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The object of this note is to prove a conjecture of the first author ([Br], p. 192)
concerning the perfection of modules defined by generic symmetric or
alternating maps of a given rank.

Let B be a commutative noetherian ting, X;;, 1 <i<j<n, a family of
indeterminates, X ; = X,;, and X the symmetric matrix (X;;). For an integer
r,0<r<mnputR, =B[X]/I,,,(X),],,,(X)denoting the ideal generated by
the (r+ 1)-minors of X. Then the residue class x of the matrix X defines an
R,-homomorphism x: F — F* F =(R.)", which for obvious reasons may be
called the generic symmetric map of rank r over B. The modules we are
interested in are M = Cokerx, M* = Kerx, and Im x.

Analogously a generic alternating map is defined with respect to an

alternating matrix X of indeterminates, X, = — X ;, X;; = 0. The necessarily
even rank r is now fixed by the: ;Vamshmg of the (r+2) pfaffians of X: one
considers R, = B[X]/Pf,,,(X) and the mapx: F — F* as above.

The results of [Br] for generic m x n matrices were proved by the method
of principal radical systems and a duality argument. In [BV], Section 13 the
former has been replaced by filtrations and depth bounds based on the
straightening law of the underlying ring. In the alternating case one again has
an algebra with straightening law, cf. [DEP], and, mutatis mutandis, the
arguments of [BV] go through. In the symmetric case we will draw upon
Kutz’s paper [Ku]. In both cases local duality will be needed, too. Its
application here is easier than in [Br] and [BV], since B[X]/Pf ,,(X) is
Gorenstein (over a Gorenstein B), cf. [KL], and B[X1]/I, ., (X), X symmetric,
has a very simple canonical module, if it is not Gorenstein [Go].

This paper is in final form and no version of it will be submitted for publication elsewhere.
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34 W. BRUNS AND U. VETTER

LemMma 2. Let B =1Z (or any Cohen-Macaulay ring), and p = R = R,
a prime ideal, p > 1,(x). Then

depth M, > depth R, —r > S depth R,
Proof. By [Ku]
depthR, = nr—r(r—1)/2,

implying the second inequality.
In order to prove the first inequality we put M, = Yiiv1 R ¢;, €; denoting
the residue class in M of the jth canonical basm element of F* One has

a fltration

re

M=My>M,>...5M

We claim: (i) M, is a free R-module.

(i) The annihilator J; of M/M, is the ideal generated by the i-minors of
the first i columns of x.

(i) The generator ¢; of M, /M, is linearly independent over R/J..

[t follows from these claims that M has a filtration with quotients R and
R/J; i=1,...,r. By [Ku] all these rings are Cohen-Macaulay, and
dimR/J; =dimR+i—r—1,

Claim (i) is clear: rank x = r, and the first r columns are linearly
independent, hence rank M/M, = 0 = rank M —(n—r). Since M/M, is represen-
ted by the matrix (x|i) consisting of the first i columns of x, Ann M/M,> J..
On the other hand the first i— 1 columns of (x|i) are linearly independent over
R/J; (again by [Ku]), and by the same argument as used for (i) one concludes
(i) and (ii). m

Now we can already prove part (a) of the proposition under whose
hypotheses R = R, is a Gorenstein ring. Let p < R be a prime ideal. Arguing
inductively one may suppose that M is a maximal Cohen-Macaulay module
for all primes ¢ strictly contained in p, and, by Lemma 1, that p>1,(x). Let
D Coker x* be the Auslander-Bridger dual of M. Of course D ~ M. Lemma

2 and the assumptions so far imply that M, is a dth syzygy module,
d = depth M, hence

ExtR (M, R)zExtj}2 (Dp, R)=0 fori=1,...,d,
(cf. [BV], Section 16 for example). On the other hand depthM , > d is
equivalent to
ExtR (M,,R,)=0 for i=depthR,—d+1,..., depth R,
by local duality. Hence Exth (Mp, R,)=0foralli>0, and M, is a maximal

Cohen—-Macaulay module.
Part (b) finally follows by induction, the numerical information supplied

above, and:
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LEmmA 3. Let B = Z. ;

(a) As an (R/J,)-module M/M, is reflexive.

(b) Its dual over R/J, is isomorphic to J,_/J,.

(c) M/M, is a maximal Cohen—Macaulay module over R/J,.

(In order to include the case r = 1: A O-minor has the value 1))

Proof. To simplify the notation write R for R/J, and M for M/M,. Let us
first observe that (c) holds in case n = r+1 (2) since, as has just been proved,
M is a maximal Cohen-Macaulay module over R.

Next one notices that the case r = 1 is indeed trivial, M/M, being free of
rank 1 over R/J,. Suppose that r > 1 and proceed by induction. Then, via
M and Lemma 1, it follows that M, is a maximal Cohen-Macaulay module
over R, for all peSpecR, p p 1,(x)/J,.

For (a) it is enough to show that (i) M, is free for all primes p such that
depthR, < 1, and (i) depth M, > 2 for the remaining ones. (i) is clear:
gradel,_, (x|r)/J, = 2, and M is free if p  I,_, (x|r)/J,. In order to verify (ii)
one may now assume that n>r+2, r> 1, and p oI, (x)/J,. Then Lemma
2 implies (ii).

The dual of M is isomorphic to the kernel of the map R" — R" defined by
the transpose y of (x|r). Taking the determinantal relations of the rows of y, one
sees that J,_,/J, is embedded in Kery such that this embedding splits at all
prime ideals not containing I, _, (x|r)/J,, in particular at all primes p such that
depthR, < 1. Since J,_/J, is a maximal Cohen-Macaulay module over R, (b)
follows easily. '

It remains to prove (c) for n #r+1 (2). In this case J, is the canonical
module of R, so R = R/J, is a Gorenstein ring, cf. [HK], 6.13. By (b), the dual
of M is Cohen-Macaulay, so is M by (a). =

Once proved over Z, Lemma 3 holds over any Cohen-Macaulay ring B, in
fact over arbitrary B if one replaces the Cohen—Macaulay property by
perfection.

2. Generic alternating maps

Let X be an alternating nxn matrix of indeterminates over B and
R, = B[X]/Pf ,,(X),r >0 an even integer.

THEOREM 2. Let x: F — F* rank F = n, be the generic alternating map of
rank r over B. Suppose that r <n—1 if n is odd. Then M = Coker x,
M* = Kerx, and the self-dual module Imx are perfect B[X]-modules.

The case r = n—1, n odd, is a true exception: Coker x = Pf, (X) is an ideal
of projective dimension 2 [BE].

The proof of Theorem 2 is reduced to the case B = Z and r+2 < n by the
same arguments as above. It is enough to show that depth M, > depthR —1
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for all peSpecR,, r =rank x. Together with the fact that M, is free for
p # Pf (x), grade Pf, (x) = 2(n—r)+ 1 = 5, this implies that M is reflexive and
M*, the second syzygy of M, is Cohen-Macaulay, whence M = M** is
Cohen-Macaulay, too. After all, R, is a Gorenstein ring (over any Gorenstein
B), cf. [KL].

For indices i, ..., i, we denote (the residue class of) the pfaffian of the
uxu matrix (X;; : 1<v,w<u) by [i,...,i]. Note that [i,,...,i]=0if
i, = i, for some v, w, v # w. One has the expansions

[iys ooniJ = 2 (=" oG o) iy, ooy Gy By ooy i1 5 ]
j=1

u
Iy

= 2 (=0 o, Dligs s b ooy by oy 1,1 [y )]
j=1
along a row or column resp., o(j, v) denoting the sign of v—j.
As above we put M, =>"_,,,Ré, M=M/M, and, now,
R =R,/R,[1,...,r]. By what has just been said, it is enough to show the
following lemma: '

LemMma 4. Let v < n.

(a) M, is a free R,-module.

(b) [1,...,¥]M =0.

(c) As an R-module M is isomorphic to the ideal I = R generated by the
pfaffians [1, ..., 0, ..., r+1], 1 <i<r

(d) Suppose that r+2 < n. Then I is a maximal Cohen—Macaulay module

over R

Proof. (a) follows as the corresponding statement in Lemma 1:
rank M = n—r and [1,...,r]1, ..., 7] =1, ..., r]* is not a zero-divisor.

(b) follows from arguments analogous to those detailed below in the proof
of (c).

For the proof of (c) and (d) we use the structure of R, as an algebra with
straightening law over B, cf. [DEP], Section 12. The underlying poset is formed
by the s-pfaffians of x, s <r, ordered by [a,,...,a,] <[b,,...,b]<u>0v,

a;<b,,i=1,...,v This poset is obviously a distributive lattice, in particular
it 1s wonderful. As one sees easily
R/ =R,/J,

J being generated by all the pfaffians in the set ¥ ={n: n3%
[1,...,r—1,r+2]}. ¥ is a poset ideal, and by [DEP], Lemma 8.2 or [BV],
(5.13) R/I is an ASL on a wonderful poset again. This implies that R/I is
a Cohen—-Macaulay ring. Using [DEP], Section 6 or [BV], (5.10) to determine
dimensions one sees that (under the hypothesis of (d)) dimR/I =
dim R,—2 = dim R— 1. Together with the Cohen-Macaulay property of R and
R/I the equation dim R/l = dim R—1 implies (d).
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In order to prove (c) one starts with the natural presentation
R MR M - 0.

Then one defines an epimorphism ¢: R"— ] by ple)=(—1)x
x[1,. , r+17]. The expansion of the pfaffian [1, ..., r+1, k] along its
(r+2)- th row,

r+1

[1,..,r+1, k==Y (—1yX,[1,. 1]

i=1 .
together with [1,...,r+1,k] =[1,...,r] =0 in R shows that the rows of
(x|r) are relations of the generators of I, the map ¢ factors through M. It
remains to show that the kernel of ¢ is generated by the rows of (x|r). By virtue
of [BV], (5.6) it is enough to find linear combinations of the rows of (x|r) of the
form

me;— ) a;e;, a;eR,

j>i
for all i=1,...,r and all pfaffians n 2 [1, . ., r+1]. Let n be such
a pfaffian. Then

r=[1,...,0,by,..., b1, i<b <..<b, i+tq=0(2).

4q

Let x; be the jth row of (x|r) and [a,, ..., a;y 1=[1,..., i, by, ..., b]. The
element

i+tgqg

y = Z( itia(i, )lag, ..., G, ..., Ay ooy 1,1 X;

has the desired form: Its component with respect to e, k <i, is
[L,....,k, ..., i=1,k,by,..., b1, hence O for k < i, and (L, ..., i, by, ..,0,]
for k=i m

Remarks. (a) Both Theorems 1 and 2 can be generalized along the lines of
[Br], Theorems 1 and 2, and supplemented by statements analogous to [Br],
Theorems 4 and 5. Furthermore it is not difficult to show that Kerx is
generated by the natural determinantal resp. pfaffian relations of the rows of x.

(b) Under the hypotheses of Theorem 2 let n be an odd integer and
r+2 =n—1. As remarked above, I = Pf._ | (X) is a (Gorenstein) ideal of grade
3, and obviously M = I/I*. Thus Theorem 2 may be considered a generaliza-
tion of Herzog’s result [He], Satz 2.8 saying essentially that I/I* is a perfect
module over B[X].
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