open case can be further improved is not yet clear.

A welcome side effect of the computations of the generalized Ehrhart functions is that they have 
confirmed the results obtained by Normaliz.

J. Jeffries, J. Montaño and M. Varbaro (2013) have applied NmzIntegrate for the evaluation of inte-
grals that compute certain multiplicities. A typical example is
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∫
[0,1]m∑

x=t

(x1 · · · xm)n−m
∏

1≤i< j≤m

(x j − xi)
2dμ,

taken over the intersection of the unit cube in Rm and the hyperplane of constant coordinate sum t . 
It is supposed that t ≤ m ≤ n. For t = 2, m = 4, n = 6 the computation time is � 1 s.

Remark 8. While NmzIntegrate accepts polynomials with rational coefficients as input, in version 1.2 
all internal computations are based on integers of the CoCoALib type BigInt that is essentially a 
wrapper for the GMP type mpz_class. The use of integral arithmetic is possible since a common 
denominator can be computed beforehand.

Version 1.0 had used rational arithmetic instead. The change from rational to integer arithmetic 
has saved about 50 % of the computation time.
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